Stable Drosophila buzzatii-
Drosophila koepferae
Hybrids
I. Marín and A. Fontdevila

Previous experiments discovered high rates of chromosomal rearrangements in the progeny of males containing a telomeric segment of Drosophila koepferae in a D. buzzatii genetic background (segmental males). We have performed similar experiments, designed to test whether this chromosomal instability could be explained by a phenomenon similar to P-M hybrid dysgenesis or, alternatively, by a generalized telomeric effect. However, the results obtained have not allowed us to fully characterize this process, because we have not observed chromosomal rearrangements in the progeny of the putative unstable males. Our results suggest that chromosomal instability is independent of the introgressed fragment. A reasonable hypothesis to explain these results is that mutator factors are occasionally introduced by the hybridization. The effect of sampling, caused by the fact that only a small region is introgressed in a particular line, may explain why only some hybridizations lead to instability.

The impact of repetitive sequences, and especially mobile elements, on evolutionary processes is still poorly understood. The discovery of hybrid dysgenesis attracted the attention of evolutionary biologists because of the effects of high rates of transposition on the “hybrid” organisms obtained in crosses between stocks containing and those lacking certain mobile elements (see reviews in Berg and Howe 1989). The most interesting of these effects is sterility, caused by chromosomal breakage in the germ line of the hybrids (Engels 1989). These results lead to the hypothesis that similar processes might happen in interspecific hybrids, resulting in a “genomic disease” (Rose and Doolittle 1983). There are suggestive evidences indicating that interspecific hybrids are suffering, at least occasionally, these type of processes (reviewed in Fontdevila 1987, 1992). Among them, one of the most compelling was described by Naveira and Fontdevila (1985) in interspecific hybrids obtained between the pair of species Drosophila buzzatii and D. koepferae (this last species was then known as D. serido “from Argentina,” see Fontdevila et al. 1988). In that work, a very high rate of chromosomal rearrangements (with an average of 2% aberrations per gamete and generation) was observed in the offspring of males carrying in heterozygosis a telomeric fragment of chromosome 5 of D. koepferae in an otherwise D. buzzatii background. These results, highly suggestive of a dysgenic phenomenon, stimulated our work on the repetitive component of these two species (Marín and Fontdevila 1996; Marín et al. 1992). So far, our group has characterized five different transposable elements, at least three of them active in one or both of these species (Francino et al. 1994; Labrador and Fontdevila 1994; Marín and Fontdevila 1995, 1996). In one case we have directly demonstrated substantial rates of transposition of a newly described retrotransposon, Osualdo, in D. buzzatii-D. koepferae hybrids (Labrador and Fontdevila 1994).

To further study the phenomena that occur in these hybrids, a testable hypothesis of why instability occurs is required. The simplest explanation for Naveira and Fontdevila’s (1985) results would be a phenomenon similar to P-M hybrid dysgenesis (reviewed in Engels 1989). Their experimental protocol began with the production of a hybrid F₁, by crossing D. buzzatii males with D. koepferae females. F₁ females are fertile. Individuals with small chromosome fragments of D. koepferae in a D. buzzatii background (called “segmental” flies) can then be obtained by performing successive backcrosses of hybrid females against D. buzzatii males. The parallelism with the P-M system would be as follows. D. koepferae elements present in the introgressed fragments would remain stable while the cytoplasm of the cross is of koepferae type. Because the crosses are established always in the direction D. buzzatii males × D. buzzatii-D. koepferae hybrid females, the instability would remain suppressed. However, the production of fertile hybrid males allows the crosses to be performed in the reciprocal direction (hybrid males × D. buzzatii females). This situation would be equivalent to a cross of males P × females M, with the consequent production of offspring with a dysgenic germ line. The main difference with the P-M system is that only male buzzatii-koepferae hybrids are unstable, while in P-M dysgenesis both sexes are affected.

However, Naveira and Fontdevila’s (1985) experiments did not completely characterize the phenomenon. First, as suggested by the authors themselves, their results could be explained alternatively by mechanisms related with the introgressed fragment itself and independent of mobile element transpositions. Particularly, the experiments were performed with males introgressed for the telomeric tip of chromosome 5 (region 5A-B1d). The inclusion of a foreign telomere could be significant. In Nicotiana hybrids a chromosome breakage syndrome has been found that seems to be caused by differences in telomeric heterochromatin (Burns and Gerstel 1969; Gerstel and Burns 1967). A second important difficulty concerns the experimental design used. All the unstable lines came from a single introgressed segment that was kept intact, being transmitted from father to son for no less than five generations before testing for instability. If, as suggested before, the hybrid males suffer from a P-M-like dysgenic syndrome, transposition would
This nine exceptional larvae descended from a segmental male. They all carried the same inversion in chromosome 5 of D. buzzatii. Therefore our results (1) establish that a proper characterization of the parent as carrier or not of a hybrid segment results in at least 96.9% of the cases (assuming Mendelian segregation; probability of error = 1 - (0.5)^n, where n is the number of larvae examined). Thus the protocol is identical to that used by Naveira and Fontdevila (1985). Larvae, offspring of the individuals to be characterized, were examined for the presence of asynaptic, and hence hybrid, fragments in the polytene chromosomes of their salivary glands. At least five larvae are examined per cross, establishing a proper characterization of the parent as carrier or not of a hybrid segment in at least 96.9% of the cases (assuming Mendelian segregation; probability of error = 1 - (0.5)^n, where n is the number of larvae examined).

So far the protocol is identical to that used by Naveira and Fontdevila (1985). From now on, however, they diverge. In our experiments, successive backcrosses of hybrid females with D. buzzatii males were established. In these backcrosses we used females that carried introgressed telomeric segments (containing either the intact 5A-C1 fragment, as the founder female, or smaller fragments produced by recombination, never smaller than 5A-A5). Therefore, the hybrid females are not unstable (Naveira and Fontdevila 1985), the successive female backcrosses should not release the mutator activity of these strains. If we call the founder female B, (backcross 1), the successive experiments were performed with the progeny of B2 to Bn females. From these females, a limited number of fertile males were obtained that carried the introgressed fragments. We will call them "first generation" males (first generation refers to the fact that it is the first time fertile hybrid males are obtained in the crosses). As explained in the introduction to this work, supposing a P-M dysgenic system, these males would be equivalent to P males. They should not be unstable (they still carry koepferae cytoplasm). Once these first generation males were obtained, we did not establish maintenance lines for several generations, as in Naveira and Fontdevila's experiments. Instead, we crossed them with BSL females to obtain what we have called "second generation" males and females. If the analogy with the P-M system holds, the second generation hybrid males are expected to be unstable. Second generation males and females were then crossed individually with BSL females and their progeny analyzed by scoring their chromosomal complement. Only those larvae where all the chromosomes were analyzed for rearrangements have been included in this study.

The rescue of a single segregating chromosomal inversion in chromosome 2 (see Results) allowed us to look for cumulative effects. Males carrying both a 5A-B4 introgressed segment [that includes the region studied by Naveira and Fontdevila (1985)] and this chromosome 2 inversion were crossed with either sister females or BSL flies for up to eight generations. These crosses allow the possibility of accumulation of mutator transposable elements in the two marked chromosomes, 2 and 5. Again, dissections of the progeny of these males were performed to test for increased chromosomal instability, and only those larvae where all the chromosomes were analyzed have been included.

Results

Table 1 summarizes the results obtained when the progeny of second generation individuals from five different introgressed lines were checked for new chromosomal rearrangements in the offspring of second generation flies (sons and daughters of first generation segmental males).
Discussion

The interpretation of our results depends on two expectations: (1) the basal rate of chromosomal rearrangements in these crosses, and (2) the expected rate under dysgenic conditions. The available literature on basal rates of chromosomal mutation in natural populations of *Drosophila* species is very fragmentary and it is complicated by the occurrence of hybrid dysgenesis (Yamaguchi 1976; Yamaguchi et al. 1976; Yamaguchi and Mukai 1974; see Woodruff et al. 1983). Apparently even closely related species may have substantial differences in this basal rate. Inoue (1988) found that the number of rearrangements found only a single time in populations of *D. melanogaster* was about 8×10^{-3} (all rates from now on refer to rearrangements per genome and generation), while in its sibling *D. simulans* it was about 4×10^{-3}. It is therefore fortunate that we have direct data concerning one of our species: the extensive survey of the chromosomal variability present in *D. buzzatii* populations by Ruiz et al. (1984). In this work six exceptional rearrangements were found out of 5,103 genomes examined. Assuming that these larvae correspond to new mutations, the basal rate in this species would be 1.2×10^{-3}. We can suppose this is also the basal rate in our hybrids because 95% of their genomes originate from *D. buzzatii*. Contrasting with this low basal rate, Naveira and Fontdevila (1985) found rates in the offspring of segmental hybrid males ranging from 8.2×10^{-3} to 9×10^{-2} (average 2.1×10^{-2}), that is 7 to 75 (average 18) times larger than the basal rate. With this data in mind, we can easily conclude that our experiments did not show any sign of instability. A total of 640 larvae descendant of putative unstable segmental males (373 in the first set of experiments and 267 in the second set) were examined without finding (once the segregating inversion is excluded, see below) any chromosomal rearrangement. With this sample size and according to a Poisson distribution, there is a probability higher than 95% of obtaining at least one rearrangement if the rate is higher than 4.4×10^{-3}. This demonstrates that the rate of production of new rearrangement in our lines is much lower than the minimum rate obtained by Naveira and Fontdevila (1985). In fact, the possibility of accumulation of segregating rearrangements through the generations means that we are underestimating the number of genomes characterized, further strengthening the conclusion of lack of instability. The single rearrangement found in the first generation male carrier of a new inversion is irrelevant to the conclusion of lack of instability in our lines. This mutation was produced in the father (BSL) or in the mother (hybrid segmental female), neither of which are expected to be unstable. With our total sample size (931 individuals; see Tables 1 and 2), and according to the results described in Ruiz et al. (1984), about one spontaneous rearrangement is expected.

Thus, we have been unable to replicate Naveira and Fontdevila’s results. The lack of instability has made it impossible to check the hypothesis that a P-M hybrid dysgenesis syndrome was acting in these hybrids. However, our experiments contribute to a better understanding of those previous results. First, we have determined that a generalized mutator effect associated to the introgression of the distal end of chromosome 5 does not occur. Our results show that the introgression of telomeric fragments very similar to that obtained by Naveira and Fontdevila (1985) may not cause instability. The process is therefore restricted to particular lines in a way that seems to be independent of the introgressed fragment. A second interesting aspect is that our results do not support an accumulation of mutator factors during the maintenance generations as a likely explanation of Naveira and Fontdevila’s results. Even when two chromosomes (instead of one as in Naveira and Fontdevila 1985) were selected in each generation, no rearrangements were found. However, because of the limited number of larvae examined, it is still possible for a low degree of instability (lower than 1.1×10^{-2} rearrangements/gamete/generation) to be present in our maintenance lines.

The conditions that determine chromosomal instability in these hybrids remain unexplained. Two different problems complicate substantially experiments in dysgenic conditions. First, transpositions and rearrangements are visualized in the offspring of dysgenic individuals. If male fertility is severely affected by these processes, as it happens in P-M dysgenic individuals, it may preclude the production of the appropriate material to test our hypothesis. In Naveira and Fontdevila (1985) and this study, this problem was avoided by analyzing the progeny of segmental males. Some of these males have an apparently normal fertility. However, this procedure introduces a second problem. If, in fact, a limited number of mutator factors are involved, the effect of the introgression of small segments is expected to be much less severe than the introgression of larger portions of the genome (up to 50% in the F1), because of the lower number of factors introduced. All the available information suggests that the number of active families of transposable elements—the best candidates to act as mutator factors—in these species is low (see Marín and Fontdevila 1996 for a discussion). This fact, together with likely differences in activity of different introgressed elements may contribute to an important effect of
sampling. On the other hand, if in fact transposable elements are involved, their distribution in the genome will be different among strains. Therefore fragments able to cause instability in some cases will not produce it in others. In what certainly is an a posteriori recapitulation, we conclude that negative results are not altogether unexpected [see also Coyne (1989) and Hey (1989) for similar negative results in other Drosophila species]. Only new experiments, designed to test in parallel different chromosomal fragments in inbred stocks, can shed light on the important question of whether instability is produced often or only exceptionally in these hybrids.

From the Departamento de Genética, Facultad de Biología, Universidad de Valencia, 46100 Burjassot (Valencia), Spain, (Marón) and the Departamento de Genética y Microbiología, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra (Barcelona), Spain (Fontdevila). This work was supported by grant PB93/0843 from DGICYT (Spain) to A.F.

© 1998 The American Genetic Association

References

Received January 7, 1997

Accepted July 8, 1997

Corresponding Editor: Ross MacIntyre

The Molecular Basis of a Microsatellite Null Allele From the White Sands Pupfish

A. G. Jones, C. A. Stockwell, D. Walker, and J. C. Avise

Microsatellite loci were cloned and characterized from the White Sands pupfish (Cyprinodon tularosa), a New Mexico state-listed endangered species. One locus exhibited a high-frequency nonamplifying allele localized to a single population. This null allele was PCR amplified by redesign of one of the original primers and multiple individuals homozygous for null as well as for nonnull alleles were sequenced using the new primer. These molecular dissections revealed that the original failure to amplify some alleles from this microsatellite locus was due to a 4 bp deletion in one of the original PCR priming sites. Furthermore, the reamplifications revealed five distinct size classes of alleles that had been masquerading as the original null. These null alleles did not overlap in length with the nonnull alleles, and they also differed consistently by a linked nucleotide substitution. Results suggest that the original null allele (as well as the nonnull class) has diversified considerably since its origin and has not recombined frequently with the nonnull class of alleles.

Microsatellite markers have become valuable tools for studies involving population genetics, kinship, and parentage assessment (Bruford and Wayne 1993; Queller et al. 1993), but a potential complication arises from the presence of nonamplifying or null alleles (Pemberton et al. 1995). Null alleles can produce serious problems for population-level studies by creating an apparent excess of homozygotes, resulting in incorrect allele frequency estimates and overestimates of inbreeding. In parentage studies they can result in false exclusions. Null alleles have been encountered in studies of numerous organisms, including mammals (Hulme et al. 1994; Phillips et al. 1993), birds (Primmer et al. 1995), fish (Jones and Avise 1997), insects (Cooper et al. 1996; Oldroyd et al. 1996), and crustaceans (Tam and Kornfeld 1996). Despite the pervasiveness of microsatellite null alleles and the difficulties associated with their assay, little is known about their molecular basis (but see below), and even less is known about the evolutionary histories of the null alleles relative to their nonnull allele counterparts.

The state-listed endangered White Sands pupfish (Cyprinodon tularosa) is known from only four locations (Salt Creek, Lost River, Malpais Spring, and Mound Spring), all of which are in New Mexico. During the cloning and characterization of microsatellites from this species we encountered a null allele at high frequency in the Malpais Spring population. Here we investigate the molecular basis of this null allele and assess its evolutionary relationships to the nonnull alleles by redesigning PCR primers and sequencing multiple alleles at the region surrounding the microsatellite locus.

Materials and Methods

Microsatellite Cloning

Total genomic DNA was extracted from a single C. tularosa specimen (from the Salt Mound Spring), all of which are in New Mexico. During the cloning and characterization of microsatellites from this species we encountered a null allele at high frequency in the Malpais Spring population. Here we investigate the molecular basis of this null allele and assess its evolutionary relationships to the nonnull alleles by redesigning PCR primers and sequencing multiple alleles at the region surrounding the microsatellite locus.
null allele, several individuals \((N = 5)\) that yielded no PCR product from the original primers, and that were homozygous when assayed with the new primer set (WSP11UP and WSP11LO-A), were sequenced using the \(fnol\) kit (Promega). We also sequenced 10 individuals that were recorded as homozygotes with both the original and new primer pairs, and thus did not contain the null allele.

Results

The Null Alleles

Amplification of a sample of 30 individuals from the Malpais Spring population with the original WSP11 PCR primers resulted in eight apparent homozygotes for a fragment 177 bp in length. The other 22 individuals yielded no product whatsoever. Other populations (Salt Creek, Lost River, and Mound Spring) assayed displayed apparent normal genotypes: all individuals amplified and the samples did not deviate significantly from Hardy-Weinberg expectations (Stockwell et al., in preparation). Thus the null allele appears to occur only in the Malpais Spring population.

The redesigned primer WSP11LO-A, external to the original primer, permitted amplification of all individuals from the Malpais Spring sample (Figure 1). For the three additional populations, amplification by the new primer pair left the microsatellite genotypes unchanged with the following exception: the resulting fragments were larger than the original products since they were being amplified using a primer external to one of the original primers (e.g., amplification of the original 177 bp allele, for example, now yielded a product of 202 bp). The nullnonnull alleles corresponded to 194, 196, 198, 200, and 202 bp with the new primer pair. The null class of alleles, endemic to the Malpais Spring population, included fragments of size 173, 179, 181, 187, and 189 bp. So an entire class of previously undetected alleles, distinct and nonoverlapping in size compared to the nullnonnull alleles, had been hidden within the single null allele in the original assays (Figure 1).

Sequence data were generated for 38 nucleotides flanking the microsatellite, including the original lower priming site. A total of 15 sequences were analyzed, including null alleles of size 179 \((N = 1)\), 181 \((N = 2)\), and 187 \((N = 2)\), as well as nonnull alleles of size 194 \((N = 4)\), 200 \((N = 4)\), and 202 \((N = 2)\). All nonnull alleles were identical in flanking sequence to one another and to the original sequence cloned from the \(C.\) tularosa library (Figure 2). The five sequenced null alleles were also identical to one another and differed from the cloned sequence by a 4 bp deletion within one of the original priming sites. Thus this deletion was the cause of the original null condition. The null alleles also differed consistently from the nonnull alleles by a single G to A transition at a nucleotide position 1 bp removed from the start of the microsatellite array (Figure 2).

Discussion

Null alleles have been reported in a number of studies employing microsatellite loci. In our case the null allele was readily apparent because it occurred with sufficiently high frequency as to be present in homozygotes. Null alleles usually are more difficult to document. For example, had the null allele been infrequent in our population, it would have occurred primarily in heterozygotes and likely would have remained undetected. Null heterozygotes
would appear as nonnull homozygotes, and the blank gel profiles in the few true null homozygotes might have been attributed to sample degradation or failed PCR. Furthermore, rare null alleles would be unlikely to cause statistically significant deviations from Hardy-Weinberg equilibrium with the sample sizes employed in most population genetic surveys. Given these detection difficulties, null alleles probably are even more commonplace than indicated by reports in the literature.

In our case the high frequency of the pupfish null allele offered the advantage that null alleles often occurred in homoygous form such that direct sequencing of alternative alleles could be accomplished without the added difficulty of physically isolating haplotypes from heterozygous diploid tissues (e.g., Orti et al. 1997). Although the microsatellite haplotypes in each such homozygote are not necessarily identical by descent, and hence might in principle retain some sequence variety whose phase (cis or trans) would remain unspecified, such complications did not arise in our assays. Thus sequences for three different size classes of null alleles (as well as three size classes of nonnull alleles) were obtained without ambiguity.

Few studies have examined the molecular basis of null alleles at microsatellite loci. Three studies conducted previously have documented point mutations that disrupt the problematic priming site (Ishibashi et al. 1996; Lehmann et al. 1996; Paetkau and Strobeck 1995). Two other studies identified short deletions in the priming site with similar effects: Callen et al. (1993) found an 8 bp deletion of one GGTG and one of the TCTG motifs from the sequence CCTG TCTG GGTG TCTG TGTC, and Ede and Crawford (1995) found the lesion to be a 12 bp deletion of a TAA-GTTGCCGTC sequence that was preceded directly by an almost perfect tandem repeat, TACATTGCCGTCC. In our study a deletion was also found, in this case involving one of a pair of tandemly repeated AGAA sequence motifs (Figure 2) (of course, the evolutionary event could have been an insertion that converted an ancestral null allele into a non-null as assayed by the original primers). Interestingly, in both this study and that by Ede and Crawford (1995), the indels producing null alleles involved repetitive DNA. Though it is difficult to generalize from these few observations, it seems reasonable that tandem repeats should be avoided as PCR priming sites when possible.

