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Introduction \\\\

Effects of PFAS
* Global Environmental Contamination.
* Long-term Persistence and Health Impact. PHOTOGRAPHY
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Figure 1. PFAS Sources.

Treatment.

Source: North Dakota Water Contamination Lawsuit | Lawyers for North Dakota PFAS Water Contamination (watercontaminationlawsuits.com)
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ML for Classification \\Q

ldentify toxic and persistent compounds.

Chemical properties and toxicity.

* Supervised and unsupervised approaches.

Features: Molecular Weight, Number of Fluorine atomes,

Carbon Chain Length, etc.
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Figure 2. Common workflow for PFAS classification



ML for Toxicity Prediction \\\\

» Supervised approaches like SVM?, RF?, and NN3.
* Features: PFAS Structure and Toxicity values.

* Data Sources: ToxCast*, REACH-~.

1) Dataset aggregation 3) Model benchmarking 5) Uncertainty analysis
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Figure 3. Common workflow for PFAS toxicity prediction

1 SVM: Support Vector Machines. 4 ToxCast: U.S. Environmental Protection Agency's Toxicity Forecaster
2 RF: Random Forest. 5 REACH: the European Chemicals Agency's Registration, Evaluation,
3 NN: Neural Networks. Authorization, and Restriction of Chemicals



ML for PFAS Treatment \

* Treatment processes Optimization and Efficiency Prediction.
* Experimental data have been used to train the model.

e Supervised approaches like SVM, XGBoost, RF, AdaBoost,
NN, MLP%, LR?, and RR3.

1 MLP: Multi Layer Perceptron. Figure 4. ML workflow for PFAS removal from water
2 LR: Linear Regression.
3 RR: Ridge Regression.



Conclusion \\\\

* ML is a powerful platform for exploiting PFAS data and
providing insights for remediation solutions.

* Models XGBoost, RF, SVM, Bayesian network, etc. are proved.

* Improving ML models by data pruning and experimental
validation.

* Integrating silo PFAS data sources into a single PFAS data
platform with robust stakeholder participation.

* Addressing data quality challenges such as training data

imbalances, interpretability issues, and secure data storage.
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