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A 3D spectral boundary element method is employed to compute the dynamics of a single droplet
in a microconfined shear flow. Comparisons have been made for the motion of an initially spherical
droplet near a single wall and that between two parallel plates. Investigations are conducted for the
influences of the capillary number, viscosity ratio, and initial location of the droplet on the droplet
deformation, orientation, velocities, as well as the transition between the initial rapid deformation
and the subsequent relaxation stage. Computational results for the deformation and velocities are
compared with analytical predictions. It is found that the analytical predictions are limited for small
deformations, large droplet-wall distances, and near equiviscous droplets. © 2010 American
Institute of Physics. �doi:10.1063/1.3525357�

I. INTRODUCTION

The fundamental study on the motion of a neutrally
buoyant droplet in a low-Reynolds-number shear flow near
solid walls can be traced back to 1980s with applications in
lubrication technologies,1,2 where the existence of journal
bearing walls significantly influences droplet-containing lu-
bricants. More recently, technologies utilizing nanoliter sized
droplets have been developed �e.g., microfluidics� which sig-
nificant applications in biochemical processes, biomedical
research, and clinical studies, including enzymatic analysis,
DNA analysis, and disease diagnosis.3–10 To provide funda-
mental understanding of the motion of droplets in the afore-
mentioned systems, thorough investigations on the nature of
droplet motion near the vicinity of a microfluidic wall are
thus demanded. Investigations have been focused on the mo-
tion of a droplet between two parallel plates employing the
following dimensionless parameters: �i� capillary number
Ca=�Ga /� where � is the viscosity of the suspending fluid,
a the radius of the undeformed droplet, G the shear rate, and
� the surface tension at the droplet interface; �ii� the viscos-
ity ratio � between the droplet and the suspending fluid; �iii�
the distance between the droplet and one of the plates nor-
malized by the droplet size; �iv� the gap between plates �nor-
malized by the droplet size�. Numerical work and experi-
mental studies have been devoted to droplet moving along
the center line of the gap between the parallel plates.11–16

Larger deformation is observed for droplet in shear flow con-
fined by parallel plates than unconfined flows.11,12 An in-
crease in droplet deformation is observed for decreasing gap
width. The droplet is found to orient toward the flow
direction.13 For moderate capillary numbers, droplets with a
viscosity ratio ��1 display an “overshoot” in the deforma-
tion at early stage of the process for small gaps. For droplet
with ��1, overshoots in droplet deformation takes place for
large gaps.14 Critical capillary numbers �Cac�, above which

the droplet will break up, are found as a function of the gap
width. For capillary numbers smaller than the critical value,
the equilibrium droplet deformation shows a linear relation
with the capillary number.15 The critical capillary numbers
are experimentally found to be influenced by gap width as
well as the viscosity ratio �.12,16

Few studies have investigated the motion of a droplet
moving near a single solid wall in shear flow or the case
when the droplet is released at a location which deviates
from the centerline of the gap, although these cases can help
us understand the migration of droplet perpendicular to the
solid wall. Theoretical work by Leighton and Acrivos17 ex-
amined the lift on a nondeformable spherical particle in a
shear flow confined by a single plate. Scaled with the longi-
tudinal drag, the lift was found to be linear with the Rey-
nolds number. The authors concluded that the lift as a result
of the inertia in a low-Reynolds-number flow can be ignored
due to the small magnitude. However their focus was on
spherical particles hence the lateral migration due to particle
deformation was not investigated. Based on Taylor’s small
deformation theory, Shapira and Haber2 derived the droplet
deformation and drag force as a function of capillary num-
ber, viscosity ratio and droplet-to-wall distance for a droplet
moving near a single wall or between parallel plates. Smart
and Leighton, Jr.18 experimentally investigated the motion
and deformation of a droplet with viscosity ratio �=0.08 in a
Couette flow. Uijttewaal et al.19,20 investigated the droplet
lateral and longitudinal migration near a single solid wall in
shear flow using a boundary integral method with triangular
discretization. They compared the numerical solution for the
migration velocities with analytical predictions. However,
the droplet deformation presented in their study was based
on a quasistatic assumption. Somewhat related are studies for
the droplet motion in a Poiseuille flow between parallel
plates. The results for droplet motion in close vicinity to one
of the plate could be valuable since the flow close to the
plate could be considered linear. For example, Griggs et al.21
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low-Reynolds number Poiseuille flow between parallel plates
under the influence of the capillary number, viscosity ratio,
gap width, as well as the initial location of the droplet in the
gap. They found that for droplet placed off the centerline,
regardless of the initial location, capillary number, or viscos-
ity ratio, deformable droplets tend to migrate away from the
plate nearer to the droplet. Nonmonotonic relation is ob-
served between the migration velocity of the droplet away
from the wall and the viscosity ratio for 2���10.

