WATER RESOURCES AND CLIMATE CHANGE

Vijay P. Singh, Ph.D., D.Sc., Ph.D. (Hon.), D. Eng. (Hon.), Hon. D. WRE, P.E., P.H. Caroline & William N. Lehrer Distinguished Chair in Water Engineering Department of Biological & Agricultural Engineering & Department of Civil & Environmental Engineering

Texas A & M University College Station, Texas 77843-2117 USA

Water: Source of Life, Food and Fiber

Water, At Times, Brings Miseries Too.

Hurricane Katrina (Sept. 2005)

China Drought (Spring 2010)

Kenya Drought (Spring 2006)

City of Multan (Aug. 2010)

CLIMATE CHANGE

Climate Change

"the greatest challenge facing the world at the beginning of the century."

> World Economic Forum Davos, Switzerland 2000 (www.weforum.org/)

"the most important long-term issue which we face as a global community".

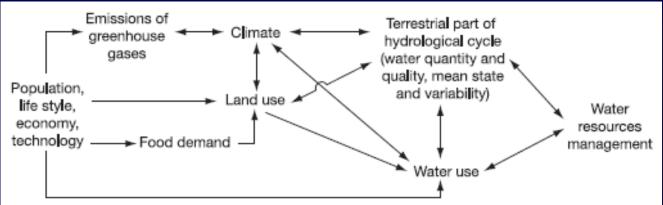
Jack Straw, British Foreign Secretary (Daily NEWS 15 May 2004)

Climate Change: Some Definitions

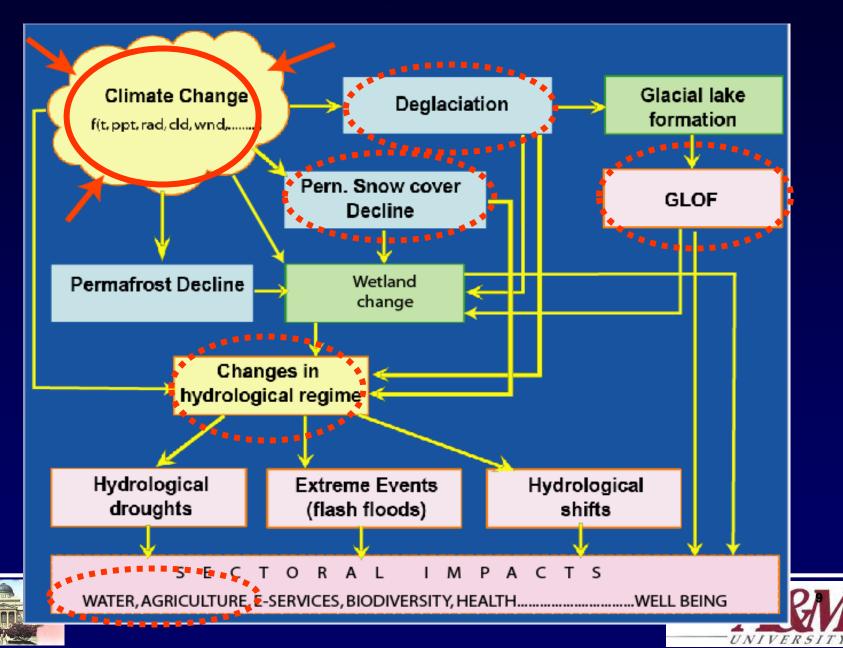
Weather: The state of the atmosphere at a given time and place, with respect to the variables, such as temperature, moisture, pressure, etc.

Climate: Average weather. Statistical description of mean weather conditions over a period of several years, typically 2-3 decades.

