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The motion, deformation, and stability of compound droplets in extensional flows are
investigated numerically via a three-dimensional spectral boundary element method.
We examine the droplet stability under the influences of the capillary number, the
inner droplet size and the relative magnitude of the surface tension of the two in-
terfaces composing the compound droplet. The influence of viscosity on the droplet
deformation is also discussed. We conclude that a compound droplet with a larger
inner droplet and/or smaller inner surface tension is less stable and cannot withstand
strong flow. For moderate viscosity ratios, a compound droplet with a more viscous
“shell” exhibits larger deformation at steady state. In addition, for an eccentric com-
pound droplet, both the inner and outer droplets tend to migrate away from its original
location due to the asymmetry of the problem. The initial location of the inner droplet
also influences the droplet stability as well as the migration velocity of the compound
droplet. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770294]

I. INTRODUCTION

Compound droplets are fluid particles consisted of an inner droplet (Fluid 1) encapsulated by
another immiscible fluid (Fluid 2) which is itself suspended in a third fluid (Fluid 3) as illustrated in
Fig. 1. The term “compound droplets” is used interchangeably with “double emulsions,” “globules,”
or “encapsulated droplets” in the literature. Great interest in the dynamics of viscous compound
droplets has been raised due to the applications in drug delivery,1 materials processing,2 waste
water treatment,3 food processing,4 cosmetic applications5 tissue epitaxy,6, 7 and modeling of blood
cells.8–12 In addition, compound droplets have been observed to exist in the late stages of phase
separations13 as well as in the porous structures of oil reservoirs during enhanced oil recovery.14

In spite of the growing demand of theoretical investigation of the behavior of compound droplets
from the aforementioned applications, very limited effort has been contributed in analytical and/or
numerical study of compound droplets.

Since the theoretical analysis of the behavior of rigid compound droplets in quiescent flow by
Torza and Mason in 1970,15 the deformation, relaxation, and stability of viscous compound droplets
freely suspended in linear flows have been investigated both analytically and computationally. Torza
and Mason15 categorized compound droplets into three types based on their static configurations:
complete engulfing, partial engulfing, and non-engulfing compound droplets. A complete engulfing
droplet consists of a smaller droplet completely enclosed by a larger droplet without having the
two interfaces touching each other. A partial engulfing compound droplet could be defined by the
existence of a three-phase contact line, and may spontaneously form during emulsification and
appear like “two drops stuck together.” Non-engulfing droplets are referred to as a pair of simple
droplets. Fluids in both droplets are enclosed by the same suspending fluid. The static compound
droplet configurations are determined by interfacial tension ratios and relative volumes of fluids.15, 16

This study is focused on complete engulfing droplets as described in Fig. 1 under the influence
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FIG. 1. Schematic of a compound droplet freely suspended in a planar extensional flow with undisturbed velocity u∞
= G(x,−y, 0).

of extensional flows. The fluid motion and the resulted viscous forces may create dynamically
stable complete engulfing droplets for interfacial tension ranges that may lead to different static
configurations. If, during the computation of the transient configuration of the compound droplet,
the inner and outer interfaces of an initially complete engulfing droplet touch each other, we consider
that the complete engulfing compound droplet no longer exists, or, for simplicity, no stable compound
droplet exists.

By perturbation analysis, Davis and Brenner17 investigated the stability of spherical compound
droplets with the inner “droplet” as a solid particle which is concentrically placed in the outer droplet
(concentric compound droplet). Using the lubrication theory, Sadhal and Johnson18 analytically
predicted the translation of undeformable liquid droplets and gas bubbles coated with a thin layer of
surfactant. Rushton and Davies19 also theoretically derived the drag coefficient and terminal settling
velocity of spherical compound droplets rising in a third immiscible fluid. Sadhal and Oguz20