In this study, a 3D spectral boundary element method is,
for its first time, employed to investigate the behavior of a
deformable droplet driven to move via a low-Reynolds-
number shear flow near a single solid wall. The purposes of
the current study is to �i� validate the successful application
of the recently developed 3D spectral boundary element
method, a high-order boundary integral method, on droplet
motion in a wall-bounded shear flow, �ii� provide numerical
evidence on the justification for neglecting the solid bound-
ary far from the droplet in numerical studies, since in experi-
ments two plates are needed to create the shear flow, e.g.,
using a Couette device, and �iii� investigate the influence of
capillary number, viscosity ratio, and initial location of the
droplet on the droplet deformation and migration velocities.
We emphasize that different from previous numerical studies
we employ a spectral method which leads to higher accuracy
and exponential convergence.

II. MATHEMATICAL FORMULATION

We consider that a neutrally buoyant droplet with viscos-
ity �� is suspended in another immiscible fluid with viscos-
ity �, as shown in Fig. 1. Far from the droplet a shear flow
with shear rate G is applied. The surface tension � of the
droplet interface is assumed constant. The initially spherical
droplet is released with its centroid at a distance zc0 to the
solid wall Sw. In this work, we use the radius of an unde-
formed spherical droplet a as the length scale and the viscous
time scale 1 /G as the time scale. The velocity is scaled with
aG. The parameters that influence the droplet behavior are
the capillary number Ca=�Ga /�, viscosity ratio �, and the
initial distance between the solid wall and the droplet cen-
troid zc0. The droplet deformation is quantified by defining

D =
L − S

L + S
, �1�

where L is the length of the longest axis of the droplet and S
is the shortest as shown in Fig. 1. Both L and S are measured

from the center of the mass of the droplet. The droplet ori-
entation could be described using the orientation angles �L

and �S, which are defined by the angle between the long axis
and the negative x axis and the angle between the short axis
and the positive x axis, respectively. Due to the shear flow
and the deformation of the droplet itself, the droplet migrates
with a velocity which is composed by a velocity along the
solid wall �Ux� and a velocity perpendicular to the wall �Uz�.

For a micron sized droplet, the inertia may be ignored
due to the low-Reynolds number. Due to the low-Reynolds
number �i.e., small size and velocity�, viscous fluids �e.g.,
PDMS or silicone oil� are typically used to create a moderate
value for the capillary number. The governing equations are
thus the Stokes equation and the continuity,

� · � = − �p + c�2u = 0 , �2�

� · u = 0, �3�

where c=1 for the suspending fluid and c=� for the fluid in
the droplet.

The boundary conditions on the droplet interface are

u = u1 = u2, �4�

�f � f2 − f1 =
1

Ca
��S · n�n , �5�

where the subscripts “1” and “2” represent the flow inside
the droplet and the suspending fluid, respectively. The unit
normal is defined to point into the suspending fluid and is
designated as n. The curvature is thus expressed as �S ·n. For
the boundary over the solid plate, the no-slip condition ap-
plies, u=0. The undisturbed velocity �u	� and stress �f	� of
shear flow are applied as

u	 = �z,0,0� , �6�

f	 = �	 · n . �7�

The governing equations and boundary conditions could
be transformed into boundary integral equations �BIE�.22 We
derive that the velocity at an arbitrary point x0 on the droplet
interface 
 or on the solid wall Sw satisfies the following
boundary integral equation:

�u�x0� − �0u	�x0�

= − �



�S · ��f − f	� − T · �u�1 − �� − u	� · n	dS

− �
Sw

�S · �f2 − f	� − T · �u2 − u	� · n�dS , �8�

where �=4��1+�� and 4� for x0 on 
 and the solid bound-
ary, respectively; �0=4� for all boundaries. Kernel S is the
fundamental solution for the Stokes equations and T is the
associated stress.
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FIG. 1. Illustration for a droplet moving near a solid wall in shear flow.
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III. NUMERICAL METHOD

Details for the spectral discretization, mesh redistribu-
tion, and interfacial smooth schemes can be found in Wang
and Dimitrakopoulos.23 Nevertheless for the completeness of
this study, in this section we summarize our numerical ap-
proach, address criteria for parameter selections, and present
the convergence test results for the current problem.

