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Abstract: Flow induced corrosion of organic coatings occurs in a wide variety of industrial and civilian applications such as pipes, heat 
exchangers, chemical reactors, vehicles, etc. In order to understand the behavior of flow induced organic coating degradation, the 
coating is exposed to flowing fluids as well as quiescent solutions. The deionized water (DI Water) is chosen as the immersion fluid. 
The thickness and gloss of the organic coating are measured before and after the immersion. Both optical and atomic force microscopy 
is used to characterize the topography of the coating surface. The topography study shows that the blisters are formed on the coating 
surface after coating degradation. The results from Electrochemical Impedance Spectroscopy (EIS) measurement reveal that the 
coating’s impedance modulus decreases more substantially under the flowing condition. 
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1. Introduction  

One of the primary performance properties of 
organic coatings is corrosion protection [1]. It is the 
most common and cost effective approach to protect 
metallic objects and structures. Organic coatings can 
generate barriers between the substrate and the 
environments, which can reduce the transportation of 
oxygen, water and ions to the coating metal interface 
[2]. The organic coatings have the ability to impede the 
current between anodic and cathodic areas of the metal 
substrate [3].  

Flow induced corrosion is a complex system. Flow 
velocity, flow pattern, solid particles, impact angles all 
contribute to corrosion process. Recent studies are all 
related to fluid flow over metals, but the influence of 
fluid flow in the degradation of metal-protective 
organic coating has received less attention. The 
increase in the impact velocity decreased the corrosion 
resistance of the uncoated mild steel under the 
erosion-corrosion condition [4]. The effect of flow 
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induced corrosion on the failure of a tubular heat 
exchanger was investigated [5]. It was demonstrated 
that the low velocity of circulating water incurs the 
settlement of deposits in heat exchanger tubes and 
eventually the thinning of the tube wall, which are the 
main cause of the failure of heat exchanger. Flow 
regimes from laminar to turbulent on the corrosion of 
stainless steel were studied by Wharton and Wood [6]. 
Wood’s group also investigated the influence of sand 
concentration and sand size on the erosion-corrosion 
for different corrosive solutions, velocities and a 
variety of engineering materials such as stainless steel, 
carbon steel and nickel-aluminum bronze [7].  

In addition, salt solutions are often adopted in 
corrosion test. Very few works have been using pure 
water (e.g., deionized or distilled water) and only 
reported for metallic materials. Previous studies have 
been reported on the corrosion of copper nickel alloys 
in distilled water [8], condenser tube materials in 
distilled water [9], cracking of stainless steel in pure 
water [10] and localized corrosion inhibition of 
stainless steel in deaerated pure water [11]. 
Nevertheless, no study has been carried out for coating 
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2.3 EIS Test 

The EIS test employs a three-electrode cell. It is 
composed of a stainless steel panel which is used as the 
working electrode, platinum electrodes used as the 
counter electrode on the left and right sides of the test 
panel, and another platinum electrode near the fluid 
outlet which acts as the reference electrode. For the 
stationary immersion a saturated calomel electrode is 
employed as the reference electrode. The measuring 
equipment is Reference 600 Potentiostat by Gamry 
Instruments. Measurements have been taken over a 
frequency range of 10-2 to 105 Hz with ten points per 
decade using 15 mV rms AC. 

2.4 Topography Characterization 

An Axiovent 40 MAT (Focus Precision Instrument) 
is used in this study for optical microscopy. All images 
are collected over a magnification of 10× and 20×, 
depending on the features present on a given sample. 
The Atomic Force Microscope (AFM) observation is 
performed using a Nanoscope IIIa (Digital Instruments, 
California). All images are obtained in air and collected 
over a range of scan sizes, which are 100, 50, and 5  m 
images each time. Coating thickness and gloss are 
measured using an Elcometer coating thickness gauge 
and a NovoTrio statistical glossmeter before and after 
the immersion respectively. 

3. Results and Discussion 

3.1 Topography Characterization of the Organic 
Coating 

3.1.1 Thickness Measurement 
The change of the thickness for the two cases is 

shown in Fig. 2. The coating thickness increases 
significantly after the immersion in the flowing DI 
water, while it maintains almost unchanged in 

quiescent solution. This is due to the formation of 
blisters (which can be seen by naked eyes) on the 
coating surface after the immersion in flowing DI water. 
However, there are no obvious blisters generated on the 
coating surface after stationary immersion. It indicates 
that the flowing fluid causes more substantial surface 
changes on the coating.  