In this study the original null allele actually concealed a class of five different microsatellite alleles distinct in size from the various nonnull alleles. This suggests that the 4 bp indel responsible for the null allele arose long enough ago to have accumulated a number of microsatellite length mutations. This suspicion is supported further by the nucleotide substitution that also cleanly distinguished all of the null alleles from the nonnulls.

Another conceivable way that the null alleles could have acquired microsatellite variation would be through recombination with the nonnull alleles. If this were the case the null alleles might be expected to mirror the variation of the original nonnull alleles, but to be shifted downward in length by 4 bp. This scenario is not consistent with our observations: The nonnull alleles were of size 194, 196, 198, 200, and 202 bp, whereas the null alleles were 173, 179, 181, 187, and 189 bp in length.

The two prior reports of null-producing deletions at microsatellite loci (Callen et al. 1993; Ede and Crawford 1995) entailed a situation similar to the present in which null alleles represented distinct size classes relative to the nonnulls. Conversely, for microsatellite nulls caused by point mutations, the allele size variants appeared to be similar to those of the nonnull alleles (Lehmann et al. 1996; Paetkau and Strobeck 1995).

References

Callen DF, Thompson AD, Shen Y, Phillips HA, Richards

Figure 2. (Above) The sequence of the microsatellite WSP11 nonnull allele compared to the sequence retrieved from null alleles amplified from the Malpais Spring population of pupfish. The original primer WSP11LO is underlined. The second AGAA motif is shown as the site of the deletion (relative to the nonnull allele), but in reality any 4 bp segment of the AGAAAGAA sequence could have been the cause of the lesion. The asterisk denotes a point mutation that was perfectly linked to the 4 bp deletion. (Below) A graphical representation of the mutational distinctions in the 38 bp flanking sequence among the total of 15 haplotypes sequenced from the null and nonnull allelic classes. Numbers indicate the sizes (in bp) of the alleles sequenced.
The Journal of Heredity 1998:89(4)

Accepted December 13, 1997

Corresponding Editor: William S. Modi

Cream Fur: A New Mouse Mutation That May Cause Unusual Lipid Metabolism

J. Hayakawa, H. Nikaido, T. Ohkawa, and J. Kitoh

In 1986 an albino mouse with cream yellow coat color was discovered in a breeding colony of strain CAL20, which is an IgH-C congenic strain of BALB/c mice, supported by the Institute for Experimental Animals, Faculty of Medicine, Kanazawa University. Genetic analysis revealed that the cream yellow coat color phenotype was controlled by a single recessive mutant gene on chromosome 13. A preliminary study with biochemical and histologic examinations showed that cream yellow hair contained more fatty acid than unaffected normal hair and a large number of lipid droplets accumulated in parenchyma cells of the liver in mutant mice, as early as the age of 32 days old, suggesting that the cream yellow coat color was due to unusual lipid metabolism. The locus was designated cream fur locus and was given the gene symbol crf. In addition, it was found that recombination frequencies in the vicinity of the region of the crf locus were markedly different between male and female meiosis.

Metabolite deposit due to abnormal metabolism, such as excess of bilirubin in jaundice, is easily recognized in albino mice because of the lack of pigment in skin and fur. Several mutations have been discovered which tint unpigmented coat color of albino mice (Hetherington 1977; Oba et al., personal communication; Tusk et al., personal communication). However, few describe the origin of the substance causing the tint in the coat of albino mice.

In this article we describe a cream yellow coat color that was found in a colony of albino mice maintained at the animal facility of our institute. The mutant is inherited in an autosomal recessive fashion. Homozygotes are recognizable at 10 days after birth by cream yellow coat color. The cream fur contains a larger quantity of medium size fatty acids compared with the fur from unaffected siblings. Although the mutation does not affect the viability and fertility of either male or female mice, a large number of lipid droplets is found in the hepatic cells as early as 32 days of age. We designate this new mutant locus cream fur (crf).

Materials and Methods

Mice
Mice were maintained under standard conditions in the Institute for Experimental Animals, Faculty of Medicine, Kanazawa University. The original mutant mouse was discovered in a colony of mice originally obtained from the National Institutes of Health (Bethesda, Maryland) in November 1986. It was propagated by mating, followed by submitting, and two lines have been established: one line has been maintained as a segregating inbred strain (CRH) and the other as fixed homozygous for cream yellow fur mutation (CRF). In further biochemical and histopathological experiments CRH strain mice were used and unaffected littermates were used as normal controls. Hereafter the affected cream yellow mice are designated CRF mice. C57BL/6-c1crf/c2 mice used for genetic analysis were kindly supplied by Dr. Yonekawa from the Tokyo Metropolitan Institute of Medical Science. Dr. Oba (School of Medicine, Tohoku University) kindly supplied ICR-ly (ICR-light yellow) mice that have phenotypically similar coat color to CRF mice found in an ICR colony of Tohoku University. Other inbred mice used in this study were maintained in our animal facility.

Test for Allelism of the Albino Locus and Complementation of Known Loci
To test whether the cream yellow color derives from a mutant allele at the albino locus of CRF mice, CRF mice were mated to C57BL/6 and the backcross progeny between CRF and F1 mice were produced. The resulting backcross progeny with albino phenotype and nonalbino phenotype were examined for coat color. Complementation between light yellow phenotype and CRF phenotype was examined in F1 hybrid mice between ICR-ly and CRF mice.

Biochemical Analysis of Clipped Hair
Approximately 0.5 g of clipped hair was suspended in 1 N NaOH (50 ml) and heated at 100°C for 4–5 h. The completely resolved hair solution was neutralized with 1 N HCl. After cooling at room temperature the solution was evaporated at 50°C. The lipid component of the residue was extracted with chloroform and methanol mixture (3:1) and then extracted with ether. The extraction procedures were repeated twice and the extracts were combined. The combined extract was dried by evaporation and analyzed by gas chromatography and mass spectrometry. The precipitate remaining after lipid extraction was subjected to phenylthio hydration reaction (PTH). The resultant PTH amino acid derivatives were analyzed by high-performance liquid chromatography.

Histopathology
Males and females of either CRF and control mice at 32, 52, 100, 360, 480, and 540 days of age were used for light and electron microscopic examination. Under deep ether anesthesia, mice were perfused...
through the left ventricle with 10% buffered formalin or glutar- and paraformaldehyde/phosphate buffer containing 0.05% picric acid fixative. Tissue blocks of liver and skin were processed with routine paraffin embedding or epoxy resin embedding procedures. Some tissue sections fixed with phosphate-buffered formalin were cut on a freezing microtome and stained by Sudan black B to confirm lipid accumulation. Paraffin sections were cut and stained by hematoxylin and eosin. About 0.5 μm epon sections were cut and stained by 0.1% toluidine blue for light microscopic observation. Ultrathin sections were stained with uranyl acetate and lead citrate, then observed on a JEOL-100CX electron microscope.

Linkage Analysis

CRF mice were mated with C57BL/6-^cff/c^{ff} albino mice. The F₁ hybrids were reciprocally backcrossed to CRF mice. DNA was extracted using ordinary phenol and the chloroform method from liver. Polymerase chain reactions for microsatellite markers (SSLP loci) were carried out and size differences of the products were detected as previously described (Nikaido et al. 1995). The sequences of primer pairs for microsatellite amplification and simple sequence length polymorphism between strains were sought using the database provided by the Whitehead Institute/MIT Center for Genome Research. The primer pairs for other SSLP loci were purchased from Funakoshi Co. (Tokyo, Japan). Gene order and recombination frequencies were calculated with the Map Manager computer program (Manly 1993).

Results

Gross Appearance and Histological Findings

Mutant mice with cream yellow fur could be easily recognized at 8 to 10 days old when their hair had completely grown (Figure 1). They were healthy and grew normally like the unaffected control mice. After weaning no growth retardation was noted and both males and females were completely fertile. In adulthood CRF mice became neither obese nor slender. At autopsy no gross morphological abnormality in viscera was found. Although in naked eye observations the liver of CRF mice showed no remarkable differences of color, size, or solidity compared with the normal control mice, in light and electron microscopic observations histopathologic changes were found at 32 days of age as a kind of fatty change in both male and female CRF (Figure 2). Many small lipid droplets appeared in the cytoplasm of the liver parenchyma cells, especially in and/or around the glycogen areas, but no droplets were found in the Kupffer cells. Accumulation of the lipid droplets showed no tendency to begin from a central site nor from the periphery of lobules. As age advanced the lipid droplets increased markedly in number but little in size. Lipid droplets accumulated in the glycogen areas, then an increase of the lipid droplets appeared to be accompanied by a decrease of glycogen content. Eccentricity of nuclei and transformation of mitochondria and other cell organelles under pressure of lipid accumulation were not shown. Degenerating cells or cells with necrotic changes were not found in liver. At over 100 days of age, very big lipid droplets appeared in the Kupffer cells. However, the accumulation of big lipid droplets in the Kupffer cells was also observed in the normal control mice of advanced age. It seemed that the above-mentioned lipid accumulation in the liver parenchyma cells differed from the pathological changes observed in fatty degeneration or the fatty liver.

Accumulation of the adipose cells or of cells that engulfed fat was not found in the dermis, although the surface of the epidermis and fur and the sebaceous glands were stained strongly with Sudan black B in the CRF mice. However, the morphological changes of skin and hair were not distinct.

Biochemical Analysis of the Clipped Hair

Biochemical analysis revealed that the concentration of lipid in hair from the CRF mice was significantly higher than that from the normal control mice. Mass spectrometer analysis indicated that the extract with organic solvent from the CRF hair contained three to four times more fatty acids with carbon numbers 12, 14, 16, and 18 than those from normal control hair. HPLC analysis of PTH derivatives of amino acids showed that the amino acid composition and its quantity in hair did not differ between the CRF mice and normal controls.

Genetics and Linkage Analysis

Complementation with previously known light-yellow phenotype. No F₁ mice between cream yellow and light-yellow mice showed cream or light-yellow coat color, suggesting two similar phenotypes are caused by genes at different loci. Among backcross progeny of CRF mated to F₁ mice between CRF and C57BL/6 mice, only one-half of albino progeny showed cream yellow fur, unless all albino progeny carry albino alleles from CRF mice, while the coat color of nonalbino mice carrying nonalbino allele from C57BL/6 could not be classified. This indicates that cream
yellow coat color is genetically independent of albino locus and it can be phenotypically distinguished only in albino mice. Mode of inheritance and linkage analysis. Breeding records and early mating experiments with albino strains of AKR/J and A/J mice indicated that the CRF phenotype was inherited in a single recessive manner. However, we could not detect a close linkage between several biochemical markers and the crf locus. As a result of the recent development of microsatellite markers, we could attempt to detect linkage between SSLP loci on all autosomes. In this experiment CRF mice were mated to coisogenic albino mice of C57BL/6 mice. A total of 223 backcross progeny of F1 mice crossed with CRF mice were screened for cosegregation with SSLP loci on each autosome. Finally, close linkage between CRF phenotype and SSLP loci on chromosome 13 was found. The genetic distances estimated from combined recombination frequencies of male and female meiosis among SSLP loci and the crf locus are depicted in Figure 3. The nearest distal or proximal SSLP locus to crf locus was D13Mit231 and D13Mit142, respectively. The observed gene order SSLP loci and the crf locus were D13Mit3—18.8 cM—D13Mit13—4.0 cM—D13Mit142—7.6 cM—crf—4.0 cM—D13Mit231—12.6 cM—D13Mit107—21.5 cM—D13Mit151. The gene order and the distance intervals of these SSLP loci were consistent with those previously compiled in the Mouse Genome Database except the distance interval between D13Mit142 and D13Mit231. However, there were significant sex-specific differences in recombination frequencies in the proximal region to D13Mit231, for example, the recombination frequency between D13Mit13 and the crf locus in male meiosis was 0.065 (7/107), whereas that in female meiosis was 0.161 (19/118). The recombination frequency between crf and the D13Mit151 locus that is mapped to the distal region of the chromosome was rather greater in male meiosis than in female meiosis (Figure 4).

Discussion

In this study we mapped a mutation that tints the coat color of albino mice cream yellow. The map distance of the mutant locus crf was estimated to be approximately 7.6 cM distal to D13Mit142 and 4.0 cM proximal to D13Mit231. The SSLP loci D13Mit142 and D13Mit231 were mapped 37 cM and 39 cM from the top of chromosome 13, respectively (Mouse Genome Database).

The mutation is different from previously found mutations that produce similar coat color; for example, the Crm (cream) mutation discovered by Hetherington (1977) is X-linked (Beechey and Searle 1979) and causes fluorescence of the coat in long-wave UV light (Peters and Searle 1979). A similar pale yellow coat color in albino IVCS mouse is controlled by a gene on the X chromosome (Tsuji et al., personal communication). Another light yellow coat color discovered by Oba et al. (personal communication) in ICR mice is inherited as autosomal recessive. The present complementation test showed that the light-yellow coat color and cream fur in CRF mice were not allelic. Thus the cream yellow coat color described in this study is caused by a mutation which has not been described previously. The substance causing the cream yellow hair has not been identified. It is speculated that the color is probably due to abnormal metabolite, since biochemical analysis and histopathologic examination indicated increased fatty acid in clipped hair and accumulation of lipid droplets in the liver parenchyma cells, while no morphological changes were found in dermis or hair texture. The metabolic system disrupted by this mutation is unknown at present. It is interesting that unlike the degenerated liver cells, lipid droplets localize in the glycogen area of the cells. This lipid droplet accumulation in CRF mice occurs as early as 32 days of age.

Recently, genetic factors responsible for lipoprotein and cholesterol metabolism have been extensively mapped in mice. The region in chromosome 13 at which the crf locus mapped includes a rate-limiting enzyme in cholesterol synthesis, HMG-
Figure 3. Linkage map of crf locus. (Top) Distances between loci are shown as centiMorgans ± standard error to the right of the map (recombinants/total progeny). The distances are calculated from combined recombination frequencies in a total of 223 backcross progeny derived from 118 female meiosis and 105 male meiosis. The centiMorgan position of each SSLP locus retrieved from the Mouse Genome Database at The Jackson Laboratory is indicated in parentheses. (Bottom) Haplotype figure from the backcross. Black and white boxes represent loci typed as homozygous and heterozygous, respectively. The number of animals with each haplotype is given at the bottom of each column of boxes.

CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, HMG-CoA synthase, and some quantitative trait loci for plasma low density lipoprotein/very low-density lipoprotein (Welch et al. 1996). However, preliminary biochemical examination of the plasma indicated that there was no significant difference between the CRF mice and normal controls in plasma cholesterol and triglyceride levels as well as plasma glucose level. In this region on chromosome 13 several enzyme-related loci such as steroid 5 alpha-reductase 1, arylsulfatase complex, etc. are mapped, but we have no rational reason to predict that one of these loci may be identical to the crf locus. It is necessary to clarify the factors related to the cream yellow coat color and also to generate a high-resolution map in the region of chromosome 13.

Concerning a fine mapping, it is noteworthy that there is a marked difference in recombination frequencies in the vicinity of the crf locus between male and fe-
male meiosis. It is well documented that in mice as well as other animals there are sex-specific differences in recombination frequency, and in general recombination occurs less frequently during male meiosis than during female meiosis (Silver 1995). Therefore, to construct a high-resolution map for positional cloning of the crf gene, female F₁ should be chosen to produce backcross progeny.

Aside from the map position of the crf locus, it is intriguing that sex-specific differences in recombination frequencies were found in the proximal region between D13Mit3 and D13Mit231, but in the distal region from D13Mit231 to D13Mit151 the recombination frequencies between sex were not different (Figure 4). The reason why some regions in the genome undergo recombination more frequently in the germ cells of one sex than the other is not fully understood. Recently it has been assumed that the genomic imprinted regions in which two parental alleles are differentially expressed in embryo genesis may be identical to the regions which undergo sex-specific recombination (Pál'di et al. 1995; Thomas and Rothstein 1991).

In conclusion, the crf mutation appears to increase lipid content in hair and lipid droplets in liver parenchyma cells, although the primary cause of the increase of lipid in these tissues remains unexplained, and an increased storage of the lipid material in hair tints the coat color in albino mice.

From the Institute for Experimental Animals (Hayakawa and Nikaido) and the Department of Biochemistry (Ohkawa), Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan, and the Institute for Laboratory Animal Research, Nagoya University School of Medicine, Nagoya, Japan (Kitoh). T. Ohkawa is currently at the Japanese Red Cross Ishikawa Blood Center, Kanazawa, Japan. Address correspondence to Jun-ichiro Hayakawa at the address above or e-mail: hayakawa@ned.kanazawa-u.ac.jp. We would like to thank Ms. Nobuko Saito for her excellent assistance with the genotyping SSLP and the staff of the Institute for Experimental Animals for their care of animals. This research was supported in part by a grant-in-aid for scientific research on priority areas (no. 06279101) and a grant-in-aid for scientific research (no. 08458274) from the Ministry of Education, Science, Sports and Culture, Japan.

© 1998 The American Genetic Association

References

Received May 13, 1997
Accepted October 20, 1997
Corresponding Editor: Neal Copeland
Clench: A New Autosomal Recessive Mutation in Japanese Quail

Y. Nakane and M. Tsudzuki

The clench (CL) is a new morphological mutation in Japanese quail (Coturnix japonica). The CL mutants rigidly clench their toes in both legs, which gives rise to a human fistlike appearance in the distal ends of the legs. Other parts of the CL body are quite normal. In spite of the severe toe abnormality, the CL mutants are normal in fertility, hatchability, and postnatal viability. Genetic analysis revealed that the CL mutation is an autosomal recessive with 100% penetrance. The proposed gene symbol is cl.

In September 1995, among the progeny from a pair of wild-type Japanese quail (Coturnix japonica) maintained at the Department of Laboratory Animal Science, College of Agriculture, Osaka Prefecture University, Sakai, Osaka, Japan, we found unusual chicks that exhibited permanently clenched toes. The same pair continued to produce similarly abnormal progeny. We separated the male and female of the original pair and 2 weeks later mated each to produce similarly abnormal progeny. We separated the male and female of the third and fourth toes. Furthermore, in spite of the severe abnormality in the toes, the CL mutant showed normal mating ability (Table 1).

Table 2 shows the incidence of the CL mutant in mating experiments between the CL and control birds. All F1 progeny from reciprocal matings were normal, which suggested autosomal recessive inheritance. Of F2 progeny, 174 were normal and 66 were CL. This segregation ratio was in agreement with the expected 3:1 ratio ($\chi^2 = 0.800, .30 < P < .50$) based on the hypothesis that the CL trait is controlled by an autosomal recessive gene. At the backcross generation, normal and CL individuals segregated in a ratio of 275:266. This segregation ratio was in agreement with the expected 1:1 ratio ($\chi^2 = 0.150, .50 < P < .70$) on the basis of our hypothesis mentioned. Moreover, in the F2 and backcross progeny, sex ratio was normal in both normal and CL individuals. These data apparently indicate that the CL trait is controlled by an autosomal recessive gene. We propose the gene symbol cl for the mutant gene controlling the CL trait. The penetrance of the cl gene seemed to be 100%, because all progeny from CL × CL matings were CLs.