The droplet interface is discretized into either six or ten
quadrilateral spectral elements as shown in Figs. 2�a� and
2�b� using cube projection. The surface of the solid wall is
composed of a central square element surrounded by three
rows of four sectoral elements as shown in Fig. 2�c�. The
length of the center square element and the outer radius of

each row of sectors are a, 2a, 5a, and 10a, respectively
�where a is the radius of an undeformed droplet�. The center
of the solid surface is always in alignment with the droplet
centroid. Computations have been made for the wall radius
5�R /a�20, where R denotes the radius of the solid wall
and droplet-wall distance 1.02�zc0 /a�10. The relative er-
rors of droplet deformation and velocities are calculated us-
ing values for R=20a as the base. We found that the relative
errors for all deformation and velocities when R
10a are
less than O�10−4�. Hence, although the solid wall should ex-
tend to infinity, we define in this numerical study a wall
radius ten times the undeformed droplet radius for the solid
wall.

The geometric variables on each element are discretized
via Lagrange interpolations using two parametric variables
on a square interval �−1,1�2. The basis points for the para-
metric variables are zeros of NB-order orthogonal polynomi-
als �i.e., spectral points�. The geometric and physical infor-
mation on each discretized node is then substituted into the
boundary integral equations. By rearrangement and collec-
tion of terms, a linear system of algebraic equations relating
the velocity u and normal stress f is formed u=Af+Bu. The
matrices A and B are given by the integration of the kernels
S and T and the basis function. The integrations are obtained
via Gauss quadrature using Legendre and Lobatto points.
A fourth-order Runge–Kutta algorithm with a time step of
5�10−4 is used for the time evolution of the interface geom-
etry �x� via the kinematic condition given by

dx

dt
= �u · n�n + Utt , �9�

Ut = ct�u · t� + �1 − ct��uc · t� , �10�

where t is a unit tangent vector on the interface and uc is the
velocity of the droplet centroid. The interface evolution is
determined by the first term on the right hand side of Eq. �9�,
while the second term utilizes the velocity tangent to the
interface for mesh redistribution. Parameter ct �0�ct�1� is
employed to avoid severe grid distortion due to the move-
ment of droplet centroid. In addition, a first-order smoothing
scheme is applied for better stability of the numerical
method. Details for the choice of spectral points, the
numerical implementation of mesh redistribution, and the in-
terfacial smoothing scheme can be found in Wang and
Dimitrakopoulos.23

Convergence tests have been performed to assess the
accuracy of the computational results. The droplet deforma-
tion D as well as the lateral velocity Uz have been computed
using NB=7, 9, 11, 13, and 15 spectral points for each ele-
ment. Other parameters are Ca=0.2, �=1, and zc0=1.5. The
droplet interface is composed of NE=6 spectral elements.
The relative error in D and Uz is determined using those at
NB=15 as the base and is plotted as a function of N=NENB

2 in
Fig. 3. An exponential convergence has been observed for
both the deformation and the droplet velocity. For the com-
putations in this study, NB=11 has been employed which
gives an accuracy in the order of magnitude of 10−4.

(a)

(b)

(c)

FIG. 2. Discretization of geometry for spectral boundary element calcula-
tion for a droplet moving near a solid plate in shear flow: �a� six spectral
elements are employed on the droplet interface for the case of Ca=0.2,
�=1, and zc0=1.5 at time t=8, �b� ten spectral elements on the droplet
interface for Ca=0.3, �=1, and zc0=1.5 at time t=1, and �c� surface of the
solid wall.
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IV. RESULTS AND DISCUSSION

Employing the 3D spectral boundary element method
described in the previous section, we compute the motion of
an initially spherical droplet in a shear flow after it is re-
leased at a distance zc0 to a single solid wall. The droplet
moves along the solid wall due to the exerted shear flow
while it migrates away from the wall. In this section, we first
compare the droplet deformation and motion in a vicinity of
a single solid wall with similar situations for a droplet mov-
ing closer to one of two parallel plates. Validation has been
made by comparing our results to both numerical and experi-
mental findings in literature. We then investigate and discuss
the influence of the capillary number, viscosity ratio, and
initial droplet location on the droplet deformation, orienta-
tion, longitudinal velocity, and lateral velocity. In addition,
the two stages of droplet behavior, the initial rapid deforma-
tion and the subsequent relaxation, have been distinguished
and discussed.

A. Droplet motion between parallel plates

In this work, we focus on the behavior of the droplet in
a close vicinity of a stationary solid wall. The effect of any
faraway wall or plate is ignored. The validity of this assump-
tion is concluded via the comparison with computations for
droplet motion in two parallel plates. The boundary integral
equation for the case of parallel plates is identical to Eq. �8�.
The boundary conditions on the droplet interface also follow
Eqs. �4� and �5�. No-slip conditions are applied for both the
top plate, u= �zplate ,0 ,0�, and the lower plate, u= �0,0 ,0�.
The discretization for the top plate is similar to the lower
plate as indicated in Fig. 2�c�.