3.1.2 Gloss Measurement 
The gloss of the coating surface is evaluated to 

quantify the blistering on the coating surface before 
and after immersions. Gloss reflects the smoothness of 
the surface. A mirror-like surface has a high gloss value, 
while a rough surface shows a lower gloss value. The 
values obtained from the glossmeter indicate the 
percentage of the light reflectance on the coating 
surface with respect to that on a black glass standard at 
three different grazing angles: 20°, 60° and 85°. The 
gloss measurements of the coatings are listed in Table 1. 
For all three grazing angles, the gloss values decrease 
after the immersion, which indicates the coating 
surface is getting rougher and hence the barrier 
property of the organic coating is reduced. The 
decrease in the gloss value is much more pronounced 
for coatings immersed in the flowing DI water. It 
demonstrates that more blistering takes place for those 
coating samples. 
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Fig. 2  Thickness of coating samples immersed in DI water 
with flow rate Q = 3.683 cm3/s and stationary immersion. 

 

Table 1  Gloss measurements for coatings immersed in DI water with flow rate Q = 3.683 cm3/s and stationary immersion. 
Degradation 
condition 

Before degradation  After degradation 
20° 60° 85°  20° 60° 85° 

Q = 3.683 cm3/s 24.8 ± 3.6 56.3 ± 7.5 50.8 ± 6.4  12.4 ± 2.8 31.5 ± 8.3 17.2 ± 3.1 
Stationary 22.2 ± 1.0 59.7 ± 1.6 57.1 ± 4.1  14.2 ± 0.8 44.7 ± 3.9 46.4 ± 2.2 
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applied frequency in EIS tests is shown in Fig. 5 at flow 
rate Q = 3.683 cm3/s. A similar plot for the coated panel 
immersed stationary in DI water is shown in Fig. 6. 

In a general way, the impedance modulus decreases 
with exposure time, showing a loss of protective 
properties of the coatings. The decrease rate for the 
impedance modulus is larger in the beginning of the 
immersion, and then followed by a relatively slower 
decrease (as shown in both Fig. 5 and Fig. 6). Due to 
good quality of the coating samples which contain no 
pinholes or air bubbles, the decrease of impedance 
modulus indicates the water uptake into the coating 
layer. 

The EIS data at low frequency can be a strong 
predictor of the corrosion resistance of coating samples 
[17]. To illustrate the change in the coating’s barrier 
property (e.g., coating degradation) over time, the 
relative impedance modulus as a function of time is 
shown in Fig. 7. The relative impedance modulus is 
obtained by normalizing the impedance modulus at 
0.01 Hz with the modulus at initial immersion. This 
variable describes the relative decrease in impedance 
modulus at the low frequency during the immersion 
either in flowing fluid or stationary immersion. The 
relative impedance modulus decreases faster and more 
pronounced under flowing DI water than stationary  
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Fig. 5  Impedance modulus as a function of frequency for coating samples immersed in DI water with flow rate Q = 3.683 cm3/s. 
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Fig. 6  Impedance modulus as a function of frequency for coating samples immersed stationary in DI water. 
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Fig. 7  Relative impedance modulus as a function of immersion time for coating samples immersed in DI water with flow rate 
Q = 3.683 cm3/s (squares) and stationary immersion (stars). 
 

immersion. The rapid decrease rate indicates that 
flowing fluid enhances the water permeation of coating 
metal interface. It is in agreement with the results from 
optical microscopy and AFM images (Figs. 3 and 4) 
that flowing fluid promotes blistering, since blistering 
is formed as a consequence of the penetration of water. 

4. Conclusions 

This paper studies the degradation of organic 
coatings under flowing and quiescent DI water 
immersion. Flowing fluid contributes more to the 
change of the topography of the coating surface due to 
its enhancement of blister formation. The increase in 
coating thickness and loss of gloss are resulted from the 
blisters generated on the coating surface after 
immersion in flowing DI water. The EIS test shows 
that coating’s impedance modulus decreases more 
substantially under the flowing condition, which 
reveals flowing fluid accelerates the water penetration 
into the coating layer. Thus, based on both topography 
measurements and EIS results, it can be concluded that 
the flowing DI water degrades the barrier properties of 
organic coatings more aggressively. And the flowing 
DI water over the coating surface can be used as an 

accelerated factor to predict the service lifetime of 
organic coatings. 
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