In Japanese quail, approximately 50 morphological mutants have so far been reported in the literature (Cheng and Kimura 1990; Tsudzuki et al. 1998). Among them, however, there is no mutation that shows clenched toes. On the other hand, in chickens, there is a somewhat similar mutation known as crooked or curly toes (Fisher 1956; Hicks and Lerner 1949). Although some of the chicken crooked toes mutants mildly clench their toes inward, the majority show abnormal toes that are curled (crooked) laterally, which is obviously different from the quail CL mutants in all of which the toes are rigidly clenched inward. Hicks and Lerner (1949) did not describe a mode of inheritance of the trait, but Fisher (1956) showed that in the Kedu breed the crooked toes mutation is controlled by an autosomal recessive gene. Later Somes (1980) assigned the gene symbol crt to the gene. The penetrance of the crt gene is incomplete, which also differs from the quail cl gene that has 100% penetrance. The chickens showing hereditary arthrogryposis syndrome (Riddon et al. 1965) also have abnormal toes that were curled laterally, as in the case of

Materials and Methods

General care of quail is described elsewhere (Tsudzuki 1995). We reciprocally mated the CL mutants to control birds (UOP-WT line; Ito and Tsudzuki 1994) to obtain F1 progeny. Subsequently we produced F2 and backcross generations. Furthermore, to examine the penetrance of the mutant gene, we mated the CL mutant birds inter se. Segregation ratios of the normal and mutant were investigated at hatching. The data were analyzed by the chi-square test.

Results and Discussion

The abnormality in the CL mutant was limited to the toes. The other parts of the body were quite normal. The CL chicks rigidly clench their toes in both legs, which gave rise to a human fistlike appearance in the distal ends of the legs (Figure 1). The CL adults more rigidly clench their toes than the chicks. Both chicks and adults could stand and walk using the region around the first phalanx of the third and fourth toes. Furthermore, in spite of the severe abnormality in the toes, the CL mutant showed normal mating ability (Table 1).

Table 2 shows the incidence of the CL mutant in mating experiments between the CL and control birds. All F1 progeny from reciprocal matings were normal, which suggested autosomal recessive inheritance. Of F2 progeny, 174 were normal and 66 were CL. This segregation ratio was in agreement with the expected 3:1 ratio ($\chi^2 = 0.800, .30 < P < .50$) based on the hypothesis that the CL trait is controlled by an autosomal recessive gene. At the backcross generation, normal and CL individuals segregated in a ratio of 275:266. This segregation ratio was in agreement with the expected 1:1 ratio ($\chi^2 = 0.150, .50 < P < .70$) on the basis of our hypothesis mentioned. Moreover, in the F2 and backcross progeny, sex ratio was normal in both normal and CL individuals. These data apparently indicate that the CL trait is controlled by an autosomal recessive gene. We propose the gene symbol cl for the mutant gene controlling the CL trait. The penetrance of the cl gene seemed to be 100%, because all progeny from CL × CL matings were CLs.

In Japanese quail, approximately 50 morphological mutants have so far been reported in the literature (Cheng and Kimura 1990; Tsudzuki et al. 1998). Among them, however, there is no mutation that shows clenched toes. On the other hand, in chickens, there is a somewhat similar mutation known as crooked or curly toes (Fisher 1956; Hicks and Lerner 1949). Although some of the chicken crooked toes mutants mildly clench their toes inward, the majority show abnormal toes that are curled (crooked) laterally, which is obviously different from the quail CL mutants in all of which the toes are rigidly clenched inward. Hicks and Lerner (1949) did not describe a mode of inheritance of the trait, but Fisher (1956) showed that in the Kedu breed the crooked toes mutation is controlled by an autosomal recessive gene. Later Somes (1980) assigned the gene symbol crt to the gene. The penetrance of the crt gene is incomplete, which also differs from the quail cl gene that has 100% penetrance. The chickens showing hereditary arthrogryposis syndrome (Riddon et al. 1965) also have abnormal toes that were curled laterally, as in the case of

Figure 1. Comparison of the toes of newly hatched normal (left) and mutant (right) chicks. The mutants rigidly clench their toes, resulting in a shape like a human fist.
Replication Banding and Sister-Chromatid Exchange of Chromosomes of Channel Catfish (*Ictalurus punctatus*)

Q. Zhang, W. R. Wolters, and T. R. Tiersch

A replication banding procedure using fluorouracil (FU) and bromodeoxyuridine (BrdU) was developed for use with cultured leukocytes of channel catfish (*Ictalurus punctatus*). Analyzable banding patterns were produced on chromosomes stained with a fluorochrome plus Giemsa (FPG) method. The consistency of the chromosomal bands was evaluated by computer-assisted image analysis. Banding patterns of representative chromosomes including those bearing nucleolar organizer regions (NOR) were reproducible. A standard RBG-banded karyotype (R bands by BrdU and Giemsa) was established with idiograms of each chromosome. We also developed procedures to study sister-chromatid exchange (SCE) and sister-chromatid differentiation (SCD) in cultured leukocytes, without addition of mutagenic substances. The average occurrence of SCEs in the absence of mutagens was 3.0 ± 1.0 (n = 60) chromosomes per cell and was not significantly different among fish (P = .26).

Studies of fish chromosomes have not been as successful or widespread as those in other vertebrate groups (Gold et al. 1990). A limiting factor has been technical difficulty in obtaining good chromosome spreads, because most species have a large number of small chromosomes. Because of this and minimal compartmentalization of the fish genome by base composition (Medrano et al. 1988), techniques for linear structural banding (e.g., quinacrine, Giemsa, and reverse bands) developed for higher vertebrates (Verma and Babu 1989) have succeeded rarely with fish chromosomes.

Dynamic methods using mitotically active cells, such as replication banding, are an alternative to structural banding. Techniques including RBG (replication bands by bromodeoxyuridine using Giemsa) procedures rely on the incorporation of a base analogue during DNA replication and postaxial modification of chromosome structure in the substituted regions (Ronne 1992). Therefore difficulties that relate to the structure or base composition of fish chromosomes can be bypassed with replication (R) banding. Replication banding of fish chromosomes has been reported in *Carassius auratus* (Zhang and Wu 1985); *Rutilus rutilus* and *Scardinius erythrophthalmus* (Hellmer et al. 1991); *Oncorhynchus mykiss* (Delay and Bloom 1984); *Salmo salar* (Pendas et al. 1993), and *Scorpaena procula* and *Scorpaena notata* (Giles et al. 1988) through intraperitoneal injection of bromodeoxyuridine (BrdU) into living fish. However, banding patterns have been better controlled with the use of cultured cells (Ronne 1992).

Tables

Table 2. Incidence of the clench mutant at F1, F2, and backcross generations in mating experiments between the clench and control birds

<table>
<thead>
<tr>
<th>Matings</th>
<th>Male × Female</th>
<th>No. of matings</th>
<th>No. of progeny observed</th>
<th>No. of progeny of NOR</th>
<th>CL</th>
<th>Expected ratio</th>
<th>NOR:CL</th>
<th>χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR × CL</td>
<td>4</td>
<td>177</td>
<td>177</td>
<td>0</td>
<td>1:0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>CL × NOR</td>
<td>4</td>
<td>108</td>
<td>108</td>
<td>0</td>
<td>1:0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>285</td>
<td>285</td>
<td>0</td>
<td>1:0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>F1 × F1</td>
<td>3</td>
<td>240</td>
<td>174</td>
<td>66</td>
<td>3:1</td>
<td>0.800</td>
<td>.50 > P > .30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 × CL</td>
<td>8</td>
<td>343</td>
<td>175</td>
<td>168</td>
<td>1:1</td>
<td>0.143</td>
<td>.80 > P > .70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL × F1</td>
<td>6</td>
<td>198</td>
<td>100</td>
<td>98</td>
<td>1:1</td>
<td>0.020</td>
<td>.90 > P > .80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>541</td>
<td>275</td>
<td>266</td>
<td>1:1</td>
<td>0.150</td>
<td>.70 > P > .50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL × CL</td>
<td>4</td>
<td>167</td>
<td>0</td>
<td>167</td>
<td>0:1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

* Observation was performed at hatching. There was no increased mortality noted among clench embryos.

* NOR and CL mean normal and clench individuals, respectively.

* Involving both newly hatched chicks and late dead embryos.

* Based on simple autosomal recessive inheritance.

References

Sonomura Tiersch Q. Zhang, W. R. Wolters, and T. R. Tiersch. Analyzable banding patterns were produced on chromosomes stained with a fluorochrome plus Giemsa (FPG) method. The consistency of the chromosomal bands was evaluated by computer-assisted image analysis. Banding patterns of representative chromosomes including those bearing nucleolar organizer regions (NOR) were reproducible. A standard RBG-banded karyotype (R bands by BrdU and Giemsa) was established with idiograms of each chromosome. We also developed procedures to study sister-chromatid exchange (SCE) and sister-chromatid differentiation (SCD) in cultured leukocytes, without addition of mutagenic substances. The average occurrence of SCEs in the absence of mutagens was 3.0 ± 1.0 (n = 60) chromosomes per cell and was not significantly different among fish (P = .26).

Studies of fish chromosomes have not been as successful or widespread as those in other vertebrate groups (Gold et al. 1990). A limiting factor has been technical difficulty in obtaining good chromosome spreads, because most species have a large number of small chromosomes. Because of this and minimal compartmentalization of the fish genome by base composition (Medrano et al. 1988), techniques for linear structural banding (e.g., quinacrine, Giemsa, and reverse bands) developed for higher vertebrates (Verma and Babu 1989) have succeeded rarely with fish chromosomes.

Dynamic methods using mitotically active cells, such as replication banding, are an alternative to structural banding. Techniques including RBG (replication bands by bromodeoxyuridine using Giemsa) procedures rely on the incorporation of a base analogue during DNA replication and postaxial modification of chromosome structure in the substituted regions (Ronne 1992). Therefore difficulties that relate to the structure or base composition of fish chromosomes can be bypassed with replication (R) banding. Replication banding of fish chromosomes has been reported in *Carassius auratus* (Zhang and Wu 1985); *Rutilus rutilus* and *Scardinius erythrophthalmus* (Hellmer et al. 1991); *Oncorhynchus mykiss* (Delay and Bloom 1984); *Salmo salar* (Pendas et al. 1993), and *Scorpaena procula* and *Scorpaena notata* (Giles et al. 1988) through intraperitoneal injection of bromodeoxyuridine (BrdU) into living fish. However, banding patterns have been better controlled with the use of cultured cells (Ronne 1992).

© 1998 The American Genetic Association
Sister-chromatid exchange (SCE) involves the breakage and reunion of chromosomal DNA (presumably between complementary regions) detectable after two or more rounds of replication in the presence of BrdU (Wolff 1982). Analysis of SCE is of interest because there appears to be a correlation between the frequency of SCE and exposure to mutagenic agents such as radiation or chemicals. Therefore SCE analysis can be valuable for the study of mutagenesis and environmental toxicology in fish (Kligerman 1979). Similar to the procedure used in replication banding, the presence of BrdU in cultures of cells for two consecutive generations yields sister chromatids that can be stained differentially [i.e., sister-chromatid differentiation (SCD)] to identify exchanged segments. Chromatids containing DNA strands with more BrdU incorporation will stain less intensely than chromatids with less incorporation because of the quenching action of BrdU (Verma and Babu 1989).

Computer-assisted chromosome analysis was first reported in fish in the mid-1980s (e.g., Gold et al. 1986). The introduction of newer technology has enabled handling of chromosome images imported directly from the light microscope by video camera (Bauchan and Campbell 1994). Computer-assisted analysis yields objective and quantitative estimates of banded areas of chromosomes (Drets et al. 1992). This technique remains unstudied for application in analysis of the weak bands that have been found in the chromosomes of most fish species.

Channel catfish is the most important food fish cultured in the United States, and genetic study of the species is generating wide interest (Wolters 1993). However, little information is available about chromosome structure, hindering basic research such as gene mapping in this species. The objectives of this study were to (1) develop a replication banding procedure for use with channel catfish chromosomes, (2) evaluate the consistency of the R-banding technique, (3) establish a standard RBG-banded karyotype and idiogram, and (4) estimate baseline frequency of SCD and SCE in cultured cells.

Material and Methods

Animals

The channel catfish used in this study were from a population maintained at LSU and spawned artificially in indoor systems (Tiersch et al. 1994). Eight fish (mean ± SD = 210 ± 55 g) were used for isolation of leukocytes and preparation of chromosomes for replication banding. Another five fish (500 ± 45 g) were used for investigation of SCD and SCE.

Leukocyte Culture

Leukocytes were isolated by the density centrifugation method (Zhang and Tiersch 1995). Culture media and incubation conditions were described previously (Zhang and Tiersch 1995). Mitotic activity of cultured cells was induced by incubating with final concentrations of 0.05 μg/ml phorbol 12-myristate 13-acetate (PMA) (Sigma Chemical Company, St. Louis, Missouri) and 0.5 μg/ml calcium ionophore A23187 (Sigma) (Lin et al. 1992), or with 5 μg/ml concanavalin A (Con A). After 24 h the media with PMA and A23187 were replaced with fresh media containing no mitogens; the cultures with Con A did not require a change of media at this step. Cells were incubated for another 48–72 h until the first round of mitotic activity occurred. Cultures were processed with the following procedures for replication banding and SCE and SCD analysis.

Replication Banding

DNA synthesis of cultured leukocytes was blocked with 5′-fluorouracil (FU; Sigma) at a final concentration 1.0 × 10⁻² M. After 17 h the cells were pelleted and rinsed twice with Ca²⁺- and Mg²⁺-free phosphate buffered saline (CMF-PBS). The cells were cultured for another 5.5 h in fresh Leibovitz L15 medium (Gibco BRL, Life Technologies Inc., Gaithersburg, Maryland) with a mixture of 10⁻⁴ M BrdU, 6 × 10⁻⁶ M uridine (Sigma), and 4 × 10⁻⁷ M 5′-fluoro-2′-deoxyuridine (FrdU; Sigma). Twenty microliters of colchicine solution (100 μg/ml) was added to each culture at 30 min to 1 h before harvest. The cells were processed by a hypotonic treatment with 0.075 M KCl, followed by cold fixation in a mixture of methanol and acetic acid (3:1).

Chromosome staining was based on the fluorochrome plus Giemsa (FGP) method of Perry and Wolff (1974). After staining with Hoechst 33258 (150 μg/ml) for 25 min at room temperature, slides were placed on a styrofoam board, floated in a 60°C water bath, and irradiated with a long-wave (365 nm) ultraviolet (UV) light (115 V, 60 Hz, 0.3 A; Spectronic Corp., Westbury, New York) for 2 h from a distance of 10 cm. The slides were treated with 2× SSC for 4 h at 60°C, rinsed with distilled water (dH₂O), and dehydrated through a series of ethanol solutions (70%, 85%, 95%, and 100%). The slides were stained finally with 2% Giemsa in 0.01 M phosphate buffer (pH 6.8) for 10 min.

Evaluation of Replication Banding on Marker Chromosomes

Three distinctive chromosomes—1 (the largest chromosome), 6 (the largest metacentric chromosome), and 11 (the chromosome bearing the NOR) (Zhang 1996)—were used as representatives of each spread. The banding patterns of these chromosomes from different cells were compared to examine consistency of the technique. Slides were treated by the FPG procedure, and images of chromosomes were recorded as described below. The slides were destained with the mixture of methanol and acetic acid (3:1), rinsed with distilled water, dehydrated through the series of ethanol solutions, and air dried. The NOR were located using the silver staining procedure of Howell and Black (1980).

Computer-Assisted Chromosome Analysis

The process of karyotyping was assisted by the Optimas® (Bioscan, Inc., Edmonds, Washington) and Kary® (Pro Data, Oslo, Norway) computer software packages. Chromosome images were captured and recorded with an image analysis system (Zhang and Tiersch 1997) directly from a light microscope (Microphot-SA, Nikon Inc., Garden City, New York). For comparison, chromosomes were photographed with Kodak Technical Pan film 2415, the negatives were digitized using a slide scanner (SprintScan 35, Polaroid scanner model CS-2700, Needham Heights, Massachusetts), and the digitized images were stored on a 486 IBM compatible PC with a 1.2 GB hard drive, 8 Mbyte RAM, 2 Mbyte VRAM, and 66 MHz processor. Total lengths and arm lengths of chromosomes were measured by the “line measurement” function of the Optimas® software. The dark and light banding patterns of chromosomes were identified by densitometry and expressed with a luminance plot. The x-axis of the plot represented segments of chromosomes, and the y-axis represented the corresponding grayscale value ranging from 0 (black) to 255 (white). Images of metaphase spreads were imported into the Kary® software, which arranged chromosomes in descending order of size by automatic cutting and pasting to a template.

A standard karyotype was prepared by rearranging the chromosomes into groups based on relative length (%TCL) and cen-
The Journal of Heredity 1998:89(4)

Computer-assisted analysis of replication banding patterns of representative chromosomes. Comparison of the luminance patterns of chromosome 1, 6, and 11 (the NOR-bearing chromosome) from cells of different fish. Arabic numbers indicated on the luminance plots correspond to the specific regions of the chromosome diagrammed within the idiograms.

Figure 1. A standard RBG-banded karyotype (R bands by bromodeoxyuridine using Giemsa) of channel catfish. Abbreviations: A, large submetacentric; B, large subtelocentric; C, large and medium metacentric; D, medium submetacentric; E, medium subtelocentric; F, telocentric; G, small metacentric, and H, small submetacentric chromosomes. Bar = 10 μm.

Individual chromosomes were identified based on an objective procedure: (1) dividing chromosomes into groups designated as A, B, C, D, E, F, G, or H based on %TCL and CI, and (2) pairing chromosomes within a group according to replication banding patterns (Zhang 1996). The final karyotype (Figure 2) was based on the analysis of 12 spreads and was summarized with an idiom (Figure 3).

Sister-chromatid differentiation was found on most chromosomes (Figure 4a). However, SCE was observed only on one to five chromosomes per cell (Figure 4a–c). The occurrence of SCD (P = .07) was not significantly different among the five fish examined, nor was that of SCE (P = .26) (Table 1).

Discussion

In this study replication banding procedures were developed for channel catfish using an in vitro culture technique. Three factors were critical for the success of the replication banding procedure: rapid growth of cultured cells, efficient arrest and release of the cell cycle, and control of intensity of the postlabeling treatment. The dynamic R bands were generated by differential incorporation of BrdU into replicating DNA segments. The uptake of BrdU is related to the replication status of cultured cells. The number of analyzable spreads was increased by addition of mitogens. Although Con A, pokeweed mitogen, and phytohemagglutinin M all have proliferative effects on in vitro culture of channel catfish leukocytes (Faulmann et al. 1983), a mixture of phorbol ester and calcium ionophore was found to be consistently mitogenic for catfish leukocytes (Lin et al. 1992). Consistent replication banding patterns rely on temporal and spatial control of BrdU incorporation, and
this can be achieved by synchronization of cell populations. Several treatments were evaluated in this study, including use of the reversible S-phase inhibitors methotrexate (MTX) and FU, and high doses of thymidine and BrdU (data not shown). Although MTX has worked effectively in higher animals (Ronne 1992) and in some fishes such as eel (Liu 1988), it did not block mitosis in cultured channel catfish leukocytes. We also found that the addition of 0.3 mg/ml of thymidine did not synchronize cells effectively, and a similar result was found in cultures treated with high doses (70 mg/ml) of BrdU. In contrast, FU was able to block cultures and was easily released by the BrdU-based mixture. The resultant spreads were arrested mostly in prometaphase.

The final consideration of replication banding was the postlabeling treatment. The FPG is a popular staining procedure to reveal BrdU-labeled regions. Various modifications have been developed from the original methods for use in different species. In this study a prolonged incuba-

Figure 3. An ideogram of RBG-banded karyotype (R bands by bromodeoxyuridine using Giemsa) of channel catfish. The measurements were taken from chromosomes of 12 different spreads. Abbreviations: %TCL = percentage of total complement length, or relative length; CI = centromeric index.