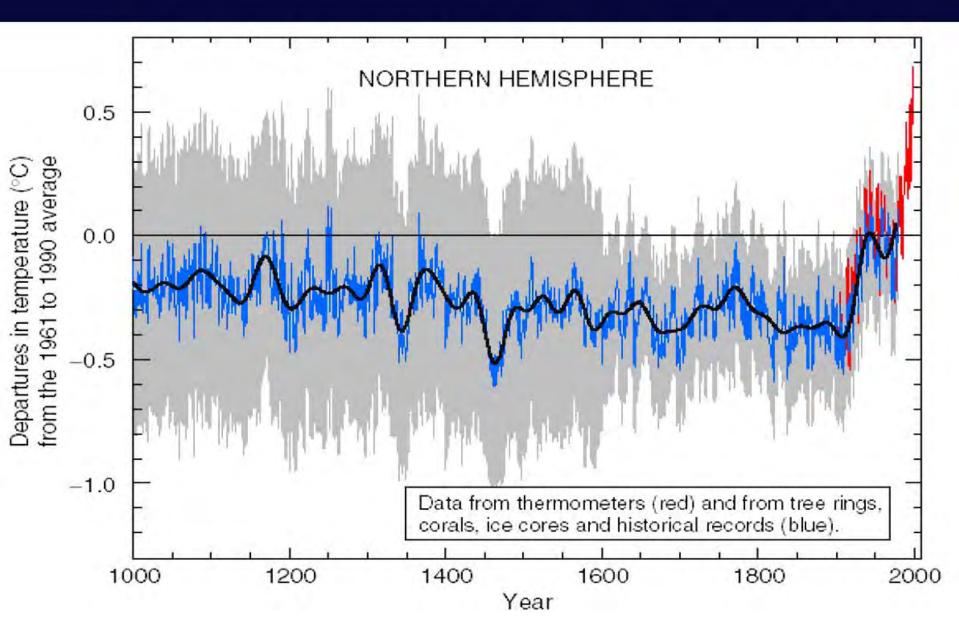
Climate Change: Climate Change in excess of natural variability, attributable to human activity.


IMPACTS OF CLIMATE CHANGE

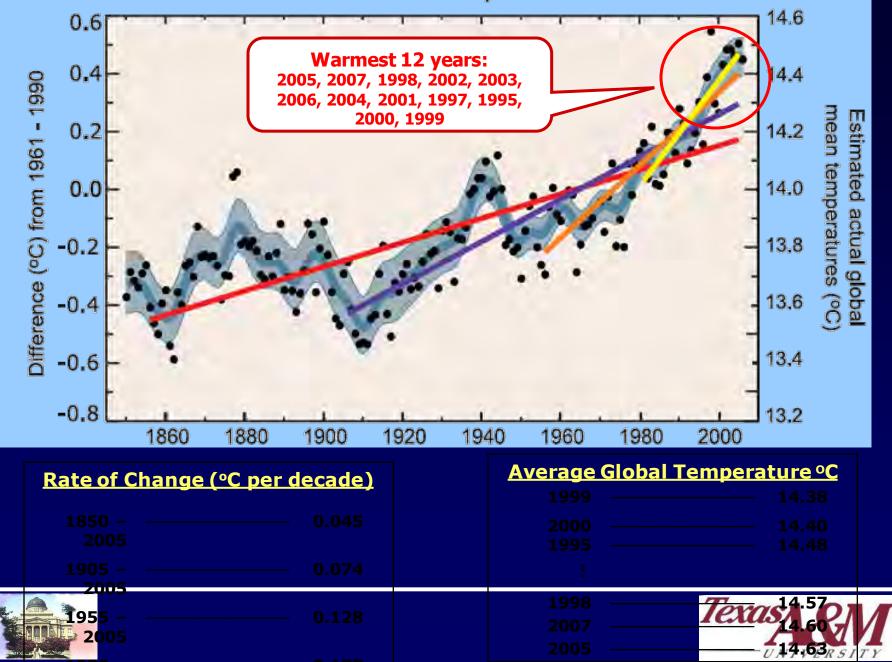
Climate Change Impacts on Hydrology


- Intensification of the hydrological cycle
 - More floods and droughts
 - More variability in rainfall
 - Shorter snowfall season
 - Early spring snowmelt earlier
 - Accelerated glacial melting
 - May affect water availability, water quality, ecosystems, etc.