As shown in Fig. 4, we plot the droplet deformation D,
lateral migration velocity Uz, and longitudinal velocity Ux as
functions of time for droplet moving in two parallel plates
with Lt as the distance between the top plate and the original
location of the droplet. The separation between the lower
plate and the droplet initial location is always zc0=1.5 in this

section. In Fig. 4, we also include our computation for a
droplet moving near a single wall with an initial distance
zc0=1.5. For all cases, the capillary number is Ca=0.1 and
the viscosity ratio is �=1. We vary the distance Lt and found
that droplet deformation monotonically decreases as we in-
crease Lt for Lt�10. For Lt
10, the deformation is indepen-
dent on Lt and the computational result agrees with that for a
single solid wall. The lateral velocity Uz approaches zero and
maintains negligibly small for a droplet released at the center
of two parallel plates �i.e., Lt=1.5�. As we increase Lt, Uz
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FIG. 3. The relative error in the computed deformation D and droplet ve-
locity in the z direction vs the number of spectral points employed on the
droplet N=NENB

2 for Ca=0.2, �=1, and zc0=1.5 at time t=4. The conver-
gence shown is generated by using NE=6 elements on the droplet and
NB=7, 9, 11, and 13. The results for NB=15 are used to determine the
numerical error.
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monotonically increases for Lt�10. For Lt
10, the compu-
tational result for Uz is close to that of a single wall. We also
plot Uz as a function of the droplet-wall distance zc in Fig. 5.
The lateral velocity Uz first increases abruptly and then
slowly decreases as the droplet moves toward the upper wall.
For the case when Lt=1.5, Uz is independent on zc and the
value is negligibly small. If the initial location of the droplet
is at the centerline between the two parallel plates, the lon-
gitudinal velocity Ux of the droplet centroid is found to be
the undisturbed flow velocity of the suspending fluid at the
same location and is independent on the time. The velocity
Ux decreases with the increase of Lt for Lt�15. For Lt
15,
Ux is computed to be identical with that of a single wall.

For validation we compare our solution to both the com-
putational and experimental results by Vananroye et al.13 for
a droplet moving in the centerline of the gap created by
parallel plates. Figure 6 shows the comparison for Ca=0.2,
�=1, and zc0=Lt=1.136 36. Data are measured from Fig.
10�a� of Vananroye et al.13 and converted using the time
scale and length scale defined in the current study. Good

agreement has been found for the droplet length Lp on the
vorticity-velocity plane as defined in Vananroye, Puyvelde,
and Moldenaers.16 As shown in Fig. 7 the droplet shapes at
time t=1.02 and 4.24 computed in the current study also
demonstrate good agreement with the experimental images
taken by Vananroye et al.13 �Fig. 10�b� in their study�.

B. Influence of the capillary number

As the droplet is translating near a solid wall, the droplet
undergoes deformation and rotation. We describe the droplet
geometry via droplet deformation D and rotation angles �L

and �S. As shown in Fig. 8, lengths of droplet axes �L and S�,
deformation �D�, and orientation angles ��L and �S� have
been plotted as functions of time after the onset of the shear
flow at t=0. The droplet deformation increases drastically at
the beginning and then experiences a slow relaxation after
the maximum deformation is reached. The sudden increase
in the deformation is resulted from the increase of the length
axis and the decrease of the short axis. The increment in the
long axis is more prominent than the short axis. In the relax-
ation process, the long axis L decreases and the short axis S
increases slowly. Correspondingly, as it fast deforms the
droplet rapidly rotates toward the flow direction and then the
droplet rotates slowly during the relaxation. The orientation
angle for the short axis, �S, increases to its maximum and
then slowly decreases back, however, the angle for the long
axis, �L, continues to decrease slowly after the initial rapid
decreasing. A variety of capillary numbers is employed in the
computation. Results for three capillary numbers Ca=0.05,
0.1, and 0.2 are presented in Fig. 8. The droplet experiences
larger deformation at larger values for Ca. We plot in Fig. 9

0.000

0.005

0.010

0.015

0.020

0.025

1.49 1.5 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.6

zc

Uz

parallel plates:

Lt = 3

Lt = 5

Lt = 3
5

10
single wall

FIG. 5. Lateral velocity Uz as a function of droplet-wall distance zc for a
droplet moving near a single solid wall and between two parallel plates. The
distance between the top plate and the initial location of the droplet is
denoted as Lt.

0.80

1.00

1.20

1.40

1.60

1.80

0 1 2 3 4 5 6 7 8 9

t

Lp

numerical solution
Vananroye, 2008, experiment
Vananroye, 2008, numerical

FIG. 6. Droplet length Lp as a function of time t for Ca=0.2, �=1, and
zc0=Lt=1.136 36. Also included are the experimental measurements and
numerical results by Vananroye et al. �Ref. 13�.