Figure 4. Sister-chromatid differentiation (SCD) and exchange (SCE) of channel catfish chromosomes. Arrows indicate representative SCE chromosomes; lines indicate position of centromeres. Bars = 10 μm.
Table 1. The occurrence of sister-chromatid differentiation (SCD) and exchange (SCE) in chromosomes of channel catfish (2N = 58)

<table>
<thead>
<tr>
<th>Fish</th>
<th>Number of chromosomes per spread</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCD</td>
</tr>
<tr>
<td>1</td>
<td>56 ± 1</td>
</tr>
<tr>
<td>2</td>
<td>55 ± 1</td>
</tr>
<tr>
<td>3</td>
<td>56 ± 2</td>
</tr>
<tr>
<td>4</td>
<td>58 ± 1</td>
</tr>
<tr>
<td>5</td>
<td>57 ± 1</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>57 ± 2</td>
</tr>
</tbody>
</table>

The number of chromosomes per cell (mean ± SD) bearing SCD (P = 0.07) or SCE (P = 0.26) were not significantly different among the five individuals examined.

From the School of Forestry, Wildlife, and Fisheries, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (Zhang and Tiersch) and the U.S. Department of Agriculture, Agricultural Research Service, Catfish Genetics Research Unit, Stoneville, Mississippi (Wolters). Q. Zhang is currently at the Department of Veterinary Science, Louisiana State University, Baton Rouge, Louisiana. This study was funded in part by USDA, Agricultural Research Service Cooperative Agreement CRIS 6042-5100-002-628, USDA special grant 93-34319-9057, and the Louisiana Catfish Promotion and Research Board. We thank J. Ratcliff for technical assistance and J. Avault, R. Chabreck, R. Cooper, D. Shih, and M. Stine for critical review. This manuscript was approved by the Director of the Louisiana Agricultural Experiment Station as manuscript 96-22-0158. Address correspondence to Dr. Tiersch at the address above of e-mail: ttiersch@agctr.lsu.edu.

© 1998 The American Genetic Association
Genetic Differences in Male Development Time Among Populations of the Endangered Gila Topminnow

T. N. Cardwell, R. J. Sheffer, and P. W. Hedrick

Timing of male sexual maturity was compared in a common laboratory environment for populations from the four watersheds in which the Gila topminnow (Poeciliopsis o. occidentalis) still remains in Arizona. One population, Monkey Spring, was found to have an approximately 50% later development of male sexual maturity. Monkey Spring is the only population of the four whose natural habitat has both a constant and warm, year-round temperature and year-round reproduction. Year-round reproduction is a common strategy in tropical fish species in warm constant environments. Our findings are consistent with the hypothesis that the other three populations—Bylas Springs, Cienega Creek, and Sharp Spring—have adapted to temporally variable environments and seasonally limited reproduction with earlier male maturation. This genetic difference in a fitness-related trait lends support to the recommendation that Gila topminnows from different watersheds be managed and conserved separately.

The Gila topminnow (Poeciliopsis o. occidentalis) is a small, live-bearing fish (Poeciliidae) once common throughout lower elevations of the Gila River drainage in Arizona and New Mexico, and in Sonora, Mexico (Hubbs and Miller 1941), but now endangered and limited to a small fraction of its former range (U.S. Fish and Wildlife Service 1993). The Gila topminnow has been the subject of an ongoing series of investigations to determine the pattern and amount of molecular genetic variation over the few existing, and now quite isolated, populations and the possible association of genetic variation and fitness over these populations.

Published molecular genetic surveys have reported little or no variation among or within few extant natural Gila topminnow populations. For example, of 25 allozyme loci surveyed, only two were variable and only one population, Sharp Spring, was polymorphic for these loci while three other populations, Bylas Spring, Cienega Creek, and Monkey Spring, were monomorphic (Vrijenhoek et al. 1985). Recently Quattro et al. (1996) found that these four populations all had the same mitochondrial DNA haplotype using low-resolution six-cutter restriction enzymes.

Quattro and Vrijenhoek (1989) found differences in fitness measures between Sharp Spring and Monkey Spring, with Monkey Spring appearing to have lower fitness for all traits examined and suggested that there was a positive correlation of allozyme variation and fitness. However, their overall survival values were quite low, indicating that their laboratory environment was highly stressful to the fish and probably influenced the other fitness measures as well. In contrast, when the same fitness measures were examined by Sheffer et al. (1997), also in laboratory-reared fish, they showed a very high overall survival and no significant difference in survival among populations. Sheffer et al. (1997) also found that Monkey Spring males were significantly larger at 12 weeks than fish from three other populations.

Observations during the research reported in Sheffer et al. (1997) suggested that there may be differences in timing of male sexual maturity among the populations, a trait with potentially important fitness consequences. The present experiment was set up to quantify any differences among populations in the development of male secondary sex characteristics in a common, controlled environment. If differences are observed in a common environment, this indicates that there are genetic differences for this fitness trait among the populations.

Fish stocks were initiated in 1994 (Sheffer et al. 1997) from 20 pregnant females from four locations in Arizona—Bylas Spring, Cienega Creek, Sharp Spring, and Monkey Spring (Figure 1)—representing the four major watersheds in which natural populations of Gila topminnows are still extant. The first three locations are subject to large summer-winter temperature fluctuations. In contrast, Monkey Spring at its outflow is a warm spring and is chemically and thermally (27.4 ± 0.6°C) invariant (Schoenherr 1974). Monkey Spring is separated from other surface drainages by a 10 m high, natural travertine dam and modern diversion into an irrigation system.

Since summer 1994, stocks of approximately 1000 adults from each of these populations have been maintained in large, circular raceways under constant conditions. Seven gravid females were removed at random from each stock in July 1995 (after approximately three generations in captivity) and placed, one fish each, in 10 gal aquaria with the intent of obtaining five or more tanks of fish from each population. Broods of four or more juveniles were used in the study, making it likely that there would be one or more males in the brood. All the aquaria were maintained at the same light cycle (14 h of daylight), temperature (26°C), and water quality. Pregnant females from different populations were randomly placed in aquaria.

After birth of a brood, the female was removed and offspring were kept in sibling groups of four to nine individuals. They were observed daily until the start of gonopodial development (which is an external signal of the initiation of male sexual development), termed initiation age (defined by elongation of anterior anal fin rays 3–5 in males). Once development started, male fish were observed (by T.C.) in a petri dish held upright against the side of the tank, every 4 days until gonopodial development was completed. Completion age is indicated by a fully fused and clear gonopodial tip which signals male sexual maturity. Initiation and completion age were analyzed for significant differences among populations with ANOVA and Tukey multiple-comparisons tests.
Results for individual tanks from the different populations are given in Table 1. The first tank initiated development at 19.5 days (Cienega Creek tank D) and the first tanks completed development at 47 days (Cienega Creek tanks D and E). Monkey Spring tanks A–D were last to initiate development and were the last to complete development. Of the 22 tanks, the five Monkey Spring tanks had the four latest initiation ages and completion ages and the four longest durations of development. On average, mean initiation age, mean completion age, and duration of development were 53%, 48%, and 45% longer, respectively, in Monkey Spring than the average of the other three populations.

Overall differences among populations in age of initiation and completion were highly statistically significant \((P < .001)\). There were no significant differences in either initiation or completion age among Bylas Spring, Cienega Creek, and Sharp Spring, but Monkey Spring fish differed significantly from the other three populations \((P < .001\) for each comparison). Variation within populations among tanks was not a significant source of variation in initiation of maturation, but it was significant among tanks within populations for completion ages \((P < .05)\). Regression of duration of development on initiation age was significant \((P < .01)\), explaining 29% of the variance in duration.

The highly significant difference between the Monkey Spring population and the other populations in time to male sexual maturity, when raised in a common environment, indicates that there are genetic differences for this fitness-related trait between Monkey Spring fish and those from the other populations. This difference corresponds with the interpopulation fitness study by Sheffer et al. (1997) which found that 12-week-old, laboratory-reared Monkey Spring males were significantly larger than male offspring from the other three populations (male growth ceases after sexual maturity, so late male development is consistent with larger size).

The most obvious explanation for the large genetic difference in male sexual development between Monkey Spring and other populations is that they have been under different selection pressures. Southern Arizona is the northernmost extent of the geographic range of *P. occidentalis* (Rosen and Bailey 1963). Tropical derivation (tendency to breed year-round) of the Gila topminnow, along with a natural barrier separating warm Monkey Spring from the other populations in contrast with selection against year-round breeding in seasonally variable temperature habitats, could account for the genetic differences in male sexual maturation between Monkey Spring and other natural populations.

Although spring and summer surges in reproduction exist in all natural populations, the constant-temperature habitat of Monkey Spring supports year-round reproduction while the seasonally variable temperature habitats, such as Bylas Spring, Cienega Creek, and Sharp Spring, do not (Schoenherr 1974). Because of the year-round reproduction at Monkey Spring, some females are available for mating all year, which reduces selection against later starting, slower developing, and consequently larger males. On the other hand, male fish at temperature-variable sites are under selection pressure against late development because reproduction ceases from late fall to spring. This also imposes a trade-off in these locations between earlier development with potentially lower mating success because of smaller size or completion of development next spring with more mating success as a larger male. However, overwintering in cold temperatures poses survival risks and may increase potential costs of delayed male development. In other words, the slower male development time in Monkey Spring fish is consistent with predictions from life-history and sexual competition considerations.

We should note that the influence of environment on sexual development is well documented in fishes. Day length, temperature (Conover and Kynard 1981), and so-

Table 1. Mean initiation and completion ages and duration of development for each tank

<table>
<thead>
<tr>
<th>Population</th>
<th>Tank</th>
<th>Mean initiation age ((N))</th>
<th>Mean completion age ((N))</th>
<th>Duration of development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bylas Spring</td>
<td>A</td>
<td>21.0 (2)</td>
<td>57.0 (2)</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>26.0 (1)</td>
<td>54.0 (1)</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>26.0 (1)</td>
<td>54.0 (1)</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>25.0 (4)</td>
<td>51.0 (4)</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>25.0 (1)</td>
<td>69.0 (1)</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>29.8 (4)</td>
<td>58.0 (3)</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>32.0 (2)</td>
<td>66.0 (2)</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>26.8 (1.0)</td>
<td>57.2 (1.7)</td>
<td>30.4</td>
</tr>
<tr>
<td>Cienega Creek</td>
<td>A</td>
<td>24.8 (5)</td>
<td>64.6 (5)</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>26.0 (2)</td>
<td>59.0 (2)</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>23.8 (4)</td>
<td>64.0 (4)</td>
<td>40.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>19.5 (2)</td>
<td>47.0 (2)</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>21.0 (4)</td>
<td>47.0 (4)</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>23.3 (0.9)</td>
<td>57.6 (3.0)</td>
<td>34.4</td>
</tr>
<tr>
<td>Sharp Spring</td>
<td>A</td>
<td>21.0 (1)</td>
<td>52.0 (1)</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>31.3 (4)</td>
<td>54.0 (4)</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>22.0 (2)</td>
<td>55.0 (2)</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>28.3 (4)</td>
<td>72.0 (4)</td>
<td>43.8</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>29.3 (3)</td>
<td>59.7 (3)</td>
<td>39.3</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>27.9 (1.4)</td>
<td>60.6 (3.8)</td>
<td>32.7</td>
</tr>
<tr>
<td>Monkey Spring</td>
<td>A</td>
<td>34.0 (1)</td>
<td>82.0 (1)</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>35.4 (7)</td>
<td>91.3 (6)</td>
<td>55.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>36.0 (2)</td>
<td>92.0 (2)</td>
<td>56.0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>56.0 (5)</td>
<td>104.0 (2)</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>27.7 (3)</td>
<td>64.3 (3)</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>39.8 (3.0)</td>
<td>86.8 (4.6)</td>
<td>47.0</td>
</tr>
</tbody>
</table>

The number of males \(N\) at each stage and the standard error of the means are also given. Age is given in days.
cial interactions (Borowsky 1973, 1978, 1987; Braddock 1945) are all possible modifiers of developmental timing in the secondary sex characteristics. Some studies have found significant effects of the presence of other males on timing of development (Borowsky 1973, 1978, 1987). In this experiment, temperature, day length, and water quality were controlled. Per aquarium density and the numbers of male siblings in the same aquarium were kept as constant as possible but are two other possible sources of variation in developmental timing. Although we do not have enough observations per population and a wide enough range of values to statistically examine this effect, it does not appear to be significant.

Our observation of a large genetic difference in a fitness-related trait between Monkey Spring fish and those from the other populations supports the suggestion of Simons et al. (1989) that “at least one representative lineage is preserved from each of the four geographic areas in Arizona.” It is also consistent with the recommendation (Sheffer et al. 1997; U.S. Fish and Wildlife Service 1993) that Gila topminnows from different watersheds be managed and conserved separately.

From the Department of Biology, Arizona State University, Tempe, AZ 85287±1501. We acknowledge the National Science Foundation and the Howard Hughes Medical Institute for support and Larry Nienahr for care of the topminnows. We appreciate the comments of W. L. Minckley. Address correspondence to Dr. Hedrick at the address above or e-mail: hedrick@hedricklab.la.asu.edu.

© 1998 The American Genetic Association

References

Received September 16, 1997
Accepted December 13, 1997
Corresponding Editor: Martin Tracey

A Genetic Marker in the Growth Hormone Receptor Gene Associated With Body Weight in Chickens

X. P. Feng, U. Kuhnlein, R. W. Fairfull, S. E. Aggrey, J. Yao, and D. Zadworny

A genomic clone spanning 16 kb of the GH receptor gene was mapped and used as a probe for identifying restriction fragment length polymorphisms (RFLPs) in chickens. Several strains of meat-type and egg laying chickens were found to segregate for an HindIII RFLP located in the intron preceding exon 4. The polymorphic HindIII site overlapped with a poly(A) signal. Association of the HindIII RFLP with traits was analyzed in a random-bred White Leghorn strain in three generations using either selective or random genotyping. Both methods revealed significant association of the HindIII allele (presence of the poly(A) signal) with an increased juvenile body weight (130 days of age). In two meat-type strains divergently selected for size of the abdominal fat pad, the HindIII allele was coselected with leanness. The results indicate the presence of a genetic variant of the GH receptor gene which affects growth and abdominal fat deposition and which is relatively frequent in egg laying as well as in meat-type chickens.

The growth hormone (GH) axis affects many metabolic processes such as reproduction, growth, aging and immune responsiveness. In poultry it has been shown that GH levels are associated with the rate of growth, mature body weight, fatness and egg production (Anthony et al. 1990; Burke and Marks 1982; Picaper et al. 1986; Scares et al. 1984). It has also been reported that the number of hepatic GH receptors (GHR) is affected by selection for growth or feed efficiency (Vanderpoorten et al. 1993).

Whether these differences in GH or GHR levels are due to genetic variations in either one of the two genes or in other regulatory genes of the GH axis is not known. However, in some sex-linked dwarf chickens, stunted growth and reduced immune responsiveness appear to be the consequences of mutations in the GHR gene (Agarwal et al. 1994; Burnside et al. 1991; Duriez et al. 1993; Huang et al. 1993; Pinard and Monvoisin 1994). This observation and the hypothesis by Robertson (1985) that genes which segregate for alleles with major effects are likely to also segregate for alleles with minor effects prompted us to search for genetic markers in the GHR gene which are associated with growth.

Materials and Methods

Isolation and Characterization of a Cosmid Clone of the GHR Gene

A cosmid library constructed from genomic DNA of a Cornish White Rock chicken was purchased from Stratagene (Stratagene, La Jolla, California). The genomic DNA had been partially digested with Sau3AI and inserted into the BamHI site of the cosmid vector pWE15. Screening of 5 × 10^6 colonies with the radiolabeled full-length chicken GHR cDNA as a probe (Burnside et al. 1991) yielded one positive clone.

A restriction map of the cosmid clone was constructed by analyzing the restriction fragment lengths and the hybridization signals obtained with probes for the T3 and T7 promoters which flank the vector and with individual subfragments (Figure 1A). The clone contained two vector segments interspersed with two chicken genomic DNA fragments. One of these (16.3 kb) hybridized to the GHR cDNA, while the other (10.5 kb) presumably represented an unrelated genomic DNA fragment.

The smallest contiguous segment of the cosmid clone which hybridized to the cDNA clone consisted of two adjacent HindIII fragments. The segment was 5.1 kb in length and located near one of the ends of the cosmid vectors (Figure 1B).

Brief Communications 355
Southern blots with the two EcoRI subfragments of the GHR cDNA isolated by Burnside et al. (1991) revealed that the cosmid clone only hybridized with the 5' fragment (nucleotide position 0-1400), but not with the 3' fragment (nucleotide position 1400-2030). Thus the cosmid clone encompassed 5' portions of the GHR gene. Sequence analysis of the two hybridizing HindIII fragments revealed that they contained exon 4 and exon 5 of the chicken cDNA (Burnside et al. 1991). Exon 2 (the exon preceding exon 4, since the human equivalent of the human exon 3 is not present in the chicken) appeared to be absent, since an oligonucleotide probe corresponding to exon 2 did not hybridize to the cosmid clone. It indicates that the intron between exon 2 and exon 4 is larger than reported by Agarwal et al. (1994). Large introns are present in the human GHR gene between exons 2 and 3 (≥14 kb) and between exons 3 and 4 (27 kb) (Godowski et al. 1989). Thus the cosmid clone appeared to contain 16 kb of the GHR gene, spanning exons 4 and 5 and including 12 kb of the intron up-stream of exon 4.

Results

Characterization of a HindIII RFLP in the GHR Gene and Development of a PCR Assay

Pooled or individual HindIII fragments of the GHR cosmid insert were used in an initial search for polymorphisms at Mspl, TaqI, PstI, and HindIII restriction sites. White Leghorn strains derived from five different genetic origins and meat-type birds from two genetic origins all segregated for a polymorphism at a HindIII site, indicating that this RFLP is quite common. No polymorphisms were observed with any of the three other restriction enzymes.

The RFLP was only revealed by one of the HindIII fragments (Figure 1B). It resulted in a single band shift, indicating that the RFLP coincided with one of the ends of the hybridizing fragment (data not shown). In order to establish PCR assays the sequences surrounding the two ends were determined. For this purpose a clone encompassing the entire HindIII fragment had to be isolated. Southern blotting of a PstI digest of the cosmid clone with the HindIII fragment as a probe revealed a single band of 5.7 kb. It was subcloned, a restriction map established, and the sequences of the flanking regions determined as indicated in Figure 2A.

Primers of each end of the polymorphic HindIII fragment were designed and the PCR products analyzed by gel electrophoresis (Figure 2B). The PCR products obtained with genomic DNA revealed that the HindIII RFLP coincided with the 5' end of the HindIII fragment. The analysis also revealed an additional HindIII site located 250 bp upstream of the polymorphic HindIII site. The proximity of the two sites explains why the HindIII RFLP was only detected with a single rather than with two fragments of the HindIII digest of the cosmid clone.