Climate Change and Water


Some Major Findings of IPCC Fourth Assessment Report (AR4), 2007

- 0.6 °C increase in average global temperature during the last century (11 of last 12 years being warmest since 1850, with 1998 being on top.)
- Increase by 1.1-6.4 °C projected over the 21st Century, with most likely range being 1.8-4.0 °C;
- Associated to this will be large changes (both, increases and decreases) of temperature and precipitation in different world regions;
- Frequency and intensity of extreme climatic events (severe cyclonic storms, floods, droughts etc.) will increase considerably;
- Large scale melting of mountain glaciers and polar ice caps, particularly the Arctic;



stantial rise in sea level.

Global Mean Temperature

The Greenhouse Effect

Some of the infrared radiation passes through the admosphere, and some is absorbed and re-emitted in all directions by greenhouse gas molecules. The effect of this is to warm the Earth's surface and the lower atmosphere.

Solar radiation passes through the atmosphere Some solar radiation is reflected by the Earth and the atmosphere

30%

343 W/m²

Natural Climate Variability Climate Change Natural + Anthropogenic

Anthropogenic Influences since the Industrial revolution

CLIMATE CHANGE

Global Warming

Increased Precipitation & its Uneven Distribution

Melting of Glaciers & Snow

Sea level Rise

Increase in Frequency & Intensity of Extreme Weather Events

IMPACTS

Uncertainty in Water Availability

Decrease in Crop Yields

Newer perspective for sources of energy

Loss of Biodiversity

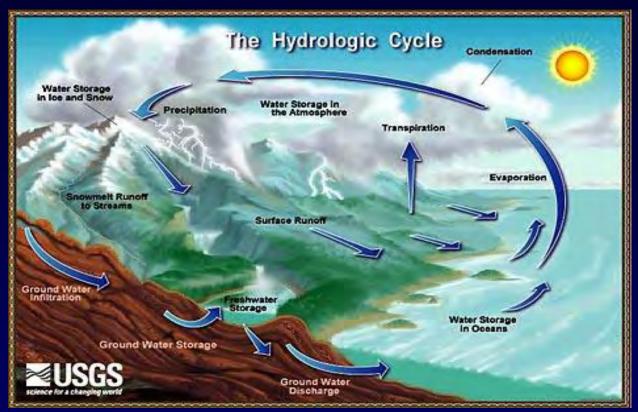
Health Risks

Global Response

- Climate Change is being addressed by several national research programs in all developed countries:
- A number of developing countries are also actively pursuing climate change research, e.g.
 - In South Asia region, India has some 20 establishments and Bangladesh, Nepal and Sri Lanka are also engaged in CC research;
 - China has a large number of establishments engaged in CC research.

Climate Change: Challenges

- Water Challenge
- Food Security challenge
- Climate Extreme Event Hazards
- Impacts on Ecosystems