studied analytically the translation of an eccentric compound droplet in a uniform flow. Undeformed
spherical droplets were assumed in their study. Stone and Leal21 investigated analytically via the
small-deformation theory the breakup of a concentric compound droplet in linear flow. They also
studied larger deformation of the compound droplet numerically using a boundary integral method
with axisymmetric assumption. An Eulerian-Lagrangian algorithm for interface tracking has been
employed by Kan et al.8 to compute the deformation of a concentric compound droplet subjected
to a uniaxial extensional flow and its subsequent recovery when the flow is turned off. While the
main focus of that work was the droplet behavior during the recovery, influence of the viscosity
of the inner droplet is briefly studied for the compound droplet in a uniaxial flow. However, the
inner droplet size was fixed since the parameters chosen in that work are based on experiments
using leukocytes in which the nucleus occupies a volume of 21% of the entire cell. Using a level-set
method, Smith et al.22 investigated the behavior of a viscous compound droplet in shear flow and
during the recovery. In that study, the viscosities of all phases are equal and the inner droplet size
is half of that of the outer droplet. Smith et al.22 focused on the investigation of the influence of the
relative magnitude of the surface tensions of the two interfaces and provided a phase diagram for
the droplet morphology for a variety of capillary number and surface tensions.

In this study, a boundary integral equation is derived for a viscous compound droplet freely
suspended in an extensional flow. A fully three-dimensional (3D) spectral boundary element method
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has been employed. The algorithm development and validation will provide foundation for future
investigations on compound droplet motion in confined flows. In this work, we explore the influences
of parameters, including the relative size and surface tension of the two interfaces, the viscosity
ratios, capillary number of the outer droplet, and the initial location of the inner droplet in the
compound droplet, on the deformation, stability and/or the migration of the compound droplet. We
emphasize that besides concentric droplets this work considers the dynamics of initially eccentric
compound droplets in planar extensional flows, which was not examined before. In addition, this
work investigates the droplet behavior for a wide range of viscosities and surface tension ratios,
reveals the configuration of compound droplets in the presence of dynamic forces, and provides
in-depth information on the stability of compound droplets in the planar extensional flow.

II. MATHEMATICAL FORMULATION AND NUMERICAL METHOD

As illustrated in Fig. 1, we consider a compound droplet with an inner phase (Fluid 1) with
viscosity μi and an outer phase (Fluid 2) with viscosity μo, freely suspended in a third phase
(Fluid 3) with viscosity μ. Due to the small size of the droplet (in micrometers) and our assump-
tion of dominating surface tension force, the Bond number of the current problem is small, Bd, o

→ 0 and Bd, i → 0, where Bd,o = (ρ − ρo)ga2
o/γo and Bd,i = (ρo − ρi )ga2

i /γi . Hence, the influence
of the gravity is negligible. Subscripts, “o” and “i,” indicate the properties of the outer and inner
phases, respectively. All fluids are incompressible, Newtonian and immiscible with each other. The
undeformed radius of the outer and inner spherical droplets are ao and ai, respectively. We define
the droplet size ratio as k = ai/ao. The surface tension on the interface between Fluids 1 and 2 is γ i;
that between Fluids 2 and 3 is γ o. We define the surface tension ratio as � = γ i/γ o. By denoting
the viscosity of Fluid 3 as μ, the viscosities of the outer phase (Fluid 2) and inner phase (Fluid 1)
are designated as μo = λoμ and μi = λiμ, respectively. In addition, the distance between the cen-
troids of the outer and inner droplets is denoted as � = δao. We investigate the deformation of a
compound droplet in extensional flows, e.g., a planar extensional flow, u∞ = G(x,−y, 0), where G
is the shear rate. The deformation of a droplet is quantified by D = (l1 − l2)/(l1 + l2), where l1 is the
longest axis of the droplet and l2 is the shortest axis. Do and Di designate the deformations of the
outer and inner interfaces of a compound droplet, respectively. In this work, we employ the radius
of the initially spherical outer droplet ao as the length scale, Gao as the velocity scale, and thus 1/G
the time scale. As the measure of the relative importance of viscous force and surface tension, the
capillary numbers for the outer and inner droplets are defined, respectively, by

Cao = μGao

γo
, (1)

Cai = μoGai

γi
= λok

�
Cao. (2)

Under low-Reynolds-number assumptions, the governing equations are the Stokes equation and
the continuity,

∇ · σ = −∇ p + c∇2u = 0, (3)

∇ · u = 0, (4)

where c = μi, μo, and μ for Fluids 1–3, respectively. The pressure as defined in Eq. (3) is the
dynamic pressure.