Restriction mapping of the genomic DNA using the 5.7 kb PstI fragment P (Figure 2A) as a probe revealed that in the vicinity of the HindIII RFLP, the genomic DNA from White Leghorns (strain 7) had the same arrangement of PstI and HindIII sites as the cosmid clone originating from Cornish hens (data not shown). Hence there was no rearrangement within the 5.7 kb HindIII fragment.
HindIII+ allele: CACAGTACCACTATGAGATTTCTTAAAGACACTT
HindIII- allele: **

CCTGGCACTTTGCCAGATAATGTTGATCTGAACATGACTCAT
G---

GGAATGTAATATAGCTCCAAATAGGGTAGTATAGGAAATTACAGAGA
G---

ATTTCTGCCCAAAGCTAATCTGCATCCCTGATTTTGCCTCTTAAA
A*T---

TTTCCTCCTCCTGGAACCTCTGGATTTACCTGCCATGCAACC
**

Figure 3. Sequence comparison of two HindIII- and two HindIII- GHR alleles from strain 7 and strain S. Strain 7 is a White Leghorn strain established from four North American commercial strains in 1960 (Gowe et al. 1993). Strain S is a White Leghorn strain developed at Cornell in 1939 and kept as a closed breeding population (Cole and Hutt 1973). PCR products obtained with primers C and D were digested with SalI (see Figure 2), cloned in the 5′ to 3′ direction by ligating into pUC18 linearized with SalI and Smal and sequenced from the reverse primer. The sequence shown is the reverse complementary sequence which coincides with the 5′ to 3′ direction of the GHR gene. Alleles of the same RFLP genotype in both strains had identical sequences. The poly(A) site AATAAA which overlaps with the HindIII site is overlined.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Frequency of the HindIII- allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat-line (N = 15)</td>
<td>0.27</td>
</tr>
<tr>
<td>Lean-line (N = 15)</td>
<td>0.93</td>
</tr>
<tr>
<td>Strain 30 (N = 21)</td>
<td>0.91</td>
</tr>
<tr>
<td>Strain 31 (N = 23)</td>
<td>1.00</td>
</tr>
<tr>
<td>Strain 7 (N = 39)</td>
<td>0.36</td>
</tr>
<tr>
<td>Strain 8 (N = 44)</td>
<td>0.45</td>
</tr>
<tr>
<td>Strain 9 (N = 29)</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 1. Influence of selection on the frequency of the GHR alleles

The fat and lean lines were derived from a common genetic base which included a large cross section of foundation birds. The two strains were divergently selected for the size of the abdominal fat pad (Leclercq 1988). They were imported to McGill University in 1982 and maintained for five generations without selection using between 60 and 70 sires and an equal number of dams to propagate each strain (Fotouhi et al. 1993). Strains 30 and 31 were derived from a strain developed from seven different meat-type stocks and were maintained without selection (strain 30) or selection for body weight at 28 days, feed efficiency, and egg production (Chambers et al. 1984; Sabour et al. 1992). Strains 7, 8, and 9 are White Leghorns (egg layers) derived from a common genetic base and kept without selection (strain 7) or selected for egg production traits (Gowe et al. 1993). Strain 8 was selected for egg production to 273 days per hen housed (therefore there was indirect selection pressure for low mortality and early onset of egg laying), while strain 9 was selected for the rate of egg production per day hens were alive from the onset of egg laying to 273 days.

P < .05 (chi-square test).

Two strains selected for several egg production traits (Gowe et al. 1993). Although there was a tendency for an increase in the frequency of the HindIII- allele, the increase was not significant (Table 1).

Trai **Association of GHR Genotype in White Leghorns**

Changes in allele frequencies in selected strains may be due to genetic drift rather than response to selection. To gain more evidence for variants in the GHR gene which affect traits, an association study of the GHR RFLP with traits was carried out in the three White Leghorn strains (7, 8, and 9). An initial screen was carried out by selective genotyping in one or two generations for each strain (Table 2). It indicated differences in the GHR RFLP frequencies for juvenile body weight in strain 7 (P < .05) and strain 9 (P < .1). In both of these strains the HindIII- allele was associated with a higher juvenile body weight.

The association of the GHR RFLP with body weight was reanalyzed by linear regression in the next generation of strain 7 in a sample size of 285 females. It was significant for juvenile body weight, confirming the result obtained by selective genotyping in the previous two generations (Table 3).

Discussion

A marker located in an intron of the GHR gene was found to be associated with body weight in White Leghorn chickens. This association does not appear to be due to spurious combinations of the marker and other genes affecting growth, since it was observed in three successive generations. However, close linkage with a neighboring gene cannot be excluded. Nevertheless, since several types of dwarfism in chickens and other species are due to defects in the GHR gene, such an alternative is less likely (Agarwal et al. 1994; Duriez et al. 1993; Goossens et al. 1993; Huang et al. 1993).

The human GHR gene is very large, encompassing at least 87 kb (Godowski et al. 1989). Much of this length stems from the exceedingly large second intron (>14 kb) and third intron (25 kb). Based on the analysis of our GHR cosmid clone, the second intron of the chicken GHR gene (equivalent to human introns 2 and 3 since exon 3 is absent in chickens) is also large, exceeding 12 kb. Our HindIII RFLP is located 7 kb upstream of exon 3 and coincides with a poly(A) signal. Three other poly(A) signals have been reported in the GHR gene, two located in the untranslated 3′ region of the GHR gene and one in exon 5, giving rise to the three main GHR transcripts of 4.3 kb, 3.2 kb, and 0.8 kb, respectively (Agarwal et al. 1993; Oldham et al. 1993). Whether this fourth poly(A) signal is functional remains to be determined. However, its potential effect on the

kb PsI fragment during cloning of the GHR gene.

The PCR products obtained with DNA from two chickens each of the White Leghorn strain 7 and strain S were directionally cloned into pUC18 and sequenced from the reverse primer. In both strains the loss of the restriction site was caused by an A to G transition. It resulted in the loss of a poly(A) signal that overlapped with the HindIII site (Figure 3). In addition, the transition at the HindIII site was accompanied by a transition and a transversion 60 bp downstream and a transition 60 bp upstream of the HindIII site.

Influence of Selection for Meat Traits and Egg Traits on the Incidence of the GHR RFLP

Analysis of two meat strains derived from a common genetic base, but divergently selected for the size of the abdominal fat pad (Leclercq 1988), revealed that the frequency of the HindIII- allele was significantly higher in the lean line than the fat line (Table 1). In two other meat-type strains (strain 30 and 31; Sabour et al. 1992) derived from a common genetic base, the HindIII- allele occurred at a high frequency in both strains. Nevertheless, selection for body weight, feed efficiency, and egg production over nine generations appears to have led to a further increase of the incidence of the HindIII- allele (Table 1).

The influence of selection for egg production traits in egg layers (White Leghorns) was analyzed in a set of three strains consisting of a control strain and two strains selected for several egg production traits (Gowe et al. 1993). Although there was a tendency for an increase in the frequency of the HindIII- allele, the increase was not significant (Table 1).

Table 1. Influence of selection on the frequency of the GHR alleles

<table>
<thead>
<tr>
<th>Strain</th>
<th>Frequency of the HindIII- allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat-line (N = 15)</td>
<td>0.27</td>
</tr>
<tr>
<td>Lean-line (N = 15)</td>
<td>0.93</td>
</tr>
<tr>
<td>Strain 30 (N = 21)</td>
<td>0.91</td>
</tr>
<tr>
<td>Strain 31 (N = 23)</td>
<td>1.00</td>
</tr>
<tr>
<td>Strain 7 (N = 39)</td>
<td>0.36</td>
</tr>
<tr>
<td>Strain 8 (N = 44)</td>
<td>0.45</td>
</tr>
<tr>
<td>Strain 9 (N = 29)</td>
<td>0.52</td>
</tr>
</tbody>
</table>

The fat and lean lines were derived from a common genetic base which included a large cross section of founder birds. The two strains were divergently selected for the size of the abdominal fat pad (Leclercq 1988). They were imported to McGill University in 1982 and maintained for five generations without selection using between 60 and 70 sires and an equal number of dams to propagate each strain (Fotouhi et al. 1993). Strains 30 and 31 were derived from a strain developed from seven different meat-type stocks and were maintained without selection (strain 30) or selection for body weight at 28 days, feed efficiency, and egg production (Chambers et al. 1984; Sabour et al. 1992). Strains 7, 8, and 9 are White Leghorns (egg layers) derived from a common genetic base and kept without selection (strain 7) or selected for egg production traits (Gowe et al. 1993). Strain 8 was selected for egg production to 273 days per hen housed (therefore there was indirect selection pressure for low mortality and early onset of egg laying), while strain 9 was selected for the rate of egg production per day hens were alive from the onset of egg laying to 273 days.

P < .05 (chi-square test).
Table 2. Selective genotyping of the GHR locus

<table>
<thead>
<tr>
<th>Trait</th>
<th>Frequency of the HindI allele</th>
<th>GHR RFLP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strain 7</td>
<td>Strain 8</td>
</tr>
<tr>
<td>Age at first egg</td>
<td>Early</td>
<td>0.35</td>
</tr>
<tr>
<td>Body weight at High 130 days</td>
<td>Low</td>
<td>0.29</td>
</tr>
<tr>
<td>Body weight at High 365 days</td>
<td>Low</td>
<td>0.23</td>
</tr>
<tr>
<td>Body weight at High 365 days</td>
<td>Low</td>
<td>0.35</td>
</tr>
<tr>
<td>Egg weight at High 365 days</td>
<td>Low</td>
<td>0.46</td>
</tr>
<tr>
<td>Rate of egg laying</td>
<td>High</td>
<td>n.d.</td>
</tr>
<tr>
<td>Residual feed consumption</td>
<td>Low</td>
<td>0.42</td>
</tr>
<tr>
<td>(g)</td>
<td>Low</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Between 15 and 20 chickens which ranked at the extremes of the trait distribution were analyzed. The frequencies given are from one hatch (*) or from two hatchings two generations apart (1989 and 1992). The rate of egg laying was measured from age at first egg and 437 days, adjusted for mortality (hen-day rate). Residual feed consumption is the amount of feed which could not be accounted for by body mass gain, body mass, and egg mass. It was measured between day 247 and 268 days (Fairfull and Chambers 1984). The average female population sizes were 305 for strain 7, 970 for strain 8, and 1,050 for strain 9. *n.d. = no data.

Table 3. Least squares means of traits depending on the GHR genotype

<table>
<thead>
<tr>
<th>Trait</th>
<th>GHR RFLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at first egg (days)</td>
<td>165.9</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>130 days</td>
</tr>
<tr>
<td>Egg weight at 365 days (g)</td>
<td>Residual feed consumption (g)</td>
</tr>
</tbody>
</table>

Based on a sample size of 285.

* Significance based on SAS General Linear Models procedures.

Our results seem to bear out the postulate of Robertson (1985) that genes which segregate for rare alleles that have major effects on a trait (i.e., dwarfism) are likely to also segregate for other more common variants that have minor effects. When searching for quantitative trait genes it may therefore be expedient to first identify genes responsible for extreme phenotypes (outliers) and then search for more frequent variants in such genes in elite breeding populations.

References

Burke WH and Marks HL, 1982. Growth hormone and prolactin levels in nonseleced and selected broiler lines of chickens from hatch to eight weeks of age. Growth 46:283–295.

Between 15 and 20 chickens which ranked at the extremes of the trait distribution were analyzed. The frequencies given are from one hatch (*) or from two hatchings two generations apart (1989 and 1992). The rate of egg laying was measured from age at first egg and 437 days, adjusted for mortality (hen-day rate). Residual feed consumption is the amount of feed which could not be accounted for by body mass gain, body mass, and egg mass. It was measured between day 247 and 268 days (Fairfull and Chambers 1984). The average female population sizes were 305 for strain 7, 970 for strain 8, and 1,050 for strain 9. *n.d. = no data.

In analogy with the stunted growth in chickens with a defective GHR gene, one might speculate that the HindIII allele is associated with an increased GHR activity. The coselection of the HindIII allele with leanness in the experimental strains of Leclercq (1988) is compatible with such a scenario (Vasilatos-Youknen 1995). However, direct measurements of the kinetics of GHR and other components of the GH axis during development in different tissues are required. Toward this end we have started to select chickens on the basis of markers in the GHR and GH genes, while maintaining diversity of the remaining genetic background. These selection experiments indicate that selection for the HindIII allele indeed results in an increased body weight of the magnitude predicted by the linear regression analysis (unpublished data).

Our results seem to bear out the postulate of Robertson (1985) that genes which segregate for rare alleles that have major effects on a trait (i.e., dwarfism) are likely to also segregate for other more common variants that have minor effects. When searching for quantitative trait genes it may therefore be expedient to first identify genes responsible for extreme phenotypes (outliers) and then search for more frequent variants in such genes in elite breeding populations.
A Cosmid Specific for Sequences Encoding a Microtubule-Associated Protein, MAP1B, Contains a Polymorphic Microsatellite and Maps to Bovine Chromosome 20q14

A. Eggen, S. Solinas-Toldo, and R. Fries

A clone for the bovine gene MAP1B was isolated from a bovine cosmid library with a probe obtained by cross-species PCR. The single positive cosmid clone was localized by FISH to chromosome region 20q14. Analysis of the cosmid revealed the presence of a microsatellite motif with a two-allele polymorphism detectable by PCR amplification of genomic DNA. However, the analysis of this polymorphism in a bovine family affected by SMA indicated absence of very close linkage of the phenotype for bovine SMA with MAP1B.

Mapping of eukaryotic genomes includes two types of loci: type I and type II (O’Brien 1991). Type I represent conserved coding sequences. They are often not or only slightly polymorphic and therefore uninformative for systematic mapping of segregating loci. However, type I loci are the basis for the construction of comparative genome maps. Such maps, besides being of general biological interest, will be useful in identifying marker loci and candidate genes for economic trait loci (ETL) in a given region of the genome through the delineation of conserved synteny segments (Fries 1993; Womack 1987). However, the mapping of ETLs will be accomplished through linkage analysis using type II marker loci. These loci are highly polymorphic but do not represent coding sequences. The high degree of polymorphism, abundance, and even distribution in the eukaryotic genome make (CA)n repetitive segments (so called microsatellites) the type II markers of choice (Beckmann and Weber 1992; O’Brien et al. 1993; Stallings et al. 1991). The result from two types of marker being used in the mapping process is two types of maps. Mapping would be more efficient if it was possible to combine the type I and type II characteristics in one marker, for example, by identifying a highly polymorphic microsatellite site in or close to a coding sequence. We have recently characterized a polymorphic microsatellite in the bovine gene for the p21 activator (RASA) (Eggen et al. 1992; Fries et al. 1990). While this microsatellite marker was identified via sequence database search, we now present a more general approach consisting of the screening of a cosmid library with a probe for a coding gene and the subsequent search for a microsatellite in positive clones by screening with the (CA)n microsatellite motif. Due to the frequent occurrence of microsatellites in eukaryotic genomes, it is hypothesized that most cosmids inserts (encompassing about 40 kb) contain at least one microsatellite, most often of the (CA)n type. We chose a probe for the gene encoding a microtubule-associated protein, MAP1B, to demonstrate the feasibility of establishing a marker with both type I and type II characteristics and to identify a candidate marker for the bovine spinal muscular atrophy condition. From a bovine genomic DNA library, we obtained a probe for the gene encoding the MAP1B protein. The PCR amplification of bovine DNA consisted of 20 ng template DNA, the upper and the lower primer at 250 nM each, dNTP at 200 μM, 2.5 U Taq DNA polymerase (Boehringer, Mannheim), and the reaction buffer with 2.0, 1.75, 1.5, 1.25, 0.75, or 0.5 mM MgCl2. The cycling profile was 94°C, 5 min; 30 cycles of 94°C, 30 s; 60°C, 30 s; 72°C, 30 s; followed by a final extension at 72°C, 10 min. One fourth of the product was analyzed on ethidium bromide stained 2% agarose, 1× TBE gel.

Sequencing
The PCR product was electrophoresed through a low gelling temperature agarose gel (Sigma, type VII) and the gel slice containing the specific amplification product was removed. Sequencing was performed directly in the low gelling temperature agarose with a modified dideoxynucleotide termination technique (Sanger et al. 1977; Steffen et al. 1991).

Isolation of a MAP1B-Specific Cosmid Clone
The cosmid library was screened using one of the MAP1B-specific PCR probes. The PCR product was purified and isolated as described above then labeled using the random priming kit of Boehringer (Mannheim). Colony hybridization was performed as described in Sambrook et al. (1989). Prehybridization and hybridization was performed in formamide (50%), SSC (6×), and Blotto (0.65×) in the presence of denatured salmon sperm DNA (100 μg/ml) at 40°C for 2–3 h and 24 h, respectively.

Material and Methods
Construction of a Cosmid Library
High molecular weight bovine DNA was extracted from a Holstein-Friesian bull according to Dillela and Woo (1985). Partially digested (Sau3A) and dephosphorylated DNA was ligated into the BamHI site of the SuperCos1 cloning vector (Stratagene; Evans et al. 1989).

Cross-Species PCR
PCR reactions were performed on total bovine genomic DNA using primers designed to obtain MAP1B-specific amplification from human DNA. The primers MAP1B-P1 (5′-CCG AAT TCG CCC TGC TGT ATT TTT C3′) and MAP1B-P2 (5′-CTA AAC AAA TTG TCC ATG AAC TGC AGG G3′) amplify a 400 bp fragment from exon 1 of the human MAP1B gene (position 800–1,200 bp), and the primer MAP1B-P3 (5′-CCG AAT CCC TTT CAG TGT CTG TTG TGC3′) together with MAP1B-P4 (5′-CTG AGA GGC CTC TAC CTG AGA TAC3′) amplify another 400 bp fragment from the same exon (position 4,800–5,200 bp) (Lien LL, personal communication). A PCR reaction for the amplification of bovine DNA consisted of a 200 ng template DNA, the upper and the lower primer at 250 nM each, dNTP at 200 μM, 2.5 U Taq DNA polymerase (Boehringer, Mannheim), and the reaction buffer with 2.0, 1.75, 1.5, 1.25, 0.75, or 0.5 mM MgCl2. The cycling profile was 94°C, 5 min; 30 cycles of 94°C, 30 s; 60°C, 30 s; 72°C, 30 s; followed by a final extension at 72°C, 10 min. One fourth of the product was analyzed on ethidium bromide stained 2% agarose, 1× TBE gel.

Received March 14, 1997
Accepted December 13, 1997
Corresponding Editor: Lyman Crittenden
In order to detect the presence of a microsatellite motif, 2 μg of MAP1B-specific cosmid DNA was digested individually with different restriction enzymes (PstI, EcoRI, SacI, HindIII, Sau3A, PvuII, MspI, HaeIII, XhoI, HindIII, and TaqI), electrophoresed on a 1% agarose gel, blotted onto a nylon membrane, and hybridized overnight in a solution containing NaPO₄ (0.5 M, pH 7.2), BSA (1%), SDS (7%), and a (GT)₁₀ oligonucleotide labeled by nick translation using the kit of Boehringer, Mannheim. After autoradiography, the positive PstI band was subcloned: 1 μg of the cosmid was digested with PstI, run on a 1% low gelling agarose gel. The band of interest was cut out of the gel and ligated into the pBluescript II SK+ vector digested with PstI and dephosphorylated. To confirm the presence of inserts, some recombinants were tested as follows: a few cells from each colony were lysed in boiling water (100 μl) and 5 μl were used as substrate for PCR with primers complementary to the T3 and T7 promoter sequences of pBluescript II in a 100 μl reaction. Thirty cycles of the PCR were carried out under standard conditions at 94°C (15 s), 45°C (15 s), and at 72°C (30 s), followed by a final incubation at 72°C for 10 min. The amplified product was cut out of the gel and sequenced as previously described.

Chromosomal Localization of the MAP1B-Specific Cosmid

After hybridization and two rounds of signal amplification, 27 metaphases were scored. Twenty metaphase spreads showed a signal on both homologous chromosomes 20 as, for example, shown in Figure 2. In seven metaphases only one of the two homologous chromosomes was labeled. The FL_{con} value amounted to 0.32

SMA Diagnosis

The SMA condition was diagnosed by H. Stocker and P. Ossent (Klinik für Geburtshilfe, Jungtier- und Eutererkrankungen, and Institut für Veterinärpathologie der Universität Zürich) as described in Stocker et al. (1992). Parentage was verified by blood group testing.