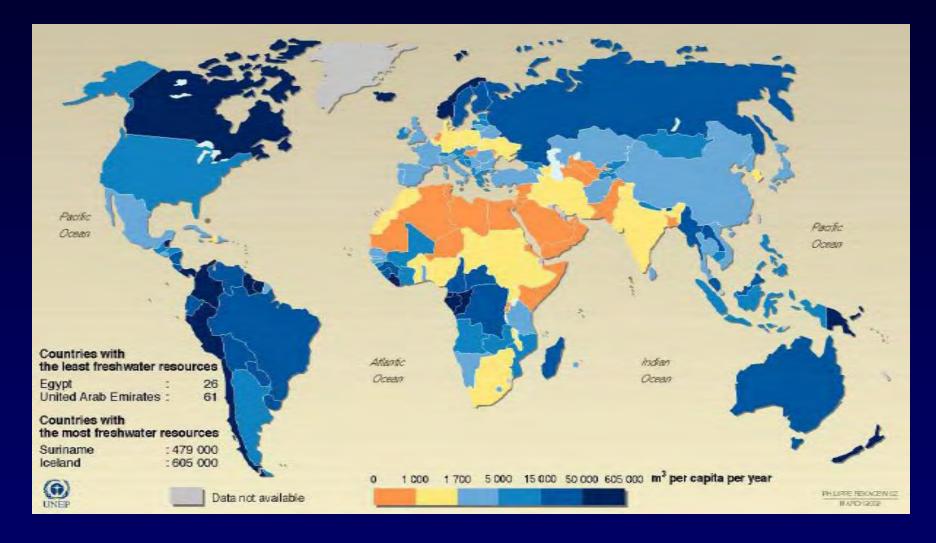


Climate Change Impacts Freshwater availability Freshwater Storage Rainfall Variability Runoff Variability Flow Variability Extreme Events: Floods and Droughts

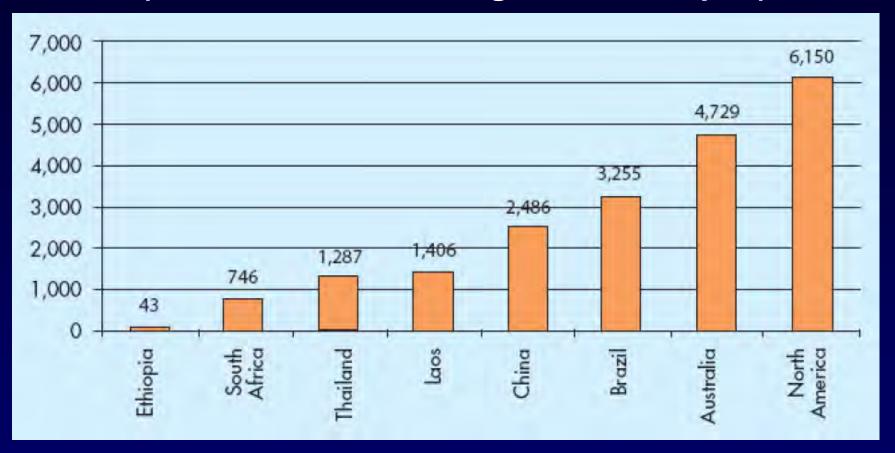
Limited Fresh-Water!

Total water: 1,400 mn cukm

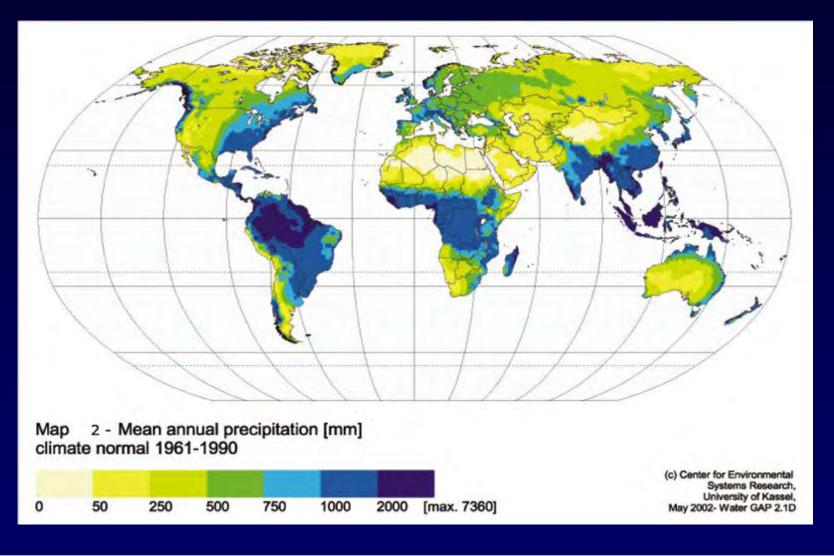
- 97% saline
- 2.5% fresh (35 million cubic kilometers)
- Only 0.8% usable (12 mn cukm)
- 1/3 of this is too polluted (8 mn cukm)