(a)

(b)

FIG. 7. Numerically computed droplet geometries at time t=1.02 and 4.24
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comparing to Figs. 10�b1� and 10�b2� of Vananroye et al. �Ref. 13�.
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the deviation of the deformation D from that of a fully re-
laxed droplet Dzc at the same location for the droplet centroid
as a function of time. The abrupt decrease in the deformation
difference indicates the beginning of the relaxation process.
�Dzc is obtained by computing the deformation of a droplet
released at zc0=1.3.� Figure 8�b� and more clearly Fig. 9
show that the maximum deformation is reached earlier
and the relaxation process starts earlier for smaller capillary
numbers.

The lateral migration velocity of the droplet Uz is ob-
served to behave similarly to the deformation D. As shown in
Fig. 10�a�, the lateral velocity increases rapidly to reach its
maximum immediately after the onset of the shear flow, and
then the velocity decreases during the relaxation. As shown
in Fig. 11�a�, the lateral velocity Uz increases with the in-

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

0 2 4 6 8 10 12 14 16

L
an

d
S

t

(a)
Ca = 0.05

0.1
0.2
L
S

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10 12 14 16

t

(b)

D

Ca = 0.05
0.1
0.2

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

0 2 4 6 8 10 12 14 16

θ L
an

d
θ S

t

(c)
Ca = 0.05

0.1
0.2
θL

θS

FIG. 8. The time evolution of �a� long L and short S axes of droplet, �b� the
deformation D, and �c� the orientation of the long and short axes �L and �S.
Three capillary numbers are included for comparison: Ca=0.05, 0.1, and
0.2. For all cases, �=1 and zc0=1.5.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

|D
−

D
z
c|

t

Ca = 0.05
0.1
0.2

FIG. 9. Deviation of the droplet deformation from the relaxation deforma-
tion 
D−Dzc
 as a function of time. Three capillary numbers are included for
comparison: Ca=0.05, 0.1, and 0.2. For all cases, �=1 and zc0=1.7.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 2 4 6 8 10 12 14

t

(a)

Uz

Ca = 0.05
0.1
0.2

1.400

1.450

1.500

1.550

1.600

1.650

1.700

1.750

1.800

1.850

0 2 4 6 8 10 12 14

t

(b)

Ux

Ca = 0.05
0.1
0.2

FIG. 10. Droplet centroid velocity as a function of time t: �a� the lateral
velocity Uz and �b� the longitudinal velocity Ux. Ca=0.05, 0.1, and 0.2. For
all cases, �=1 and zc0=1.5.

123301-6 M. A. Khan and Y. Wang Phys. Fluids 22, 123301 �2010�



crease of the deformation before the maximum Uz �i.e., the
maximum D� is reached, and then Uz decreases with the
decrease of the deformation during relaxation. Considering
different values for the capillary number, we observe that the
smaller deformation induced by smaller capillary number
leads to slower migration in the lateral direction, i.e., small
Uz. No lateral migration is observed for nondeformable
spherical droplets due to the reversibility of the Stokes equa-
tions. Hence, the lateral migration of the droplet is deter-
mined or induced by the deformation of the droplet.

As shown in Fig. 10�b�, the longitudinal velocity of the
droplet centroid Ux starts with the same value with the flow
velocity of the suspending fluid and decreases slightly after
the onset of the flow, but then increases significantly after a
minimum value is reached. We also plot the velocity Ux,
normalized by the undisturbed flow velocity of the suspend-
ing fluid at the droplet centroid zc, as a function of the de-
formation D in Fig. 11�b�, we observe that as flow distorts
the droplet �i.e., D increases�, the velocity Ux decreases and
the droplet lags behind the bulk flow. When the droplet starts
to relax �i.e., D decreases gradually�, Ux increases signifi-
cantly. The influence of the droplet deformation on the lon-
gitudinal velocity Ux is more prominent for smaller capillary
numbers.