The boundary conditions for the velocity u and force f on the inner interface of the compound
droplet are

u1 = u2, (5)

� f = f 1 − f 2 = �

Cao
(∇S · n)n, (6)
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while the boundary conditions on the outer interface give

u2 = u3, (7)

� f = f 3 − f 2 = 1

Cao
(∇S · n)n. (8)

The subscripts designate quantities evaluated in Fluids 1–3, respectively. The surface stress is defined
as f = σ · n, where the unit normal n is defined to point into Fluids 1 and 3 for the inner and outer
interfaces, respectively.

The following boundary integral equation could be derived23 and employed to determine the
velocity at any geometric point on the interface of the compound droplet

�u − �ou∞ = − 1

4πμ

∫
So

[S · � f − (1 − λo) μ T · u · n]d S

− 1

4πμ

∫
Si

[S · � f − (λi − λo) μ T · u · n]d S, (9)

where � = 1 + λo and �o = 2 for the outer interface So and � = λi + λo and �o = 2λi for the inner
interface Si. Kernel S is the fundamental solution for the three-dimensional Stokes equations and T
is the associated stress defined by

Si j = δi j

r
+ x̂i x̂ j

r3
, Ti jk = −6

x̂i x̂ j x̂k

r5
, (10)

where x̂ = x − x0 and r = |x̂|.23

Both the inner and outer interfaces of the compound droplet are discretized into NE = 6
quadrilateral spectral elements as shown in Fig. 2 via cube projection. The geometric variables
on each element can be obtained by Lagrange interpolations using two parametric variables on
a square interval [−1, 1]2. The basis points for the parametric variables are zeros of NB-order
orthogonal polynomials and hence they are spectral points. Therefore, we have a total number of
N = 2 NE N 2

B spectral points for the compound droplet. The geometric and physical information on
discretized node is then substituted into the boundary integral equation (Eq. (9)). By rearrangement
and collection of terms, a linear system of algebraic equations relating the velocity u and stress f
is formed u = A f + Bu. The matrices A and B are obtained by the integration of the kernels S
and T. Gauss quadrature with Legendre and Lobatto points are employed for the integrations. Gauss
elimination is then used to solve the linear system for the velocity. With the values of velocity for
all geometric points (x) on the interface, a fourth-order Runge-Kutta algorithm is employed to find
the time evolution of the interface geometry using the following kinematic condition:

dx
dt

= (u · n)n. (11)

In addition, interfacial smooth schemes and mesh redistribution techniques have been employed. The
details can be found in Wang and Dimitrakopoulos.24 Similar techniques have also been employed
in Refs. 25 and 26. In this work, we employ NB = 11 spectral points in one curvilinear direction for
each element. This is based on our convergence tests as shown in Fig. 3, which plots the relative
error in droplet deformation Do and Di as a function of the total number of spectral points used
N = 2NE N 2

B . Basis points NB = 5, 7, 9, 11, 13 are employed in the computation. Results for NB

= 15 are used as the base in computing the relative error. An exponential convergence in numerical
accuracy in computing the droplet deformation is observed. Using NB = 11 spectral points gives an
accuracy in the order of magnitude of 10−5.

We emphasize that our numerical approach, a three-dimensional spectral boundary element
method for interfacial dynamics in Stokes flow, is able to capture the dynamics of compound
droplets efficiently by computing only for the interfacial evolution without the need to obtain flow
information in the fluid volume. By using a high-order algorithm with spectral discretization on
the droplet interface, the method exploits all the benefits of spectral methods, i.e., exponential
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FIG. 2. Discretization of a compound droplet with spectral elements.

convergence and numerical stability, with the versatility of the finite element method, i.e., the ability
to handle complicated geometries.24

III. RESULTS AND DISCUSSION

Using the 3D spectral boundary element method with the newly derived integral equation for
compound droplets, we computationally investigate the deformation and stability of compound
droplets in a planar extensional flow. As shown in Fig 4(a), the deformation of the outer droplet Do

increases with the outer capillary number Cao. This behavior is similar to that of a single droplet
although the magnitude of the deformation may differ. We also obtain the deformation of the inner
droplet Di as a function of the non-dimensionalized time t and the outer capillary number Cao,
which is shown in Fig. 4(b). We observe that steady-state deformation of the inner droplet also
monotonically increases with Cao, while the magnitude of the deformation is smaller than that of
the outer droplet Do.