Freshwater: 42 mn cukm

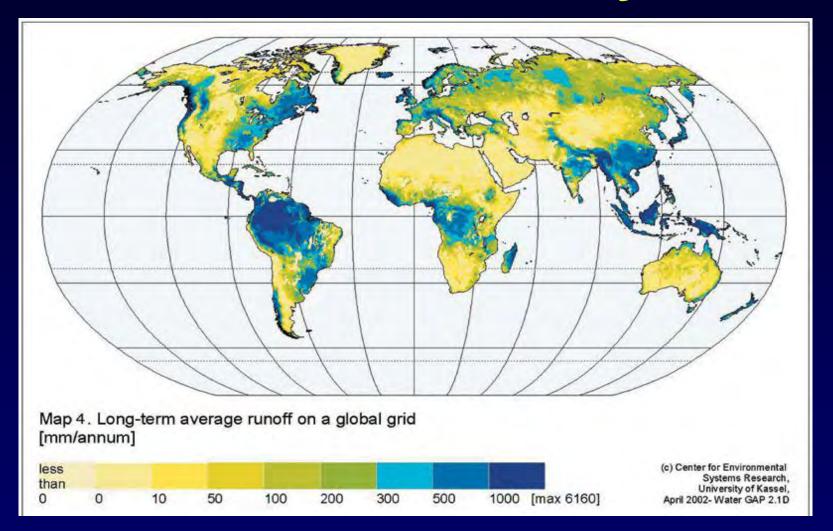
- 68.7% lce, glaciers etc.
- 30.1% fresh groundwater
- 0.26% Lakes (105 K cukm)
- 0.006% Rivers (2500 cukm)


Per-Capita Freshwater Availability (2000)

Per Capita Water Storage (Dams and Other Storages in cum/capita)



Asia = 400; India = 130; US = 5000 cum/capita


Precipitation Variability

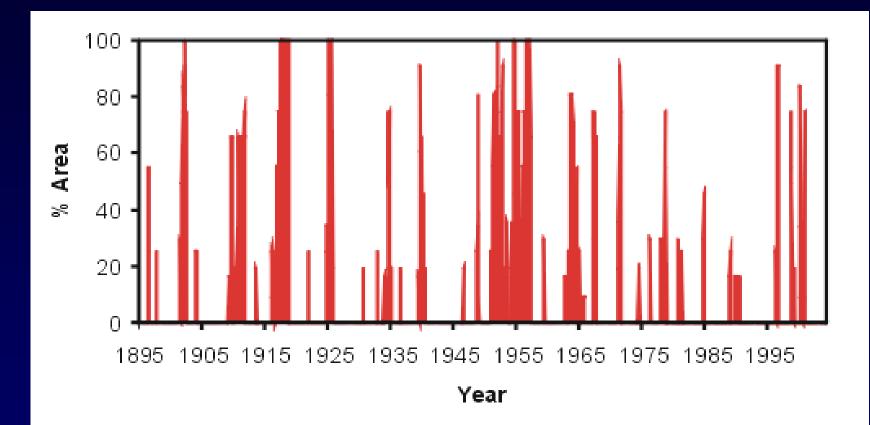
Runoff Variability

Flow Variability at Kotri Barrage

March 14, 2009

June 29, 2009

August 25, 2010


DROUGHTS: SOME RECENT OCCURRENCES

Example: Drought in Texas 1895-2004

Based on data provided by the National Climatic Data Center, NOAA

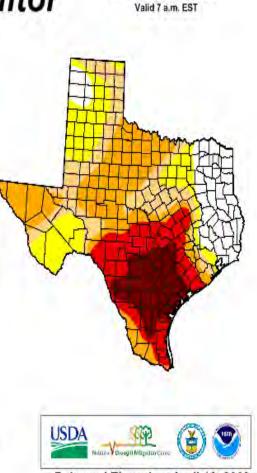
Copyright 2004 National Drought Mitigation Center