C. Influence of initial location of the droplet

The influence on the droplet-wall distance on the droplet
deformation is investigated as shown in Fig. 12�a�. The drop-
let experiences an overshoot in deformation upon release due
to the strong hydrodynamics interaction with the solid wall.
And the overshoot is much more prominent for a droplet
released at a closer distance to the wall. A slower retraction
takes place after the maximum deformation is achieved as
the droplet moves away from the wall. The retraction process
appears to act faster for a smaller initial droplet-wall dis-
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tance. Figure 12�b� shows that the lengths of both axes ex-
perience rapid change upon release �i.e., the long axis elon-
gates while the short axis shrinks� followed by a slower
retraction. The long axis deformation is shown to contribute
more in the deformation overshoot. As shown in Fig. 13 a
pointing tip is formed near the wall on the droplet interface,
which is responsible for the overshooting peaks in the long
axis and the deformation. It is also evident that droplets with
better deformability tend to have greater overshoot near the
solid wall. The overshoot and relaxation of the droplet defor-
mation are also observed in numerical computations for
droplets confined in two parallel plates �e.g., Janssen and
Anderson,11 Griggs et al.�.21 For orientation angles, as shown
in Fig. 12�c� we observe that for all initial distances zc0, �S

first increases rapidly and then gradually decreases. For the
long axis orientation angle �L, we found that for a larger
distance to the wall �L undergoes a fast decrease initially
followed by a slow decrease. However, starting at a small
distance to the wall, �L increases initially and some noise in
the data value have been shown followed by a slow decrease.
The noise in orientation angle calculations resulted from the
nature of numerical computation, which is also observed by
Janssen and Anderson11 in their computations. The behavior
of droplet deformation and orientation angles show that in-
stantly upon the release, the droplet rapidly deforms and ro-
tates. After the maximum deformation is achieved the droplet
tends to rotate backward while the deformation slowly re-

duces. The magnitudes of the variations in the deformation
and orientation angles are more prominent when the initial
location of the droplet is closer to the wall.

The droplet deformation D as a function of its lateral
position zc is plotted in Fig. 14 for two cases �i� capillary
number Ca=0.2 and viscosity ratio �=0.2 and �ii� Ca=0.1
and �=1. A variety of initial locations has been examined.
We observe that the initially spherical droplet shows a sub-
stantial deformation without much lateral migration away
from the wall. As the droplet migrates away from the wall
relaxation in deformation takes place. We found in the relax-
ation process, the relation between the droplet deformation D
and the lateral position zc is independent on the initial loca-
tion of the droplet. In Fig. 14 we include the analytical pre-
dictions of the droplet deformation based on the formula
derived by Shapira and Haber2 which accounts for the modi-
fication to the droplet deformation in shear flow due to the
existence of a single solid wall nearby. The analytical results
agree well with the numerical calculations when the droplet
deformation retracts to small values, i.e., when the droplet
migrates further away from the wall or the capillary number
is small. The discrepancy at large deformation lies in the fact
that the analytical study of Shapira and Haber2 is primarily
based on the small deformation theory of Taylor,24 as well as
the fact that their analytical formula is only valid for large
distances between the droplet and the wall.1

The relative difference between the deformation of a
droplet near the solid wall and that of a droplet freely sus-
pended in shear flow, �D−D	� /D	, is plotted as a function of
the droplet-wall distance zc in Fig. 15. We consider only the
relaxation process of the droplet since as found in Fig. 14 the
relaxation deformation is independent on the initial location.
It is found that the existence of a solid wall amplifies the
droplet deformation significantly. Among the cases plotted in
Fig. 15, about 46% increase in the droplet deformation is
observed for �=1 if the droplet is located zc=1.25 from the
wall. The droplet deformation decreases as zc increases and
eventually becomes identical with the deformation of a drop-
let freely suspended at around zc=5 for all cases. We also

(a)

(b)

FIG. 13. Shapes of droplet at its largest deformation. �a� Ca=0.1, �=1,
zc0=1.02, and t=1.4; �b� Ca=0.2, �=1, zc0=1.02, and t=1.8.
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FIG. 14. Deformation D as a function of droplet centroid location zc for
zc0=1.1, 1.3, 1.5, 1.7, and 2. Two cases are presented: �i� Ca=0.2 and
�=0.1 and �ii� Ca=0.1 and �=1. Also included are analytical predictions of
O�zc

−3� by Shapira and Haber �Ref. 2� for comparison.

123301-8 M. A. Khan and Y. Wang Phys. Fluids 22, 123301 �2010�



found that the relative difference in the deformation is inde-
pendent on the capillary number Ca. As shown in Fig. 15, for
�=0.1, curves for a variety of Ca overlap. The independence
on Ca is also found for other viscosity ratios �which are not
included in the Figure�. Figure 15 also shows that the ampli-
fication effect of the existence of a wall is more prominent
for larger � if ��1 for all zc values. More discussion on the
influence of � can be found in Sec. IV D.

Although the deformation during relaxation is indepen-
dent on the initial droplet location, the time an initially
spherical droplet spent before the relaxation stage is reached
can be related to the initial location. As shown in Fig. 16
where the transient deviation of the deformation from that of
a fully relaxed droplet 
D−Dzc
 is plotted for a variety of
initial locations, a droplet with a smaller initial distance to-
ward the wall tends to reach the relaxation stage earlier.