FIG. 3. The relative error in computed steady-state deformation Di and Do versus the number of spectral points N = 2NE N 2
B

for a concentric compound droplet with Cao = 0.06, k = 0.1, � = 1, and λo = λi = 1 suspended in a uniaxial extensional
flow. NE = 6 spectral elements are used for each interface in the compound droplet. Results for basis points NB = 5, 7, 9, 11,
13 are shown with that for NB = 15 as the base in computing the relative error.
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FIG. 4. Deformation of the (a) outer and (b) inner droplets as a function of time t and capillary number Cao in a two-
dimensional extensional flow. For all cases, k = 0.4, � = 0.7, and λo = λi = 0.2.

In this section, we first compare our numerical results in droplet deformation with analytical
predictions and other numerical findings. We then present the influence of the relative size of the
inner droplet, surface tension ratio as well as viscosity ratio on the behavior of the compound droplet.
We also illustrate the influence of an inner droplet eccentrically located in the outer droplet on the
behavior of the entire compound droplet.

A. Validation

To validate our numerical approach, we compare our results by 3D spectral boundary element
method with the analytical predictions and numerical results with axisymmetric assumption by
Stone and Leal.21 Figure 5 shows the deformation of a compound droplet in a uniaxial flow,
u∞ = G(−x/2,−y/2, 2z), for λo = λi = 1.0, � = 1.0, and k = 0.5. Results using our 3D spectral
boundary element method and the aforementioned study are included. We observe that for small

0.00
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0.10

0.15

0.20

0.25

0.30

0 0.05 0.1 0.15 0.2

D

Cao

3D Spectral Boundary Element Method
Stone and Leal’s Numerical Method

Small Deformation Theory

FIG. 5. Steady-state deformation for the outer (upper curves) and inner (lower curves) droplets of a compound droplet as a
function of the outer capillary number Cao. Our computational results (squares) are compared with axisymmetric numerical
results (circles) and analytical predictions (solid lines) by Stone and Leal21 for a compound droplet suspended in a uniaxial
flow for λo = λi = 1.0, � = 1.0, and k = 0.5.
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FIG. 6. Steady-state droplet deformation as a function of the (outer) capillary number for the outer interface of a compound
droplet (triangles, circles, and squares) and a simple droplet (dots) suspended in a planar extensional flow. For the compound
droplet, � = 0.7 and λo = λi = 0.2. A variety of values for k has been included. For the simple droplet, the viscosity ratio
between the droplet and the suspending fluid is 0.2.

values of the capillary number Cao, our numerical results agree well with both analytical and
numerical results of previous work, while for larger Cao, agreement is only found among numerical
results since the analytical method assumes nearly spherical droplets.

If the inner droplet size is infinitely small, the deformation of the outer droplet of a compound
droplet should behave similar to a simple droplet (i.e., a single droplet without the inner droplet).
This should be revealed by computation if the algorithm is correct. As shown in Fig. 6, we plot
the steady-state deformation of the outer interface of a compound droplet as a function of the outer
capillary number. Several values for the size ratio (k) have been included. In the same figure, we
also plot the deformation of a simple droplet with the same flow conditions for comparison. We
observe that the deformation D for the outer interface of a compound droplet approaches that of a
simple droplet as k decreases. When the size of the inner droplet is one tenth of that of the outer
droplet, k = 0.1, excellent agreement is found between outer interface deformation and simple
droplet deformation. The transient behavior of the deformation for a droplet with or without a small
inner droplet (k = 0.1) is also found to be similar.