Cloning of a MAP1B-Specific Cosmid

To obtain bovine MAP1B-specific sequences, PCR was carried out on bovine DNA using two primer pairs derived from human sequences. Each of these cross-species PCR systems yielded amplification products of about 400 bp at an optimized MgCl₂ concentration (Figure 1). This size was expected based on the human sequence and was a first indication of MAP1B specificity of the amplified fragments. However, both fragments were sequenced to determine their identity. Comparison of the resulting sequences (EMBL accession numbers Z29519 and Z29520) with the corresponding mouse sequence (X51396) revealed homologies of 88% and 86%, respectively. The more homologous fragment was used to screen 350,000 recombinant cosmids. A single positive colony was isolated. The two PCR systems derived from human sequences encoding MAP1B were applied on DNA isolated from this clone and yielded fragments of the expected size, indicating that this cosmId most likely contained bovine sequences encoding MAP1B. EcoRI digestion of this cosmId revealed 10 fragments amounting to a total insert size of 38 kb.

PCR Visualization of the Polymorphism

For amplification of the MAP1B microsatellites, an upper, MAP1B-P5 (5′TAC TGA TTC TGA CTG ATT ATG TCT3′), and a lower primer, MAP1B-P6 (5′GGC TGT GCC TCG ATA GAT GGT GCG3′) were designed from the obtained sequence. The PCR was carried out as described by Fries et al. (1990) with the following modification: the 30 amplification cycles were performed with denaturation at 94°C (30 s), annealing at 60°C (30 s), and polymerization at 72°C (30 s). The amplified DNA fragments were resolved on a polyacrylamide gel (6%, 7 M urea) at a constant power of 45 W for 2 h 30 min.

In situ Hybridization

Chromosome spreads were prepared from primary fibroblast cultures established from male bovine fetuses. Q-banding of the chromosomes was performed prior to hybridization by dipping the slides in a solution of 0.005% quinacline mustard for 30 s at room temperature (QFQ-banding). Well-spread metaphases with distinctive banding pattern were photographed using a Leitz Diaplan microscope equipped for fluorescence and Kodak Technical Pan films. The MAP1B-specific cosmid was labeled with biotin-16-dUTP (Boehringer) and hybridized as described by Solinas-Toldo et al. (1993). The chromosomes carrying label were identified using the photographs taken earlier of the QFQ-banded preparations. Assignment of the hybridization site to a specific band was based on measurement of the overall length of the chromosome and the distance of the signal from the centromere. Calculation of the average fractional length of signal position from the centromere (FL_{con}) and direct application of this value to the corresponding chromosome of the standard ideogram (ISCNDA 1989) was described by Solinas-Toldo et al. (1993).

Isolation of a Microsatellite

In order to detect the presence of a microsatellite motif, 2 μg of MAP1B-specific cosmid DNA was digested individually with three different restriction enzymes (PstI, EcoRI, SacI, HindIII, Sau3A, PvuII, MspI, HaeIII, XhoI, HindIII, and TaqI), electrophoresed on a 1% agarose gel, blotted onto a nylon membrane, and hybridized overnight in a solution containing NaPO₄ (0.5 M, pH 7.2), BSA (1%), SDS (7%), and a (GT)₁₀ oligonucleotide labeled by nick translation using the kit of Boehringer, Mannheim. After autoradiography, the positive PstI band was subcloned: 1 μg of the cosmid was digested with PstI, run on a 1% low gelling agarose gel. The band of interest was cut out of the gel and ligated into the pBluescript II SK+ vector digested with PstI and dephosphorylated. To confirm the presence of inserts, some recombinants were tested as follows: a few cells from each colony were lysed in boiling water (100 μl) and 5 μl were used as substrate for PCR with primers complementary to the T3 and T7 promoter sequences of pBluescript II in a 100 μl reaction. Thirty cycles of the PCR were carried out under standard conditions at 94°C (15 s), 45°C (15 s), and at 72°C (30 s), followed by a final incubation at 72°C for 10 min. The amplified product was cut out of the gel and sequenced as previously described.

Figure 1. Cross-species PCR of bovine and human genomic DNA with the primers MAP1B-P1 and MAP1B-P2 derived from the sequence of the human MAP1B gene. PCR reactions loaded in lanes 1–6 contained 2.0, 1.75, 1.5, 1.25, 0.75, and 0.5 mM MgCl₂, respectively. A control PCR without DNA was loaded in lane 7 and the amplification product of human genomic DNA in lane H.
361

Figure 2. Bovine metaphase showing QFQ-banding of the chromosomes prior to in situ hybridization (A) and propidium iodide staining after hybridization (B). The arrows indicate the specific hybridization signal.

Figure 4. Representative autoradiogram showing the two alleles identified at the MAP1B microsatellite locus. Animals 1, 2, 3, 5, 6, and 7 are homozygous for allele 277 and animal 4 is heterozygous 277/279.

18%, respectively, were detected as shown in Figure 4. The PIC (Botstein et al. 1980) value was 0.25.

Analysis of the MAP1B-Specific Microsatellite in a Bovine Family Affected by SMA
All SMA affected animals were paternally and maternally derived from the same carrier animal (Figure 5). A grandson of this animal, an obligate carrier of the SMA defect, was typed 277/277 at the MAP1B microsatellite locus. Under the hypothesis of very close linkage of SMA with MAP1B (as is the case in humans), all SMA affected animals should have received allele “277” together with the SMA defect from either parent. However, due to the low PIC of the microsatellite marker, only 3 of 10 SMA animals were informative, that is, one of the parents was heterozygous at the microsatellite locus. Two of these animals were homozygous having received allele “277” from either parent, and one was heterozygous (277/279), having received 277 from only one parent. This indicated absence of at least very close linkage of the bovine SMA disorder with MAP1B.

Discussion
We have cloned a cosmid containing bovine MAP1B-specific sequences using a cross-species PCR approach and have assigned this cosmid to domestic cow chromosome 20q14 using FISH. Cross-species PCR based on human sequences, cosmid cloning, and FISH (requiring large insert probes) may indeed be the method of choice for the efficient regional mapping of type I loci in cattle and other species. The fact that a polymorphic microsatellite could also be detected in this cosmid demonstrates that by using cosmid cloning it should often be possible to combine the type I and type II characteristics in one marker. However, the low PIC value of the

Figure 3. MAP1B microsatellite and flanking sequences. The sequences corresponding to the two primers MAP1B-P5 and MAP1B-P6 are underlined. The microsatellite sequence is in boldface.

(±0.042) and assigned the hybridization site to band 20q14. The mapping of MAP1B to chromosome 20 represents the first assignment to this chromosome.

Identification of a (CA)$_n$ Microsatellite in the MAP1B-Specific Cosmid
Southern blotting and hybridization of DNA from the MAP1B-specific DNA with a (CA)$_n$-specific probe identified a distinct 450 bp PstI fragment. This fragment was subcloned, and its partial sequencing revealed the presence of a (CA)$_{12}$ microsatellite (Figure 3). The PCR with primers designed from flanking sequences was carried out using DNA samples of 20 unrelated bovine animals (Brown Swiss). Two fragments, encompassing 277 and 279 nucleotides, respectively, corresponding to two alleles with frequencies of 82% and

Figure 5. Pedigree with SMA affected and carrier animals and MAP1B microsatellite genotypes. Male family members are represented by squares, females by circles; affected members are represented by solid symbols and carriers by half-solid symbols.
Inheritance of a Disease Lesion Mimic Mutant in Soybean

J. Chung, P. E. Staswick, G. L. Graef, D. S. Wysong, and J. E. Specht

Disease lesion mimic mutants have been identified in several plant species, including one that affects the primary root in soybean [Glycine max (L.) Merr.]. These mutants display chlorotic and/or necrotic lesions despite the absence of any detectable pathogen. A soybean mutant exhibiting this phenotype in its leaves was observed as a single M2 plant among the bulked progeny of about 150,000 M1 plants grown from mutagenized (i.e., gamma-irradiated) seed of the determinate cultivar Hobbit 87. Leaves of the identified mutant plant became more necrotic and chlorotic as they aged, eventually undergoing an earlier than normal leaf senescence. No pathogen was detectable in the affected leaves. The selfed progeny of the mutant phenotype recorded on the tag. A single M2 plant, bearing the tag, was planted in the field in May 1993, with the “brown spot” mutant planted in row 93-h1054. All M2 plants in row 93-h1054 displayed the mutant phenotype and were individually threshed to initiate the genetic studies.

Corresponding Editor: James Womack

Materials and Methods

All genetic studies were conducted in field nurseries and greenhouses located on the University of Nebraska East Campus. In May 1991, seed of the determinate soybean cultivar Hobbit 87 was exposed to 50 krad of gamma irradiation and immediately planted in the field. The resultant M1 plants were harvested in bulk in the fall of 1991. The bulked M1 seed (approximately 1,000,000) was planted in the field in May 1992. After emergence, plants were inspected on a weekly basis. M2 plants that developed unusual phenotypes were tagged and a description of the phenotype recorded on the tag. A single M2 plant, bearing the tagged notation “late-appearing, chlorophyll deficiency with brown spots,” was gathered in the fall of 1992, along with 350 other tagged M2 plants. All tagged plants were threshed individually and their M2 seed progenies were planted in the field in May 1993, with the “brown spot” mutant planted in row 93-h1054. All M2 plants in row 93-h1054 displayed the mutant phenotype and were individually threshed to initiate the genetic studies.

Seed of M1 progenies were planted in a greenhouse in October 1993, along with seeds of Hobbit 87. Using physical emasculation, reciprocal crosses were made between an M1 mutant plant and a Hobbit 87 plant. F1 seeds derived from those reciprocal crosses were planted in May 1994 in a campus field along with seed collected from the two greenhouse-grown parents. The F1 plants were individually harvested to collect F2 seed. As part of an independent study project, a student planted 24 F2 plants of the Hobbit 87 × M1 mutant, 24 F2 plants of a reciprocal mating, and 4 plants of each parent were grown to maturity in the 1994–1995 winter greenhouse. A photoperiod of 14 h day/10 h night was supplied by an overhead panel of high-intensity, 400 W metal halide lights. The temperature was 25°C/15°C (day/night). After reaching the R1 reproductive stage (i.e., end of pod elongation), the leaves of the F1 plants and parents were examined, and those with the mutant phenotype were red-tagged. About two-thirds of the F1 plants classified as normal were observed to have a barely discernible freckling in some (but not all) of their leaves. These F2 plants were white-tagged to establish a segregation data. All 48 F2 plants and parental plants were harvested individually at maturity. About 30 F2 seed from each of the 48 F2 plants, and from each of the two

In several plant species, mutants have been identified whose leaves exhibit chlorotic or necrotic symptoms generally associated with pathogen attack, yet no pathogens can be detected in the affected leaf tissue (Dietrich et al. 1994). The term “disease lesion mimicry” was coined to describe such mutants, primarily because the leaf lesions produced by a mimicry mutant frequently emulate the leaf lesions produced in wild-type plants infected by a bacterial or fungal pathogen (Johal et al. 1991; Walbot et al. 1983).

Although little is known about the fundamental mechanisms involved in disease lesion mimicry, or even the basic function of wild-type alleles at each mimicry locus, various models for lesion initiation and propagation have been proposed. The progression of lesion initiation and expansion in most lesion mimic mutants is developmentally regulated (Johal et al. 1995). Generally the lesions first appear in the developmentally oldest leaves and then appear in subsequent leaves as these also reach a similar age. Dietrich et al. (1994) delineated two classes of mimicry mutants. In the determinate type, lesion initiation occurred spontaneously at some particular leaf age, but lesion expansion was slow and was eventually checked. However, in the indeterminate type, lesion initiation was triggered by some pathogenic, chemical, or developmental signal, but once initiated, lesion expansion was rapid and unchecked, leading to large chlorotic areas that eventually coalesced and resulted in premature leaf death. Dietrich et al. (1994) suggested that lesion mimic mutants of both classes were defective in some molecular function or biochemical pathway in hypersensitive disease response and/or programmed cell death.

While conducting mutagenesis in the soybean (for the purpose of generating new mutants for stem growth habit), a mutant with an unusual phenotype was discovered. That phenotype was initially thought to be a disease susceptibility, was subsequently recognized as disease lesion mimicry when no causal organism could be found in the mutant’s tissues. Kosslak et al. (1996) recently reported a disease lesion mimicry mutant affecting primary root tissue in the soybean [Glycine max (L.) Merr.], but we could find no reports in the literature of soybean mutants displaying disease lesion mimicry in the leaves. The objective of the research described here was to determine the nature of the inheritance of the soybean leaf mutant.
parents, were planted in the field in May 1995. After the R₃ stage, the F₂₃ plant rows were classified as (1) true-breeding for the normal phenotype, (2) segregating for the mutant phenotype, and (3) true-breeding for the mutant phenotype. The number of normal and mutant F₃ plants in the segregating rows also was recorded.

The 93-h1054 mutant had also been mated with a determinate isole of the cultivar Harosoy in 1994, as part of a larger linkage study. A single F₁ plant was grown and phenotyped in the 1994-1995 winter greenhouse. The 84 F₂ plants and their F₂₃ progenies were grown and phenotyped in the summers of 1995 and 1996, respectively.

Results and Discussion

In early to mid-August 1993, older leaves of all plants in the M₃ progeny of the original M₄ plant began developing freckled appearance (i.e., small necrotic spots, each surrounded by a chlorotic halo). The yellowish-green halo areas rapidly expanded and eventually coalesced, such that by late August nearly all leaves on each plant turned yellow, then a dark brown. Premature leaf drop followed, resulting in the M₄ progeny row 93-h1054 undergoing plant senescence that was several days earlier than that of a nearby row of Hobbit 87.

Because the freckled, chlorotic appearance of the mutant leaves seemed to be a reflection of pathogenicity, we initially presumed that this mutant was simply susceptible to some pathogen. To determine what pathogen might be causal agent, symptomatic leaves from several M₄ mutant plants were taken to the University of Nebraska Plant and Pest Diagnostic Clinic. An exhaustive examination revealed no histochemical evidence of pathogenicity. Clinic personnel suggested that an abiotic factor was perhaps the likely cause of the phenotype.

Mutant plants were grown during the winter of 1993-1994 in a greenhouse. As the plants began flowering, aging leaves began to exhibit, on their upper surfaces, reddish-brown spots that were surrounded by a greenish-yellow halo (Figure 1). On the lower surfaces, narrow but elongated lesions formed along the veins. Some of the larger lesions consisted of concentric brown/yellow rings of dead tissue. These lesions were typical of a soybean disease commonly known as “target leaf drop,” caused by the fungus Corynespora cassicola (Athow 1987). However, neither this nor any other pathogen was detectable in affected mutant leaves that were again submitted for a pathological analysis. The absence of pathogenicity finally led us to conclude that this soybean mutant was exhibiting disease lesion mimicry (Walbot et al. 1983).

F₁ plants from the matings between the mutant and Hobbit 87 had a normal phenotype, irrespective of whether the mutant served as the female or male parent in the mating (Table 1). The observed F₂ segregation of normal versus mutant in the reciprocal crosses was 18:6 and 17:7, both of which fit a monogenic 3:1 ratio. Mutant F₂ plants produced only mutant F₃ progeny, whereas normal F₂ plants produced all normal progeny, or progeny with normal and mutant segregants. The 8:10 and 7:10 ratios of homozygous dominant versus heterozygous F₂ plants in the reciprocal crosses fit a 1:2 ratio. Finally, the 172:46 and 178:49 counts of normal and mutant plants in the segregating F₂₃ families also fit a 3:1 ratio. The F₂ phenotype and the F₂ and F₃ segregation data indicated that the mutant phenotype was conditioned by a recessive nuclear allele. The F₂ populations in the reciprocal matings with Hobbit 87 were obviously small. However, the proposed genetic model was verified in a separate population derived from the mating of the mutant with another parent. In that mating (Table 1) the F₂ phenotype was normal, the F₃ segregation fit a 3:1 ratio, mutant F₃ plants bred true, and the number of normal F₂ plants classified as homozygotes and heterozygotes fit a 1:2 ratio.

About two-thirds of the normal F₂ plants produced in the reciprocal matings involving Hobbit 87 exhibited a faint freckling on one or more of their leaves, suggesting that this might be indicative of heterozygosity at the mutant locus. Of the 20 F₂ plants in the Hobbit 87 matings (10 in each cross) that were subsequently shown in the F₃ generation to be heterozygotes for the mutant gene, 17 (8 in one cross, 9 in its reciprocal) exhibited faintly freckled leaves (Table 1). However, faint freckling was also observed in 7 (4 in one cross, 3 in its reciprocal) of the 18 normal F₂ homozygotes. Faint freckling was not easily distinguishable from other forms of leaf spotting, so even if faint leaf freckling did characterize heterozygous F₂ plants, its penetrance is too marginal to serve as a reliable indicator of heterozygosity at the mutant locus.

The gene symbol dlm (disease lesion mimicry) was chosen for the recessive mutant allele and has been approved by the Soybean Genetics Committee (Diers B, personal communication). We are currently attempting to position the Dlm locus on the soybean molecular linkage map (Shoemaker and Specht 1995). Researchers interested in examining the mutant phenotype or in cloning the mutant gene need...
Table 1. Inheritance of a soybean disease lesion mimic mutant phenotype in the F₁, F₂, and F₃ generations derived from reciprocal matings of the mutant with the cultivar Hobbit 87 and from a mating of the mutant with the cultivar Harosoy

<table>
<thead>
<tr>
<th>Mating and generation</th>
<th>Plant or family phenotypes</th>
<th>Hypothesized phenotypic ratio</th>
<th>χ² test value</th>
<th>Probability of a greater χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hobbit 87 × mutant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Normal</td>
<td>5</td>
<td>0.296</td>
<td>0.50±0.75</td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Segregating</td>
<td>—</td>
<td>1.450</td>
<td>0.10±0.25</td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Mutant</td>
<td>—</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>F₂ plants</td>
<td>Normal</td>
<td>18(12)*</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>F₂ plants</td>
<td>Segregating</td>
<td>—</td>
<td>0.999</td>
<td>0.317</td>
</tr>
<tr>
<td>F₂ plants</td>
<td>Mutant</td>
<td>—</td>
<td>1.768</td>
<td>0.184</td>
</tr>
<tr>
<td>F₃ plants in the segregating families</td>
<td>Normal</td>
<td>172</td>
<td>0.063</td>
<td>0.801</td>
</tr>
<tr>
<td>Mutant × Hobbit 87</td>
<td>Normal</td>
<td>7</td>
<td>0.999</td>
<td>0.317</td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Segregating</td>
<td>7</td>
<td>1.403</td>
<td>0.238</td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Mutant</td>
<td>—</td>
<td>1.403</td>
<td>0.238</td>
</tr>
<tr>
<td>F₂ families from nonmutant F₁ plants</td>
<td>Normal</td>
<td>7(3)</td>
<td>0.222</td>
<td>0.637</td>
</tr>
<tr>
<td>F₂ families from nonmutant F₁ plants</td>
<td>Segregating</td>
<td>—</td>
<td>9.999</td>
<td>0.001</td>
</tr>
<tr>
<td>F₂ plants in the segregating families</td>
<td>Mutant</td>
<td>10(9)</td>
<td>1.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Mutant × Harosoy</td>
<td>Normal</td>
<td>1</td>
<td>0.063</td>
<td>0.801</td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Segregating</td>
<td>64</td>
<td>0.008</td>
<td>0.929</td>
</tr>
<tr>
<td>F₁ plants</td>
<td>Mutant</td>
<td>22</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>F₂ families from nonmutant F₁ plants</td>
<td>Normal</td>
<td>42</td>
<td>0.999</td>
<td>0.317</td>
</tr>
<tr>
<td>F₂ families from nonmutant F₁ plants</td>
<td>Segregating</td>
<td>—</td>
<td>1.000</td>
<td>0.001</td>
</tr>
<tr>
<td>F₂:3 families from nonmutant F₂ plants</td>
<td>Mutant</td>
<td>10(9)</td>
<td>0.008</td>
<td>0.929</td>
</tr>
</tbody>
</table>

* Parentheses enclose the number of F₂ plants that were observed to have a faint freckling phenotype on one or more of their leaves.