Drought in Texas (Recent)

April 14, 2009

U.S. Drought Monitor Texas

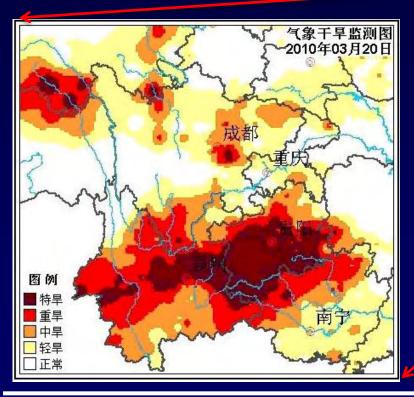
	Drought Conditions (Percent Area)									
	Nona	Da-D4	01-04	02-04	D3-D4	D4				
Current	14.9	85.1	68.2	50.6	25.1	11.5				
Lasi Week (04/07/2009 map)	6.7	93.3	79.1	53.5	24.6	7.1				
3 Months Ago (01/20/2009 map)	26.9	73.1	45.8	22.2	16,0	4.2				
Start of Calendar Year (0106/2009 map)	41.7	58.3	24.5	15.0	9.1	4,2				
Start of Water Year (10/07/2006 map)	67.2	32.8	20.5	11.0	3.6	0.0				
One Year Ago (04/15/2008 map)	36.2	63.8	45.0	18.4	10.5	3.3				



D4 Drought - Exceptional

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements

http://drought.unl.edu/dm



Released Thursday, April 16, 2009 Author: Richard Heim, NOAA/NESDIS/NCDC

Drought in, Water Surplus, Southwestern China (Spring 2010)

Satellite Observations (20 March, 2010)

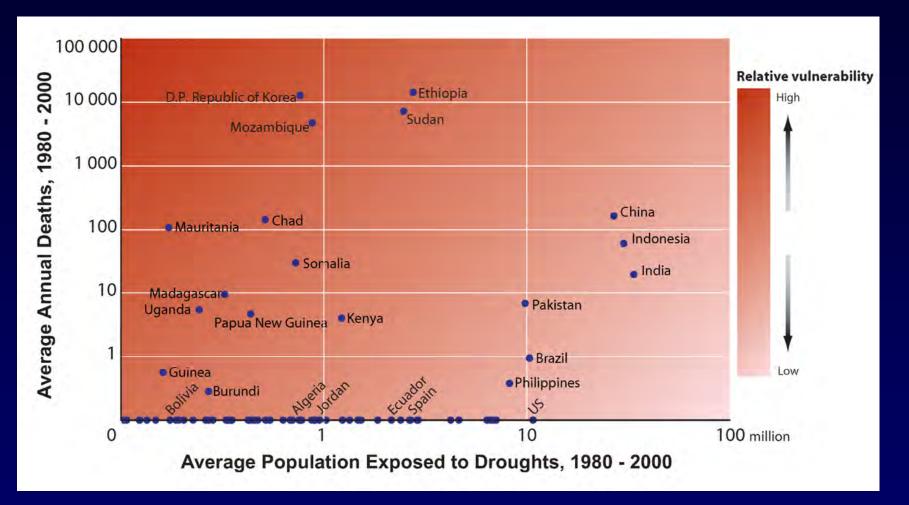
Dark red shows severest drought. Most parts of Yunnan and Guizhou provinces suffered from the severest droughts. The drought was classified into five grades: severest, severer, moderate, mild, and normal.