B. Influence of the size ratio

To examine the influence of the existence or the size of an inner droplet on the deformation and
stability of a compound droplet, we plot the time evolution of the deformation of the outer droplet
Do in Fig. 7(a). We find the increase of the inner droplet size k results in significant increase of the
deformation of the outer droplet. This is in agreement with findings by Davis and Brenner17 for
compound droplets with a solid inner phase and by Stone and Leal21 for fluid inner phase. When the
inner droplet size exceeds a critical value, the outer droplet deformation increases extensively and no
steady-state shapes could be found. This finding implies that the flow conditions which retain stable
single droplets may lead to unstable compound droplets if a moderate sized inner droplet resides in
the outer droplet and that the size of the inner droplet also determines the droplet stability. As it is
influencing the outer droplet deformation, the deformation of the inner droplet itself is also affected
by its size relative to that of the outer droplet. As shown in Fig. 7(b), as k increases, the inner droplet
deformation Di also increases, and no steady state could be found after k exceeds a critical value. In
the particular example shown in Fig. 7, the critical size ratio is found to be kc = 0.59.
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FIG. 7. Deformation of the (a) outer and (b) inner droplets as a function of time t and size ratio k. For all cases, Cao = 0.03,
� = 0.7, and λo = λi = 0.2.

We believe that the instability of the compound droplet may lie in the formation and snap-off
of the thin film between the outer and inner droplets. Figure 8 shows an example in which the
minimum distance dmin between the inner and outer interfaces decreases at the early stage of droplet
deformation. For a compound droplet with a relatively smaller inner droplet (i.e., smaller values
for k), the minimum distance dmin may reach a constant value at the steady state. As k increases,
the steady-state dmin decreases. However, for a compound droplet with a larger inner droplet, the
minimum distance decreases abruptly at the moment when the inner and outer interfaces approach
close to each other with a thin film formed between them (dmin → 0). This may lead to the break up
of the droplet or the formation of a partially engulfing compound droplet which is out of the scope
of the current study. We plot the time evolution of droplet profiles in Fig. 9 for a situation in which
no steady state exists for the compound droplet. We observe that the initially spherical outer droplet
deforms into an prolate spheroidal shape due to the external planar extensional flow imposed. The
fluid inside the outer droplet is also been driven to flow in the form of an extensional-like flow, hence
the inner droplet also elongates into a prolate spheroidal shape with its long axis perpendicular
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FIG. 8. The minimum distance dmin between the outer and inner droplets as a function of time t for a compound droplet
suspended in a 2D extensional flow. For all cases, Cao = 0.03, � = 0.7, and λo = λi = 0.2.
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FIG. 9. Time evolution of droplet profiles at xy, xz, and zy planes for a compound droplet deforming in a planar
extensional flow. (a)–(c) Cao = 0.1, k = 0.51, � = 4, and λo = λi = 0.2. Profiles are plotted for time t = 0, 0.15, 0.3,
0.9, 1.44.

to that of the outer droplet. As the two interfaces approach each other, dimples and sharp ends
are developed on the outer and inner interfaces, respectively. The three-dimensional shapes right
before the close contact of the two interfaces are plotted in Fig. 10 which shows the dimples
developed in the center of the outer droplet and the sharp ends formed on the inner droplet. Besides
the contact of the two interfaces, the deformability of the interfaces also contributes in the stability
of the compound droplet since the breakup of either the inner or the outer droplet may also lead to
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(a) (b)

FIG. 10. 3D geometries for the deformed (a) outer and (b) inner droplet at t = 1.44. Cao = 0.1, k = 0.51, � = 4, λo = λi

= 0.2.

the instability of the compound droplet. Hence, we investigate in a similar fashion for the stability
of a compound droplet with a variety of values for the outer capillary number and plot in Fig. 11 the
critical size ratio kc as a function of Cao. As shown in the figure, we are able to find stable compound
droplets with large inner droplet when the outer capillary number is small. For situations below the
curve, steady-state exists for compound droplets. Curves are included in the figure for three different
values of the surface tension ratio �. For smaller �, i.e., more deformable inner droplet, the critical
size ratio kc becomes smaller.