Inheritance of a Rusty-Leaf Trait in Peanut

W. D. Branch

A rusty-leaf mutant was found previously in the cultivated peanut (Arachis hypogaea L.). Crosses involving the rusty-leaf genotype were made both between and within subspecies of A. hypogaea to determine its inheritance. The F₁, F₂, and F₃ data indicated that two complementary recessive genes, designated rl₁ and rl₂, control the rusty-leaf characteristic. No maternal or cytoplasmic effects were detected among progenies from reciprocal hybridization.

Hammons (1973) first reported the occurrence of a spontaneous mutant peanut (Arachis hypogaea L.) with a rusty-leaf phenotype that he found to be inherited as a recessive characteristic. Rusty-leaf was discovered as an off-type plant in a foundation seed increase field of Virginia Bunch 67 (Hammons RO, personal communication). Since its original discovery in 1967, the rusty-leaf genotype has bred true to type. Virginia Bunch 67 is an older peanut cultivar that was developed by pure-line selection from a mixed sample of small and large seed and released by the Georgia Agricultural Experiment Stations around 1945 (Higgins and Bailey 1955).

Plants of both rusty-leaf and Virginia Bunch 67 have semi-erect or decumbent growth habits, medium maturity, and pink testa color. However, rusty-leaf plants have a light- or pale-green color with small, white speckled areas on the youngest leaflets giving it a rusty appearance. The most mature leaves conversely appear more normal green in color on the same plant. The contrast between inside and outside of the canopy can frequently resemble early spider-mite damaged foliage.

Previously several different chlorophyll-deficient and other abnormal leaf colors have been evaluated extensively to further knowledge of peanut genetics (Murthy and Reddy 1993; Wynne and Coffelt 1982). The objective of this genetic study was to gain insight into the inheritance of another unusual leaf trait, rusty-leaf.

Materials and Methods

Reciprocal crosses were made in the greenhouse between rusty-leaf and two

Table 1. F₃ plant segregation for leaf color among four peanut cross combinations

<table>
<thead>
<tr>
<th>Cross</th>
<th>No. of families</th>
<th>F₃ leaf color</th>
<th>χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>Rusty</td>
<td></td>
</tr>
<tr>
<td>Rusty-leaf × Georgia Browne</td>
<td>3</td>
<td>888</td>
<td>67</td>
<td>0.956</td>
</tr>
<tr>
<td>Georgia Browne × rusty-leaf</td>
<td>3</td>
<td>962</td>
<td>71</td>
<td>0.685</td>
</tr>
<tr>
<td>Rusty-leaf × Georgia Red</td>
<td>2</td>
<td>276</td>
<td>16</td>
<td>0.296</td>
</tr>
<tr>
<td>Georgia Red × rusty-leaf</td>
<td>2</td>
<td>274</td>
<td>13</td>
<td>1.450</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>2,400</td>
<td>167</td>
<td>3.387</td>
</tr>
<tr>
<td>Homogeneity</td>
<td></td>
<td></td>
<td></td>
<td>3.101</td>
</tr>
</tbody>
</table>
peanut cultivars, Georgia Browne (Branch 1994) and Georgia Red (Branch and Hammons 1987), both of which have dark green leaf color. The parental lines rusty-leaf and Georgia Browne represent crosses within *Arachis hypogaea* subspp. *hypogaea*; whereas rusty-leaf and Georgia Red represent cross combinations between subsps. *hypogaea* and *fastigiata*.

The *F₀*, *F₁*, and *F₂* populations were space-planted in field nursery plots during 1994, 1995, and 1996, respectively, at the agronomy research farm near the Georgia Coastal Plain Experiment Station, Tifton, Georgia. Phenotypic classification was based upon individual plants, and segregation data were analyzed by the CHISQA computer program (Hanna et al. 1978).

Results and Discussion

The leaf color of each *F₁* plant for all cross combinations was classified as normal, indicating that rusty-leaf color is recessive to normal green. These results agree with the earlier observation by Hammons (1973).

The *F₂* segregation from each cross fit a 15 normal green:1 rusty-leaf color ratio (Table 1). No significant differences were detected among crosses or between reciprocal crosses, which suggest the absence of cytoplasmic or maternal effects. Total, pooled, and homogeneity chi-square values also fit a 15:1 ratio. These results suggest that two complementary recessive genes control the rusty-leaf trait. Similar digenic inheritance has commonly been found in the cultivated peanut (Murthy and Reddy 1993; Wynne and Coffelt 1982).

Individual *F₂* plant selections were made within two cross combinations (rusty-leaf × Georgia Browne and rusty-leaf × Georgia Red) for subsequent progeny row testing in the *F₃* generation. *F₃* progeny from *F₂* plants with rusty-leaf color bred true to type. Segregation of *F₃* progeny from *F₂* plants with normal leaf color fit a 7 non-segregating (all normal green):4 segregating (15 normal green:1 rusty):4 segregating (3 normal green:1 rusty) expected ratio (Table 2). These *F₃* results verify the *F₂* findings for digenic inheritance.

The data from this genetic study indicate that two recessive genes control the rusty-leaf trait. The symbols *rl₁* and *rl₂* are proposed for the genes conditioning the rusty-leaf trait found in the cultivated peanut.

From the Department of Crop and Soil Sciences, University of Georgia, Coastal Plain Experiment Station, Tifton, GA 31793-0748. Contribution from the University of Georgia, College of Agricultural and Environmental Sciences.

© 1998 The American Genetic Association

References

Received June 17, 1997
Accepted October 20, 1997

Corresponding Editor: Fredrick Bliss

In situ Hybridization Mapping of Genes in *Hordeum vulgare* L.

G. Butnaru, J. Chen, P. Golioceheca, and J. P. Gustafson

Linkage maps of barley (*Hordeum vulgare* L.) containing genomic and cDNA sequences and functional genes have been constructed which cover a large genetic distance throughout the entire genome. It was decided to physically locate three genes from the barley linkage map to sites on chromosomes within the barley genome. In situ hybridization (ISH) with biotin-labeled DNA probes was used to determine the physical chromosome location of the genes for nitrate reductase, carboxypeptidase, and α-amylase within the barley genome. The results indicated all of the genes studied hybridized to barley chromosomes 5H and 6H, and that the gene order on the physical map was similar to that observed on the genetic map. The major difference between the genetic map location of nitrate reductase and carboxypeptidase on chromosome 5H was the locations observed for each gene on the 5H short and long arms. The hybridization site of nitrate reductase on the short and long arms of chromosome 5H and the hybridization site for carboxypeptidase on the short arm of 5H was not observed on any genetic map. However, these sites were observed by ISH in the same location on different cultivars. The additional hybridization sites are probably due to the presence of silenced homologous sequences, or to unrelated sequences that show considerable homology. The nitrate reductase hybridization sites were also detected on the satellite, and the short and long arms of chromosome 6H.

Understanding the genetic control and manipulation of economic traits in cereals has always been a major goal of breeding programs and has led to improved breeding strategies, germplasm, and ultimately higher yield. For the past several years it has been the aim of many research programs to develop high-density linkage maps using genes and a variety of codominant and dominant molecular markers. Maps are being used to establish linkages between molecular markers and agriculturally important traits that are difficult to evaluate using standard breeding methodologies. The linkages between molecular markers and genes affecting valuable traits give the breeder a powerful tool in selecting for the desired agronomic trait.

Several RFLP maps of barley (*Hordeum vulgare* L.) have been constructed which cover a large genetic distance on all seven barley chromosomes (Becker et al. 1995; Giese et al. 1994; Grauer et al. 1991; Heun et al. 1991; Jensen 1987; Kasha et al. 1995; Kleinholos et al. 1993; Langridge et al. 1995; Qi et al. 1996; Röder et al. 1993). The maps and data can be found listed in the

There are several possible techniques for locating DNA sequences to physical sites on chromosomes. First, the most involved procedure would be “chromosome walking” using DNA sequencing and pulse-field gel electrophoresis (PFGE), or a combination of both (Ganal et al. 1989; Siedler and Graner 1991). Second would be to produce deletion or recombinant chromosome stocks for the markers of interest and thus map specific markers to specific deletions (Gill et al. 1993; Hohmann et al. 1995; Rogowsky et al. 1993; Werner et al. 1992). If the deletions involved are large then markers can only be mapped in a relative sense. In addition, the markers can only be mapped in the genetic background used to create the deletion or recombinant chromosome stocks. Third, low- and single-copy DNA sequences can be physically mapped in relation to centromeres by in situ hybridization (ISH) (Dong and Quick 1995; Gustafson and Dillé 1992; Leher et al. 1993; Leitch and Heslop-Harrison 1993; Song and Gustafson 1995; Wang et al. 1995). In situ hybridization appears to represent an appropriate method to physically map DNA sequences because it can be accomplished using any species or variety.

In situ hybridization of low- and single-copy sequences has proven to be difficult in plants and works best with large, single-copy or multiple-copy probes (Ambros et al. 1986; Busch et al. 1995; Chen and Gustafson 1995; Clark et al. 1989; Dong and Quick 1995; Gustafson and Dillé 1992; Gustafson et al. 1990; Huang et al. 1988; Leher et al. 1993; Leitch and Heslop-Harrison 1993; Song and Gustafson 1995; Wang et al. 1995). In order to fully exploit the benefits of merging genetic maps, it is desirable that an ISH procedure be able to physically map RFLP probes shorter than 1–2 kb. Hybridization frequencies are very low when mapping such small single-copy markers. With ISH, only one DNA molecule embedded into the cellular context is analyzed in each chromatic; as compared to millions of naked DNA copies hybridized using Southern analysis. A major advantage of ISH is that probe polymorphism is not required for the location of a DNA sequence to a particular chromosome as it is with linkage maps.

In situ hybridization techniques have already been used to ascertain the physical location of repeated and low-copy sequences and functional genes in barley (Clark et al. 1989; Leher et al. 1993; Leitch and Heslop-Harrison 1993; Pedersen et al. 1995), wheat (Triticum aestivum L. em Theil.) (Chen and Gustafson 1995; Mukai and Gill 1991; Rayburn and Gill 1985), rye (Secale cereale L.) (Busch et al. 1995; Gustafson et al. 1988, 1990), rice (Oryza sativa L.) (Gustafson and Dillé 1992; Song and Gustafson 1995), and parsley (Petroselinum crispum L.) (Huang et al. 1988). In addition, ISH has been utilized for the identification of alien chromosome segments in various species (Lapitan et al. 1986; Nkongolo et al. 1993; Schwarzacher et al. 1992) ranging in size up to a wheat-rye centric break and fusion translocation. The use of ISH to determine the relative physical location of genes or molecular markers on chromosomes should lead to a better understanding of the differences between the genetic and physical chromosome structure and genome organization.

This study was designed to establish the physical location within the barley genome of the α-amylase (αAmy), carboxypeptidase (Cxp), and nitrate reductase (Nar) genes, and to determine the location of any secondary hybridization sites of homologous DNA sequences for the three genes.

Materials and Methods

The barley varieties utilized were Steptoe, a six-row barley (from T. Blake, Montana State University) and Apex, a two-row barley (from M. Maluszynski, International Atomic Energy Agency, Vienna, Austria). The cDNA clones bNRp30a, pM18A, and pM18B for nitrate reductase, αAmy1 for α-amylase, and Cxp for carboxypeptidase, respectively, were supplied by A. Klenhofs, Washington State University.

The creation of protoplast slides, hybridization, detection, and visualization of biotinylated probes to chromosomes followed the procedures of Gustafson and Dillé (1992). The hybridization’s were carried out at both 37°C and 42°C to determine whether temperature effects hybridization detection levels and/or hybridization site location. The experiment was a blind independent experiment, in that neither J. Chen and G. Butnaru had any prior knowledge of either the chromosome or genetic map location of any of the three genes to be analyzed. The detection measurements of the hybridized sites for all of the gene complexes for α-amylase were duplicated by G. Butnaru and J. Chen on different in situ hybridized slides using root tips from different seeds at the same hybridization temperature to establish if there was any experimenter bias that affected the measurements. The arm ratios and detection location measurements made using phase-contrast microscopy and a Zeiss Photomicroscope III coupled with a Hamamatsu image enhancement system on all chromosomes showing a hybridization site. The measurements were taken directly from the monitor screen using a set of electronic calipers. The physical map localization was calculated as a percent of the arm length from the centromere. Several detection’s were measured for each probe at each physical location and standard deviations were calculated.

Results and Discussion

The α-amylase gene was physically located on the long arm (L) of barley chromosome 5H (5HL) 52.1% from the centromere (Table 1; Figures 1A and 2). This arm location is in agreement with previous reports derived from genetic mapping studies (Linde-Laursen 1982; Nielsen and Frydenberg 1974; Shin et al. 1990). The physical location of the αAmy1 locus (51.1% versus 48.9%) was slightly different when the varieties Apex and Steptoe, respectively, were compared at a 37°C hybridization temperature. However, there were no significant differences between the arm location from variety to variety, or from sci-

Table 1. The detection of the physical location of the α-amylase gene on barley chromosome 6H

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Number of cells</th>
<th>Arm ratio</th>
<th>Gene location detections %</th>
<th>Distance from centromere (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td>758</td>
<td>1.22 ± 0.03</td>
<td>35 (4.6%)</td>
<td>51.1 ± 3.0</td>
</tr>
<tr>
<td>Steptoe</td>
<td>898</td>
<td>1.23 ± 0.01</td>
<td>44 (4.9%)</td>
<td>48.9 ± 0.5</td>
</tr>
<tr>
<td>Total</td>
<td>1,803</td>
<td>1.23 ± 0.15</td>
<td>14 (9.5%)</td>
<td>56.2 ± 10.8</td>
</tr>
</tbody>
</table>

* a Percentage distance from the centromere to the telomere ± standard deviation.
* b Hybridization at 42°C while all others are at 37°C.
* c Average gene location over all measurements.
entist to scientist analyzing the slides. In addition, no differences were observed for the \(\alpha\)-Amy1 hybridization site when the hybridization temperature was raised from 37°C to 42°C. The difference in the \(\alpha\)-Amy1 location, as a percentage of the arm distance from the centromere, on 5HL in Steptoe when the hybridizations were carried out at 37°C versus 42°C, 48.9 ± 0.5% versus 56.2 ± 10.8%, respectively, might be due to the 42°C hybridization temperature (higher stringency level). The standard deviations for all probes studied at 42°C hybridization’s were higher than at 37°C (Tables 1, 2, 3, and 4), which could be due to the effects of temperature altering the chromosome structure during the period of hybridization. However, even with the high standard deviations, a significant difference was observed in the increase in detection percentage when the hybridization temperature was raised from 37°C to 42°C, 4.9% versus 9.5%, respectively.

The \(\text{Cxp3}\) locus was detected on barley chromosome 5H (Table 2; Figure 2). A detection site was located 46.8% of the distance from the centromere on the short arm (S), which agrees with the genetic mapping of the \(\text{Cxp3}\) locus in barley to 5HS (Kleinhofs et al. 1988). In addition, a second detection site was observed on the 5HS satellite 81.5% of the distance from the centromere. However, the detection levels observed on the satellite were extremely low.

The analysis of the Nar1 gene location showed similar results to that observed with the \(\text{Cxp3}\) locus. Two nitrate reductase genes have been genetically located on the satellites of barley chromosome arms 6HS and 5HS (Kleinhofs et al. 1988; Melzer et al. 1988). Surprisingly the present data showed a higher percentage of detection on chromosome arm 5HL (4.9%) versus that observed on chromosome arm 5HS (1.4%) (Table 3; Figures 1B and 2). Chromosome arm 5HL is known to be the location of a different nitrate reductase gene (\(\text{Nar7}\)), therefore this study suggests that the nitrate reductase cDNA clone bNRp30a, under the stringency conditions utilized, was capable of limited cross-hybridizing with the \(\text{Nar7}\) locus.

A detection site was also observed on the 5H satellite very close to the observed \(\text{Cxp3}\) site. The ISH data suggests that the main site of nitrate reductase might be located on chromosome arm 5HL approximately 50.0% of the distance from the centromere. This differs from the Southern analysis data of Kleinhofs et al. (1988).

Table 2. The detection of the physical location of the carboxypeptidase gene on barley chromosome 6H

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Number of cells</th>
<th>Arm ratio</th>
<th>Gene location detections (%)<sup>a</sup></th>
<th>Distance from centromere (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>270</td>
<td>1.22 ± 0.03</td>
<td>13 (4.8%)</td>
<td>42.7 ± 6.2</td>
</tr>
<tr>
<td>Steptoe</td>
<td>1,716</td>
<td>1.23 ± 0.03</td>
<td>31 (1.8%)</td>
<td>51.5 ± 4.0</td>
</tr>
<tr>
<td>Steptoe<sup>b</sup></td>
<td>433</td>
<td>1.23 ± 0.14</td>
<td>24 (5.5%)</td>
<td>46.1 ± 7.8</td>
</tr>
<tr>
<td>Total</td>
<td>2,419</td>
<td></td>
<td>68 (2.8%)</td>
<td>46.8<sup>c</sup></td>
</tr>
<tr>
<td>Satellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>270</td>
<td>1.22 ± 0.03</td>
<td>2 (0.7%)</td>
<td>85.3 ± 2.1</td>
</tr>
<tr>
<td>Steptoe<sup>b</sup></td>
<td>1,716</td>
<td>1.23 ± 0.03</td>
<td>10 (2.5%)</td>
<td>84.1 ± 1.6</td>
</tr>
<tr>
<td>Total</td>
<td>2,419</td>
<td></td>
<td>16 (0.6%)</td>
<td>81.5<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Percentage distance from the centromere to the telomere ± standard deviation.

^b Hybridization at 42°C while all others are at 37°C.

^c Average gene location over all measurements.
In the current barley genome, linkage maps indicate the presence of one functional gene location each for carboxypeptidase and nitrate reductase. The alternative site(s) observed in the present study by ISH could be the result of several alternative events. First, totally unrelated DNA sequences may be homologous enough to show some level of detection at the relatively low stringency level utilized in the ISH technique. Second, relic genes that have lost function may be present elsewhere in the genome. Third, additional sites may have been not mapped during AFLP analysis because of a lack of polymorphisms. Finally, variation in copy number of any DNA sequence at a site could also have a significant effect on the ISH detection percentage for that particular sequence. All of the above alternatives could be true and suggest that a high ISH detection percentage might not necessarily locate the active site of the gene in question, but could be detecting any one of the above. In situ hybridization, at present, is not an appropriate technique for determining which of a number of sites may represent an active member of a dispersed set of related sequences. Therefore placing the physical location of an active gene to a specific site could be subject to error. Additional differences in the location of Cxp3 and Nar1 from variety to variety (Table 2) could also result from deletions, duplications, inversions, and translocations that have been observed between barley varieties. It appears that ISH combined with linkage mapping is the best approach for locating a functional gene.

The Nar1 detection levels observed on chromosome 5H were lower than those on 6H, which is probably indicative of low levels of homology of the nitrate reductase probe to the related DNA sequences located on chromosome 5H (Table 4). It is interesting to note that the detection sites on both 6H and 5H for nitrate reductase were in similar locations on each chromosome with the sites on the satellites showing the least homology.