Land, Rivers and Water Transportation During China 2010 Drought

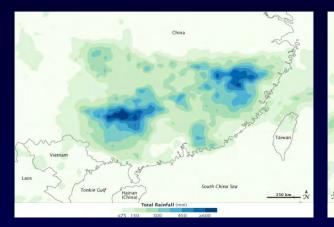
<u>Affected:</u> 60 mn people 12 mn livestock 5 mn hect. crops

Cost = \$3.5 billion

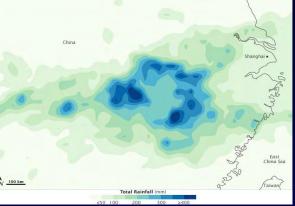
Severe Drought Fires in Russia (2010)



Deaths Due to Droughts



FLOODS: SOME RECENT OCCURRENCES



2010 Flood in China

15-21 June

6-12 July

Severity: 3000 Deaths; 1100 Missing 13 Aug. 2010 305 mn people; 1.36 mn Houses 28 Provinces 100,000 sqkm. Land \$ 41 bn in Damages

China Flooding (August 2010) (Zhouqu Mudslide: 10 August 2010)



Pakistan 2010 Floods (Worst Natural Disaster Ever: U.N.)

Severity: 2000+ Deaths 20 mn People Affected 1 mn Houses Damaged 160,000 sqkm. Land **\$ 6 bn in Damages** \$45 bn Total Economic Impact

1280

1120

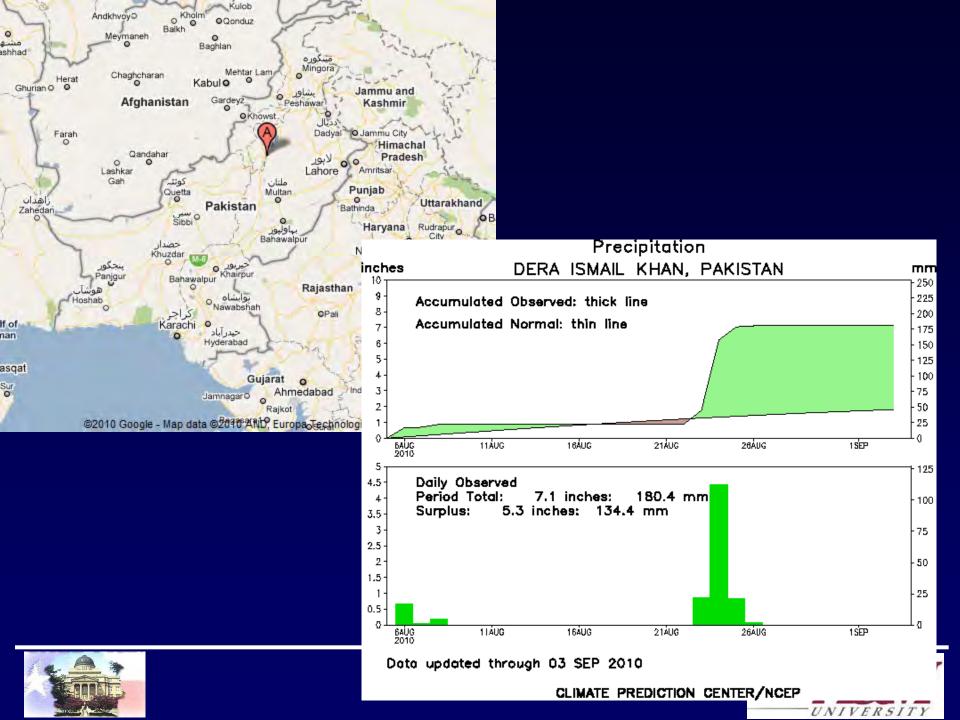
960

160

Total Rainfall During 1 July to 23 Aug.

Pakistan 2010 Flood (July 28 - 31 Rainfall > 12 in)

 Between July 28 and 29, as much as 400 mm (16 inches) of rain fell, triggering flooding along the Indus and Kabul rivers (NASA)



01 Aug 2010 - Floods caused by heavy rains affected Azad Kashmir, Baluchistan, Khyber-Pakhtunkhwa and Punjab districts.¹ More than 1 million people affected², 870 dead and 30,000 houses damaged.¹