C. Influence of the surface tension ratio

When the outer capillary number is kept constant, varying the surface tension ratio � could be
considered as altering the relative deformability of the inner droplet. As shown in Fig. 12(a), the
steady-state deformation of the inner droplet Di increases as we decrease �. When � becomes less
than a critical value �c, no steady-state shape could be found. The deformation of the outer droplet is
also affected similarly by the surface tension ratio although the influence is much smaller, as shown
in Fig. 12(b). We believe that when the surface tension of the inner droplet is much less than that
of the outer droplet (i.e., � < �c), the severe deformation/elongation and eventually the breakup of
the inner droplet lead to the instability of the entire compound droplet. This can be elucidated by
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FIG. 11. Critical size ratio kc as a function of the outer capillary number Cao. Three cases are plotted with � = 0.3, 0.5, and
0.7. For all results shown, λo = λi = 0.2.
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FIG. 12. Deformation of the (a) inner and (b) outer droplets as a function of time t and surface tension ratio � in a planar
extensional flow. For all cases, Cao = 0.03, k = 0.4, and λo = λi = 0.2.

plotting the time evolution of the profiles of a compound droplet with a small �. Figure 13 shows
the profiles of a compound droplet with Cao = 0.03, k = 0.4, � = 0.14, and λo = λi = 0.2. We
observe that the inner droplet deforms much more severely than the outer droplet. The instability or
the extensive deformation of the inner droplet leads finally to the breakup of the entire compound
droplet.

For the example shown in Fig. 12, the critical surface tension ratio is found to be �c = 0.15.
We have investigated the influence of � on the stability of compound droplets for a variety of values
of the outer capillary number and plot in Fig. 14 the critical surface tension ratio �c as a function
of Cao. We notice that as the outer capillary number increases, the critical surface tension ratio
�c increases. For situations above the curve, stable compound droplets may be found. We could
interpret the results as that the compound droplet can maintain stable in stronger flows if the inner
interface is less deformable. Results for three different values of size ratio k are included. For larger
k, �c increases more substantially with Cao, hence, we understand that for larger inner droplet a
much less deformable inner interface is required for the compound droplet to stay stable in stronger
flows.

D. Influence of viscosity ratios

We also explore the influence of the relative viscosities of fluids on the deformation of the freely
suspended compound droplet. Figure 15 shows the steady-state deformation of the inner and outer
droplets, Di and Do, as a function of the outer viscosity ratio λo, while the inner viscosity ratio is
maintained constant, λi = 1. In the range of 10−2 ≤ λo ≤ 10, both the inner and outer droplets show
substantial increase with λo. This implies that compound droplets with a more viscous “shell” tend
to deform more significantly for moderate values of λo. For compound droplets with extremely small
or large λo, e.g., λo < 10−2 or λo > 10, the droplet deformation is found almost independent on λo.
Figure 16 presents the steady-state deformation, Di and Do, as a function of the inner viscosity ratio
λi, while we keep the outer viscosity ratio constant, λo = 1. We observe that for small values of the
inner viscosity ratio, e.g., λi < 10−2, Di and Do are independent on the inner viscosity ratio. When
λi > O(10−2), the deformation of both the outer and inner droplets decreases significantly as we
increase λi. Besides examples shown in Figs. 15 and 16, computations with other parameters exhibit
similar behavior for a stable compound droplet. We conclude that the deformation of the inner and
outer droplets shows great dependency on viscosities for moderate viscosity ratios between O(10−1)
and O(1). The compound droplet exhibits larger deformation if the outer droplet is more viscous, or
the inner droplet is less viscous.
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FIG. 13. Time evolution of droplet profiles at xy, xz, and zy planes for a compound droplet deforming in a planar extensional
flow. (a)–(c) Cao = 0.03, k = 0.4, � = 0.14, and λo = λi = 0.2. Profiles are plotted for time t = 0, 0.05, 0.25, 1, 1.4.

E. Eccentric compound droplets

It is of great theoretical interest to investigate the behavior of freely suspended compound
droplets with the inner droplet eccentrically located in the outer droplet, i.e., eccentric compound
droplets. Benefit from the fully three-dimensional numerical scheme, we compute the transient
deformation and migration of an eccentric compound droplet in a planar extensional flow. The
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k = 0.3, 0.4, and 0.5. For all results shown, λo = λi = 0.2.

centroid of the outer droplet is initially located at the origin, i.e., (0, 0, 0), of the coordinate system
defining the extensional flow, while the inner droplet is initially positioned on the x axis, y axis, or
y = x with a distance of δ from the origin. The schematic is shown in Fig. 1. The initial shapes of
the inner and outer droplets are both spherical.