When comparing the physical location of DNA sequences between varieties, differences can be seen. The physical differences are not large, but the Nar1 site on 5HS is in a slightly different physical location depending on the barley cultivar analyzed, that is, Apex or Steptoe (Table 3). In addition, the α-Amyl site on 5HS in Apex and Steptoe (Table 4) shows some variation. All of these sites are ones of extremely low detection levels and could be sites of DNA sequences showing some degree of homology, or are relic silenced gene sites that have evolved and have changed part of their sequence as compared to the active site.

From the Department of Genetics, Banat’s University of Agricultural Sciences, Timisoara, Romania (Butnaru), the College of Life Science, Wuhan University, Wuhan, Hubei, People’s Republic of China (Cheng), CIMA-Arkau-te, Vitoria, Spain (Goicoechea), and the USDA Agricultural Research Service, Plant Genetics Research Unit and Plant Science Unit, University of Missouri, Columbia, MO 65211 (Gustafson). This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation for its use by the USDA or the University of Missouri. This article is a contribution of the USDA Agricultural Research Service, and the Missouri Agricultural Experiment Station, journal series no. 12,654. J.P.G. would like to thank the North American Barley Mapping Project (NABMP) for financial support. Address correspondence to Dr. Gustafson at the address above.

© 1998 The American Genetic Association

Table 3. The detection of the physical location of the nitrate reductase gene on barley chromosome 6H

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Number of cells</th>
<th>Arm ratio</th>
<th>Gene location detections (%)</th>
<th>Distance from centromere (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>284</td>
<td>1.22 ± 0.05</td>
<td>15 (5.3%)</td>
<td>49.4 ± 6.6</td>
</tr>
<tr>
<td>Steptoe</td>
<td>854</td>
<td>1.23 ± 0.02</td>
<td>42 (4.9%)</td>
<td>47.6 ± 5.1</td>
</tr>
<tr>
<td>Steptoe</td>
<td>300</td>
<td>1.18 ± 0.11</td>
<td>14 (4.4%)</td>
<td>53.0 ± 12.5</td>
</tr>
<tr>
<td>Total</td>
<td>1,438</td>
<td></td>
<td>71 (4.9%)</td>
<td>50.0±</td>
</tr>
<tr>
<td>Short arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>284</td>
<td>1.22 ± 0.05</td>
<td>5 (1.8%)</td>
<td>59.2 ± 12.6</td>
</tr>
<tr>
<td>Steptoe</td>
<td>854</td>
<td>1.23 ± 0.02</td>
<td>6 (0.7%)</td>
<td>36.1 ± 1.1</td>
</tr>
<tr>
<td>Steptoe</td>
<td>300</td>
<td>1.18 ± 0.11</td>
<td>9 (3.0%)</td>
<td>46.0 ± 11.2</td>
</tr>
<tr>
<td>Total</td>
<td>1,438</td>
<td></td>
<td>20 (1.4%)</td>
<td>47.1±</td>
</tr>
<tr>
<td>Satellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>284</td>
<td>1.22 ± 0.05</td>
<td>3 (1.1%)</td>
<td>86.7 ± 6.1</td>
</tr>
<tr>
<td>Steptoe</td>
<td>854</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Steptoe</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,438</td>
<td></td>
<td>3 (0.2%)</td>
<td>86.7±</td>
</tr>
</tbody>
</table>

* Percentage distance from the centromere to the telomere ± standard deviation.
* Hybridization at 42°C while all others are at 37°C.
* Average gene location over all measurements.

Table 4. The detection of the physical location of a nitrate reductase site on barley chromosome 5H

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Number of cells</th>
<th>Arm ratio</th>
<th>Gene location detections (%)</th>
<th>Distance from centromere (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>273</td>
<td>1.85 ± 0.04</td>
<td>5 (1.8%)</td>
<td>47.6 ± 7.1</td>
</tr>
<tr>
<td>Steptoe</td>
<td>764</td>
<td>1.99 ± 0.10</td>
<td>13 (1.7%)</td>
<td>50.2 ± 11.6</td>
</tr>
<tr>
<td>Steptoe</td>
<td>300</td>
<td>1.57 ± 0.08</td>
<td>5 (1.7%)</td>
<td>48.0 ± 10.0</td>
</tr>
<tr>
<td>Total</td>
<td>1,337</td>
<td></td>
<td>23 (1.7%)</td>
<td>48.6±</td>
</tr>
<tr>
<td>Short arm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>273</td>
<td>1.85 ± 0.04</td>
<td>2 (0.7%)</td>
<td>28.5 ± 3.0</td>
</tr>
<tr>
<td>Steptoe</td>
<td>764</td>
<td>1.99 ± 0.10</td>
<td>12 (1.6%)</td>
<td>44.8 ± 3.6</td>
</tr>
<tr>
<td>Steptoe</td>
<td>300</td>
<td>1.57 ± 0.08</td>
<td>7 (2.3%)</td>
<td>48.0 ± 7.2</td>
</tr>
<tr>
<td>Total</td>
<td>1,337</td>
<td></td>
<td>21 (1.5%)</td>
<td>40.4±</td>
</tr>
<tr>
<td>Satellite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>273</td>
<td>1.85 ± 0.04</td>
<td>2 (0.7%)</td>
<td>80.8 ± 10.0</td>
</tr>
<tr>
<td>Steptoe</td>
<td>764</td>
<td>1.99 ± 0.10</td>
<td>2 (0.3%)</td>
<td>82.6 ± 10.6</td>
</tr>
<tr>
<td>Steptoe</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,337</td>
<td></td>
<td>4 (0.5%)</td>
<td>81.7±</td>
</tr>
</tbody>
</table>

* Percentage distance from the centromere to the telomere ± standard deviation.
* Hybridization at 42°C while all others are at 37°C.
* Average gene location over all measurements.

References

Clark M, Karp A, and Archer S, 1989. Physical mapping

10,000 ha. *C. lanceolata* was introduced from China and has been widely cultivated at low elevations, especially on private forest land.

Genetic variation in seed samples of *C. lanceolata* was found to be quite high (Muller-Starck and Liu 1989). The number of alleles per locus was 4.15, the percentage of polymorphic loci was 88%, and the expected heterozygosity was 0.299. The high level of genetic diversity observed in *C. lanceolata* was further confirmed recently by studying seed samples from 16 populations from mainland China (Yeh et al. 1994). Since the studies mentioned above were based on trees from man-made plantations, it will be interesting to investigate genetic variation of *C. konishii* from natural forests.

In this study the population genetic structure of *C. konishii* was investigated using young leaf tissue. The relationship between *C. konishii* and *C. lanceolata* is unclear, the comparison between these two species will be welcomed by scientists who wish to know how well they are related at the allozyme level despite the high similarity in vegetative morphology.

Materials and Methods

Seed and Young Leaf Tissue Collection

In 1994 wind-pollinated seeds from 18 individual trees (families) were collected from the seed orchard at Chuyuanshan, Tungsyh, Taiwan, at an elevation of 700 m. It was established between 1968 and 1974, and is composed of 25 grafted clones planted over 10 ha. Clones originated from an old-growth forest of *C. konishii* in central Taiwan.

In April 1996 and 1997 young leaf tissues from 120 clones were collected from a clonal garden established in June 1978 at the Lienhuachih Station, Taiwan Forestry Research Institute (TFRI). The original clones (139) were collected from major old-growth forests of *C. konishii*. The original sites for these clones are shown in Figure 1. These locations were grouped into five areas based on their separation by rivers and/or high mountains. Area 1 is separated from areas 2 and 3 by mountains over 3000 m, which decline at the north ends. Areas 4 and 5 are also separated by the central mountain range. Areas 2 and 3 are separated by valleys. However, the significance of barrier to gene flow between them is not clear. Also in 1996 and 1997, young leaf tissues of 160 trees of *C. lanceolata*, originating from 44 seed sources in China, were collected from another garden at the Lienhuachih Station, TFRI. This garden was established in May 1981.

Electrophoresis

Horizontal starch-gel electrophoresis was used for separating isozymes: IDH (isocitrate dehydrogenase, EC 1.1.1.42), 6PGD (6-phosphogluconic dehydrogenase, EC 1.1.1.43), PGI (phosphogluco-isomerase, EC 5.3.1.9), SKDH (shikimate 5-dehydrogenase, EC 1.1.1.25), PGM (phosphoglucomutase, EC 5.4.2.2), FEST (fluorescent esterase, EC 3.1.1.1), MDH (malate dehydrogenase, EC 1.1.1.37), G6PD (glucose-6-phosphate dehydrogenase, EC 1.1.1.49), and AAT (L-aspartate aminotransferase, EC 2.6.1.1). Young leaf tissues and gametophytes were ground with extraction buffer according to the procedures described in Feret (1971). Electrophoresis and staining followed the procedure described in Cheliak and Pitel (1984). Aspartate aminotransferase (*Aat*) was resolved by polyacrylamide vertical slab gel electrophoresis (Davis 1964). The zone specifying the most anodally migrating variants was designated as 1, the next as 2, and so on. Within each zone, the most anodally migrating variants was designated as a, the next as b, and so on.

Data Analysis

The inheritance of allozyme polymorphism in haploid tissue from heterozygous trees was tested for confirmation with the expected 1:1 ratio. Allozyme genotypes from the young leaf tissue of individual trees from each geographic area were used in conjunction with the POPGENE computer package (Yeh and Boyle 1996) for estimates of allele frequencies, mean number of alleles per locus, effective num-
The frequency of the most common allele is less than 0.99.

Table 1. Average number of alleles per locus, effective number of alleles per locus, percentage of polymorphic loci, and expected and observed heterozygosities for each area of *C. konishii*

<table>
<thead>
<tr>
<th>Geographic area*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>38</td>
<td>36</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Avg. no. of alleles/locus</td>
<td>2.11</td>
<td>2.11</td>
<td>1.78</td>
<td>1.80</td>
<td>2.00</td>
<td>1.98</td>
</tr>
<tr>
<td>Effective no. of alleles/locus</td>
<td>1.54</td>
<td>1.46</td>
<td>1.39</td>
<td>1.51</td>
<td>1.50</td>
<td>1.48</td>
</tr>
<tr>
<td>% polymorphic loci</td>
<td>66.7</td>
<td>66.7</td>
<td>55.6</td>
<td>55.6</td>
<td>66.7</td>
<td>62.3</td>
</tr>
<tr>
<td>Mean H<sub>e</sub></td>
<td>0.214</td>
<td>0.231</td>
<td>0.191</td>
<td>0.239</td>
<td>0.219</td>
<td>0.219</td>
</tr>
<tr>
<td>Mean H<sub>o</sub></td>
<td>0.174</td>
<td>0.190</td>
<td>0.187</td>
<td>0.227</td>
<td>0.174</td>
<td>0.190</td>
</tr>
</tbody>
</table>

Area 1, Denta-Wangshiang; 2, Tashueshan-Tajiann; 3, Mugua-Lintienshan; 4, Chilan-Syahilj; 5, Kuanwu-Bahsienshan.

*The frequency of the most common allele is less than 0.99.

Results

Nine enzyme systems tested could be resolved clearly enough for inheritance studies. The 14 loci resolvable from the megagametophyte tissues of *C. konishii* were Idh-1, Pgi-1, Pgm-1, Pgm-2, Skdh-1, Skdh-2, 6Pgd-1, 6Pgd-2, Aat-2, Mdh-1, Fest-1, Fest-2, Fest-3, and 6Gpd-1. In summary, no significant deviation from the expected 1:1 segregation ratio was found, indicating that most allozymes exhibited distinct, co-dominant expression and simple Mendelian segregation in their mode of inheritance.

Six of the nine enzyme systems from young leaf tissue of *C. konishii* were resolved well enough for genetic diversity analysis: Idh-1, Pgm-1, Pgm-2, Pgi-1, 6Pgd-1, 6Pgd-2, Skdh-1, Skdh-2, and Aat-2. Idh-1, Pgm-1, and 6Pgd-1 were monomorphic, while Pgm-2 a and c were rare alleles in *C. konishii*.

Genetic Diversity

Measures of genetic diversity are listed in Table 1. Of the six polymorphic loci of *C. konishii*, Skdh-2 and 6Pgd-2 had a mean heterozygosity greater than 0.5 over the five geographic areas. Aat-2 had a mean H_e greater than 0.3. Pgi-1 and Skdh-1 had a mean H_e ranging from 0.1 to 0.2. The last polymorphic locus, Pgm-2, had a mean H_e of less than 0.1. At the population level, the five areas had similar H_e values, and the overall average heterozygosity was 0.219. The average number of alleles per locus for the five areas ranged from 1.78 to 2.11, with an average of 1.98. Effective numbers of alleles per locus varied from 1.39 to 1.54, with an average of 1.48. The percentage of polymorphic loci per individual varied from 55.6% to 66.7%, with an average of 62.3%.

Genetic Differentiation

In *C. konishii* the F_{st} values for all five enzyme systems were positive (0.107; data not shown). This probably is not due to inbreeding but a spatial Wahlund effect. Each area is actually composite collections of genotypes from throughout rather than widely dispersed locations. Any differences in allele frequencies between the actual collection sites within an area will produce the appearance that there is a deficiency of heterozygotes. The extent of genetic differentiation among areas (F_{st}) averaged 0.029. Thus more than 97% of the genetic variation resided within areas. Unbiased genetic distances between pairs of areas were very small and ranged from 0 to 0.08 (data not shown). There was no significant correlation between genetic and geographic distances for all pairs of areas.

Comparison of Genetic Diversity Between *C. konishii* and *C. lanceolata* at the Species Level

Eight loci in six enzyme systems of both species were resolved well enough for genetic diversity comparison (Table 2). *Pgm-1* did not consistently stain for young leaf tissue of *C. lanceolata*. Major alleles within each locus were the same for both species. *Idh-1a, Idh-1b, Pgi-1a, Pgi-1c, Pgi-1e,* and *Skdh-2d* were rare alleles in *C. lanceolata* and were all absent from *C. konishii*. *Pgm-2a* was the only allele found in some areas of *C. konishii* but not in *C. lanceolata*. The frequency of *Skdh-1a* and *Aat-2a* were much lower in *C. konishii* than in *C. lanceolata*. *C. konishii* and *C. lanceolata* as one random mating population each, mean heterozygosity and percentage of polymorphic loci per individual of *C. konishii* was lower than that in *C. lanceolata* (Table 3). The effective number of alleles per locus was 1.57 for *C. konishii* and 1.79 for *C. lanceolata*.

Discussion

Environmental heterogeneity, such as lofty mountains and deep valleys, might poten-
Fixation indices.

Number of effective alleles per locus.

Expected heterozygosity.

At species level.

Carpinus, Chamaecyparis, Taiwania, and Cunninghamia have similar distribution ranges and are related to the association between C. konishii and C. lanceolata in geological ages rather than the heterogeneity of environmental factors. C. lanceolata is a long-lived species originally inhabiting southern China, and is one of the coniferous species with the highest genetic diversity (Yeh et al. 1994). It was reported that during the late Pleistocene, C. konishii dominated in the Tali glacial stage, from about 50,000 to 10,000 B.P. when Taiwan was part of mainland China (Tsukada 1967). It is inferred that gene flow from C. lanceolata went freely into Taiwan without restriction. Treating C. konishii and C. lanceolata as separate taxa, the unbiased genetic distance between them was 0.070. This distance is slightly higher than that between areas of C. konishii, suggesting limited differentiation between these two taxa. However, the extent of genetic differentiation between these two species (FST) is 0.057. Thus about 94% of the genetic variation resides within taxa. This result indicates that C. konishii is probably a variety of C. lanceolata and still maintains a high level of genetic variation. Isolation between these two taxa has not resulted in allozyme differentiation in C. konishii; however, one site change in the rbcL gene was found between these two species based on RFLP analysis of six polymerase chain reaction-amplified chloroplast genes (Tsumura et al. 1995).

Genetic drift has occurred in C. konishii through long isolation from its supposed distribution center, resulting in a reduction in the number of alleles per locus and the loss of rare alleles (Idh-1, Pgi-1, and Skdh-2). Some alleles like Skdh-1 and Aat-2 are fixed in C. konishii. The observation of much higher expected heterozygosities and much higher measures of other genetic parameters (Table 3) of C. lanceolata than those of C. konishii indicates that genetic drift may still prevail.

From the Division of Silviculture, Taiwan Forestry Research Institute, 53 Nan Hai Road, Taipei, Taiwan. Financial support provided by the Council of Agriculture (86-AST-1-5-FOD-03) is gratefully acknowledged. Contribution No. 59 of Taiwan Forestry Research Institute. Addressee correspondence to Dr. Liu at the address above or e-mail: tpl1222@ms3.hinet.net.

© 1998 The American Genetic Association

Table 3. Levels of allozyme variation within populations for several local gymnosperms

<table>
<thead>
<tr>
<th>Species</th>
<th>N°</th>
<th>P°</th>
<th>H°</th>
<th>FST</th>
<th>FSC</th>
<th>A°</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amentotaxus formosana</td>
<td>2</td>
<td>5</td>
<td>0.004</td>
<td>-0.099</td>
<td>0.047</td>
<td>1.00</td>
<td>Wang et al. 1996</td>
</tr>
<tr>
<td>Chamaecyparis taiwanensis</td>
<td>2</td>
<td>22</td>
<td>0.052</td>
<td>0.036</td>
<td>0.039</td>
<td>1.06</td>
<td>Lin et al. 1994</td>
</tr>
<tr>
<td>Cunninghamia formosensis</td>
<td>3</td>
<td>21</td>
<td>0.087</td>
<td>0.109</td>
<td>0.046</td>
<td>1.10</td>
<td>Lin et al. 1994</td>
</tr>
<tr>
<td>Taiwania cryptomerioides</td>
<td>4</td>
<td>52</td>
<td>0.145</td>
<td>-0.036</td>
<td>0.053</td>
<td>1.21</td>
<td>Lin et al. 1993</td>
</tr>
<tr>
<td>Cunninghamia konishii</td>
<td>5</td>
<td>62.3</td>
<td>0.219</td>
<td>0.107</td>
<td>0.029</td>
<td>1.48</td>
<td>This study</td>
</tr>
<tr>
<td>Cunninghamia konichiif</td>
<td>5</td>
<td>75</td>
<td>0.251</td>
<td>—</td>
<td>—</td>
<td>1.57</td>
<td>This study</td>
</tr>
<tr>
<td>Cunninghamia lanceolata</td>
<td>16</td>
<td>88</td>
<td>0.394</td>
<td>—</td>
<td>0.057</td>
<td>>3</td>
<td>Yeh et al. 1994</td>
</tr>
<tr>
<td>Cunninghamia lanceolata</td>
<td>2</td>
<td>100</td>
<td>0.299</td>
<td>—</td>
<td>—</td>
<td>>4.2</td>
<td>Muller-Stark and Liu 1989</td>
</tr>
<tr>
<td>Gymnosperms</td>
<td>8.9</td>
<td>53.4</td>
<td>0.151</td>
<td>—</td>
<td>0.073</td>
<td>1.20</td>
<td>Hamrick et al. 1992</td>
</tr>
<tr>
<td>Gymnosperms'</td>
<td>8.9</td>
<td>71.1</td>
<td>0.169</td>
<td>—</td>
<td>—</td>
<td>1.22</td>
<td>Hamrick et al. 1992</td>
</tr>
</tbody>
</table>

* Number of studied populations.

† Percentage polymorphic loci.

‡ Expected heterozygosity.

§ Fixation indices.

∥ Number of effective alleles per locus.

References

Yeh FC and Boyle T, 1996. POPGENE version 1.11. Microsoft Windows-based software for population genetic analysis. Received May 27, 1997

Accepted December 10, 1997