Map Senzess PFRC, UNCS. Beferenzes: "Geweinerweit of Pakaram, Autoriane AUOGOS – 35/07/01 August Eweinings.01 Aug 30.10. (2014, Schwaiter Agnust Hol, 21 Mersson in Rodul un Makhtern – 1 August 2010, 01 Aug 30.10. The Soundaries and Lawles shown and the designations weed on thui map do not imply official endosinerved in december des the Normal Mathematical Sectors. The Sector approximative Mark the Interorganized and Automatical Sectors and the designation and the Sector Autorial Interendering and the Automatical Sectors Distribution and Pakatanic The Research of Januaria and Kalennic has not systemic agreed upon by the parties. Map created 02 Aug 2010 – severaled research inter-

2010 Flood

- 180% of normal rainfall in July
- Deluge in China and Pakistan may have some connection with unusually severe drought fires in Russia
- La-Nina events in Pacific may also be reasons for this flooding but has not been studied/linked

EXTRME RAINFALL OCCURRENCES IN THE PAST

3 Feet Rain in 1 day (Dharampur, Surat; 2nd July 1941)

Table 2Stations which received rainfall of more than 250 mm in a single day during the rainstormof 1-5 July 1941

Name of the station	Lat.	Long.	Rainfall during 1–5 July, 1941 (mm)				Total for 5 days	Mean annual rainfall	5-day rainfall as per cent of mean annual	1-day 100-year rainfall	1-day PMP	
			1/7	2/7	3/7	4/7	5/7	(mm)	(mm)	rainfall (%)	(mm)	(mm)
Bajana	23° 07	71° 46'	29	31	20	262	22	364	486	75	309	863
Vagra	21° 51′	72° 51′	133	257	137	77	24	628	811	77	331	738
Ankaleshwar	21° 38'	73° 00'	80	297	51	35	28	491	937	52	363	787
Valia	21° 33′	73° 09'	95	382	23	10	35	545	1271	43	302	780
Palitana	21° 31′	71° 50′	269	51	79	65	70	534	616	87	370	920
Matar	22° 42′	72° 38′	97	2	43	81	319	542	728	74	323	755
Kaira	22° 45'	72° 42'	76	5	37	72	309	499	769	65	346	818
Dholka	22° 43'	72° 27′	83	22	91	26	278	500	707	71	313	836
Mandvi	21° 15'	73° 18′	207	389	30	23	86	735	1344	55	403	813
Surat	21° 12'	72° 50′	58	459	278	12	63	870	1071	81	440	921
Bardoli	21° 07'	73° 07′	144	340	138	15	141	778	1341	58	396	781
Valod	21° 03'	73° 16'	334	270	357	10	141	1112	1433	78	357	665
Navsari	20° 57'	72° 56′	460	783	17	141	71	1472	1455	101	405	950
Jalalpur	20° 57'	72° 54′	69	359	637	9	126	1200	1345	89	472	994
Bansada	20° 46'	73° 22′	164	511	404	34	72	1185	1881	63	483	823
Chikhli	20° 45′	73° 04′	98	537	404	23	44	1106	1693	65	461	850
Dultar	20° 37'	72° 56′	49	200	171	25	20	051	1806	36	458	793
Dharampur	20° 33'	73° 11′	192	987	273	42	35	1529	2410	63	635	1100
Mangral	21° 28'	73° 08′	370	70	25	74	24	562	1218	46	345	785
Ahwa	20° 45'	73° 41′	132	358	181	71	74	816	1780	46	286	590
Waghai	20° 46'	73° 30′	394	424	357	36	70	1281	2218	58	286	690
Jamner	20° 49'	75° 47'	298	32	11	2	10	353	802	44	217	462
Trimbak	19° 57'	73° 32'	182	411	204	105	92	994	2457	40	376	657

WATER RESOURCES: SUMMATION

- Taking stock of current situation
- Acknowledgment of social and cultural constraints
- Taking account of looming global changes
- Re-examination and re-evaluation of our social values and value systems
- Development paradigm: Distributed and controlled urban growth
- Future can be bright or dark-all in our hands