For an eccentric compound droplet with its inner droplet initially located at (δ, 0, 0), we present
two cases among what we explored: (i) an eccentric droplet with all parameters identical to those
of a stable concentric droplet and (ii) a droplet with parameters identical to those of an unstable
concentric droplet. Figures 17(a) and 17(b) show the behavior of the inner droplet deformation Di as
a function of time t and δ for cases (i) and (ii), respectively. For case (i), we observe that δ modifies
slightly the behavior of Di in the early stage of droplet motion for both cases, while the steady-state
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FIG. 15. Steady-state droplet deformation as a function of viscosity ratio λo. For all cases, Cao = 0.05, k = 0.5, � = 0.7,
and λi=1.
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FIG. 16. Steady-state droplet deformation as a function of viscosity ratio λi. For all cases, Cao = 0.05, k = 0.5, � = 0.7,
and λo=1.

deformation of the inner droplet is independent on δ. The influence of δ on Di is found to be minimal
for case (ii). The outer droplet deformation Do for both cases is found to be independent on δ as
shown in Fig. 18.

We plot the time evolution of droplet profiles in the xy plane in Fig. 19. The inner droplet is
found to move towards the origin for both cases. Case (ii) shows substantial deformation for both
the outer and inner droplets as the inner droplet moves. To quantify the inner droplet motion, we
compute the location of the centroid of the inner droplet xc

i as a function of time, as shown in
Fig. 20. For both cases, the inner droplet is eventually trapped at the origin after its initial migration.
We also plot the inner droplet velocity uc

x,i as a function of the droplet location xc
i in Fig. 21. We

observe that the inner droplet velocity decreases as the droplet-origin distance δ decreases except
for the initial onset of the migration. For a larger value of δ, the droplet migrates with a higher
velocity. By plotting the centroid location of the outer droplet xc

o as a function of time, we observe in
Fig. 22 that the outer droplet also moves slightly in the same direction with the inner droplet. The
outer droplet travels more distance if the inner droplet is initially located further away from the
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FIG. 17. Inner droplet deformation Di as a function of time t for a compound droplet with the inner droplet initially located
on the x axis. The size ratios are (a) k = 0.1 and (b) k = 0.39. For all cases, Cao = 0.1, � = 0.5, and λo = λi = 0.2.
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FIG. 18. Outer droplet deformation Do as a function of time t for a compound droplet with the inner droplet initially located
on the x axis. The size ratios are (a) k = 0.1 and (b) k = 0.39. For all cases, Cao = 0.1, � = 0.5, and λo = λi = 0.2.

origin. However, the outer droplet migration is almost indiscernible comparing to the inner droplet
motion.

For droplets suspended in a planar extensional flow, no steady state could be found if the inner
droplet is initially located on the y axis. As shown in Fig. 23, the inner droplet tends to deform and
move towards the outer interface and away from the origin. The contact of the two interfaces will
not allow the stable existence of a completely engulfing compound droplet although the parameters
that we use in the computation would otherwise lead to a stable concentric droplet. The outer droplet
loses its symmetry about x axis due to the formation of a dimple at the close vicinity of the inner
droplet. As shown in Fig. 24, where the abrupt increase in deformation Di indicates the close contact
of the two interfaces, a larger δ leads to a easier collision of the two interfaces and a less stable
situation. Figure 25 plots the centroid velocity of the inner and outer droplets, uc

y,i and uc
y,o, as a

function of the droplet location, yc
i and yc

o , respectively. The inner droplet shows an accelerated
motion towards the outer droplet and away from the origin. The outer droplet is found to migrate
slightly away from the origin in the same direction with the inner droplet. For a larger value of δ,
the outer droplet moves faster although the magnitude of it is much smaller than that of the inner
droplet.