The wall effect is also more substantial for the lateral
migration velocity Uz, which instantly increases to its maxi-
mum upon release. The maximum Uz is larger if the initial
droplet location is closer to the wall. After the maximum Uz

is reached, the lateral velocity starts to decrease. Figure 17
plots Uz as a function of zc at a variety of droplet initial
locations for a droplet with Ca=0.1 and �=1 and that with
Ca=0.2 and �=0.1. We observe that, independent on the
initial location, Uz always increases abruptly, which makes
the droplet to drift away from the solid wall rapidly. And the
slower decrease in Uz is also independent on the initial loca-
tion of the droplet. The decreasing behavior of Uz is propor-
tional to zc

−2 as predicted by Chan and Leal.25 Curves utiliz-
ing the zc

−2 dependence formula of the velocity Uz by Chan
and Leal25 has been plotted in Fig. 17. A small discrepancy
has been observed and the analytical solution by Chan and
Leal25 shows an overestimation comparing to our numerical
solution. We also show the best zc

−2 fitting on the same figure
for the decreasing lateral velocity Uz and find that the best
fitting can always be expressed as

Uz,decreasing = kUz,CL, �11�

where k is a coefficient which is dependent on the capillary
number and the viscosity ratio. Uz,CL denotes the analytical
prediction by Chan and Leal. For the two cases presented,
k=0.926 76 and 0.903 67 for the upper and lower curves,
respectively.

In Fig. 18, the longitudinal velocity Ux is plotted as a
function of droplet centroid location zc for four different ini-
tial locations of a droplet with Ca=0.1 and 0.2, and �=1. We
observe that the increasing part of the velocity Ux is almost
independent on the initial location of the droplet and they
can be described by the single curve as a function of the
droplet centroid location zc. It can also be observed that the
curves for increasing Ux with different Ca tend to converge
as zc increases. The dependency on Ca for Ux is only promi-
nent when the droplet is very close to the wall. The analytical
prediction for the increasing Ux by Shapira and Haber2 is
also included. Good agreement has been found between our
numerical solution and the analytical prediction. The analyti-
cal solution slightly underestimates the increasing Ux for
larger capillary numbers in close vicinity of the wall.
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D. Influence of the viscosity ratio

We plot the droplet deformation D as a function of time
t for a variety of viscosity ratios �=0.1, 0.5, 1, 1.5, 5, and 10
in Figs. 19�a� and 19�b�. It can be observed that as the vis-
cosity ratio increases, the rate of deformation decreases
monotonically. However the magnitude of the deformation

does not vary with the viscosity ratio monotonically. The
maximum deformation increases with � when ��1.5 as
shown in Fig. 19�a�, but decreases as � increases when
�
1.5 as shown in Fig. 19�b�. The nonmonotonical behav-
ior of the deformation D as a function of viscosity ratio is
contrary to the analytical prediction by Shapira and Haber.2

This is shown in Fig. 20�a�, where we plot the droplet defor-
mation D as a function of the viscosity ratio � for a droplet
migrates to the location zc=1.65 and 4.01. The capillary
number is Ca=0.2. To discount the discrepancy in terms of
capillary number, we plot the droplet deformation normal-
ized by its deformation at �=1. The analytical study by
Shapira and Haber2 predicts that the deformation increases
monotonically with � while we observe a maximum defor-
mation is achieved around �=1 in the numerical solution.
The analytical prediction and numerical results agree with
each other for ��O�1�. In addition, the numerical solution
shows that for ��1.5 the deformation is smaller for a drop-
let closer to the wall while for ��1.5 the deformation is
larger for a droplet closer to the wall. This finding is in
qualitative agreement with the analytical prediction shown as
dotted lines in Fig. 20. Comparisons have also been made
with the analytical solution for a small capillary number
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Ca=0.05 as shown in Fig. 20�b�. It shows that for small to
intermediate viscosity ratios the numerical solution agrees
well with the analytical solution. However, the analytical
work still overpredicts the deformation at large �. We believe
that besides the small deformation theory that the analytical
method adopts, the discrepancy is also incurred by their as-
sumption of a constant orientation angle �L=45°. Numerical
results show in Fig. 21 that the deviation from 45° for both
�L and �S is more significant for larger �. Our findings are in
qualitative agreement with the numerical study by Griggs et
al.21 who showed the nonmonotonic deformation of a droplet
in a Poiseuille flow between parallel plates regarding the
viscosity ratio over 0.5���10.

The viscosity ratio is also found to influence the time
that a droplet spends before the relaxation stage is reached.
As shown in Fig. 22, the difference between the droplet de-
formation D and that for a fully relaxed droplet Dzc is plotted
as a function of time. For ��1, the time needed to reach the
relaxation stage increases as we increase the viscosity ratio

�, while for �
1, a decrease in the time is observed as �

increases. The maximum time needed to reach relaxation is
found around �=1.

On the contrary, the lateral velocity Uz and longitudinal
velocity Ux of the droplet decrease monotonically with the
increase of the viscosity ratio as shown in Fig. 23 where we
plot the velocities as functions of droplet centroid zc for
�=0.1, 1, 2.5, and 5, and Ca=0.2. The monotonic behavior
of Uz differs from the analytical solution by Chan and Leal,25

which predicts that the lateral migration velocity Uz in-
creases with the viscosity ratio, as shown in Fig. 24. The
discrepancy is also found by Uijttewaal and Nijhof20 by
comparing their numerical solution to the analytical predic-
tion. The prediction by Shapira and Haber on Ux as a func-
tion of � qualitatively agrees with our numerical solution as
shown in Fig. 25, where we plot the longitudinal velocity Ux

normalized by Ux at �=1 to discount the influence of the
capillary number. We observe that for ��O�1� the analytical
results overestimates the longitudinal velocity Ux while
underestimation is found for the analytical prediction for
��O�1�.
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V. CONCLUSIONS

The motion of an initially spherical droplet in a shear
flow confined by a single solid wall is investigated using a
3D spectral boundary element method which benefits from
the characteristics of spectral methods �i.e., exponential con-
vergence and numerical stability as the number of discretiza-
tion points increases�. Comparisons have been made for the
droplet motion near a single wall and that between two par-
allel plates. It is found that a faraway plate could be ne-
glected if it is located at a distance larger than 15 times of the
droplet characteristic length to the droplet. We also validate
our numerical method by comparing the results to both nu-
merical and experimental studies. The validation shows that
our method is able to describe well the droplet deformation,
migration, and translation in microconfined shear flow.

Investigations are conducted for the influences of the
capillary number, viscosity ratio and initial location of the
droplet on the droplet deformation, orientation, lateral veloc-
ity, and longitudinal velocity. The droplet behavior can be

divided into two stages after it is released near a solid wall:
�i� the initial rapid deformation and �ii� the relaxation pro-
cess. In the first stage, the droplet deforms and rotates rapidly
with velocities built up abruptly. And then in the relaxation
stage, the change in droplet geometry and velocity slows
down. Our analysis indicates that the relaxation stage ap-
pears later for larger Ca values and larger zc0 values. How-
ever, the influence of � on the time needed for a droplet to
reach the relaxation stage is more complicated. The maxi-
mum time needed is achieved at �=1. Similar to the droplet
deformation in unbounded shear flow, the increase in the
capillary number leads to the increase in the droplet defor-
mation D. The existence of a single wall in a close vicinity of
the droplet creates an overshoot in the increase of the droplet
deformation upon the release of the droplet. The overshoot is
more prominent for larger capillary number and smaller dis-
tance between the droplet and the wall. The droplet long axis
always tends to rotate toward the flow direction, while the
short axis rotates rapidly away the flow direction upon re-
lease but it tends to slowly rotate back in the relaxation pro-
cess. The droplet behavior in the relaxation process is found
to be a function of droplet centroid in the lateral direction,
capillary number, and viscosity ratio. The initial location of
the droplet does not influence the droplet relaxation. Numeri-
cal results have been compared to analytical predictions.
Agreement has been found that as the droplet moves away
from the wall both the deformation D and lateral velocity Uz

decreases and the longitudinal velocity Ux increases. Small
discrepancy has been found between the numerical and ana-
lytical results due to the assumptions of small deformation
and large droplet-wall distance that analytical predictions
employed. For large Ca values the droplet deformation is
found to reach a maximum around �=O�1� as we increase
the viscosity ratio. Both the lateral velocity and the longitu-
dinal velocity decrease with the viscosity ratio monotoni-
cally. Disagreement has been found between the numerical
results and analytical predictions for the influence of the vis-
cosity ratio on the droplet deformation for ��O�1�, as well
as on the droplet lateral velocity for the entire range of vis-
cosity ratio examined.

We conclude that the 3D spectral boundary element for-
mulation has been successfully applied to investigate the
droplet motion in microconfined shear flow. Numerical stud-
ies are necessary for this type of problem if high accuracy is
desired. The comparison between the numerical and analyti-
cal solutions suggests that the analytical predictions are lim-
ited for small deformations, large droplet-wall distances, and
near equiviscous droplets. More experimental work is sug-
gested to be conducted in the future for the motion of non-
equiviscous droplets in a close vicinity of a solid wall, espe-
cially for a droplet more viscous than the suspending fluid.
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