If the inner droplet centroid is located away from both the x and y axes, no steady state could be
found for the compound droplet. As an example, Fig. 26 shows the droplet profiles on the xy plane
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FIG. 19. Profiles of a compound droplet for (a) Cao = 0.1, k = 0.1, � = 0.5, λo = λi = 0.2, δ = 0.8, t = 0, 0.1, 0.2, 0.35,
1.14, and (b) Cao = 0.1, k = 0.39, � = 0.5, λo = λi = 0.2, δ = 0.6, t = 0, 0.1, 0.3, 1, 1.39.
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FIG. 20. Droplet location xc
i of the inner droplet as a function of time t for a compound droplet with the inner droplet located

on the x axis. The size ratios are (a) k = 0.1 and (b) k = 0.39. For all cases, Cao = 0.1, � = 0.5, λo = λi = 0.2.

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

uc
x,i

xc
i

δ = 0.8

0.4

0.2

0.1

δ = 0.1
0.2
0.4
0.8

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

uc
x,i

xc
i

δ = 0.6

0.4

0.2

0.1

δ = 0.1
0.2
0.4
0.6

(a) (b)

FIG. 21. Velocity of the inner droplet uc
x,i as a function of the droplet location xc

i . The inner droplet is located on the x axis.
The size ratios are (a) k = 0.1 and (b) k = 0.39. For all cases, Cao = 0.1, � = 0.5, and λo = λi = 0.2.
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FIG. 22. Centroid location xc
o of the outer droplet as a function of time t. The inner droplet is located on the x axis. The size

ratios are (a) k = 0.1 and (b) k = 0.39. For all cases, Cao = 0.1, � = 0.5, and λo = λi = 0.2.
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FIG. 23. Profiles of a compound droplet with the inner droplet initially located on y axis. Profiles presented are for time
t = 0, 0.1, 0.2, 0.25. Cao = 0.1, k = 0.38, � = 0.5, λo = λi = 0.2, and δ = 0.1.
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FIG. 24. Deformation (a) Di and (b) Do as a function of time t for a compound droplet with the inner droplet initially located
on y axis. For all cases, Cao = 0.1, k = 0.38, � = 0.5, and λo = λi = 0.2.
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FIG. 25. Droplet centroid velocity (a) uc
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o , respectively for a compound
droplet with the inner droplet initially located on y axis. Cao = 0.1, k = 0.38, � = 0.5, and λo = λi = 0.2.
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FIG. 26. Profiles of a compound droplet with the inner droplet centroid initially located on y = x where y > 0 and x > 0.
The size ratios are (a) k = 0.1 (b) k = 0.4. For all cases, Cao = 0.1, � = 0.5, λo = λi = 0.2 and δ = 0.4.
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FIG. 27. Behavior of the inner droplet centroid for a compound droplet with the inner droplet centroid initially located on
y = x where y > 0 and x > 0. Coordinates of droplet centroid location xc

i and yc
i are plotted as a function of time t in

(a) and (b), respectively. The trajectory of the inner droplet centroid is plotted in (c). Three cases are examined with the
distance between the outer and inner droplets δ = 0.1, 0.2, 0.4. For all cases, Cao = 0.1, k = 0.4, � = 0.5, and λo = λi = 0.2.
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FIG. 28. Deformation (a) Di and (b) Do as a function of time t for a compound droplet with the inner droplet centroid initially
located on y = x, where y > 0 and x > 0. For all cases, Cao = 0.1, k = 0.4, � = 0.5, λo = λi = 0.2.

for a compound droplet with the inner droplet centroid initially located at (δ cos(π/4), δ sin(π/4), 0).
Since the inner droplet is offset in both x and y direction, the droplet moves towards the outer droplet
centroid as it migrates to the outer interface. The y direction motion of the inner droplet leads to
the contact of the two interfaces and prevents the existence of a completely engulfing compound
droplet. We include in Fig. 26 profiles for both a small inner droplet (k = 0.1) and a larger inner
droplet (k = 0.4). Similar behavior is observed for both cases although the latter exhibits a significant
deformation for the inner droplet, which incurs an earlier contact between the two interfaces.

To quantify the inner droplet migration, we plot in Fig. 27 the droplet centroid location as a
function of time as well as its trajectory. The centroid location of the inner droplet xc

i decreases
with time. The droplet with larger offset initially (i.e., larger value for δ) moves faster towards outer
droplet centroid. Meanwhile, yc

i increases with time and the droplet with a larger value for δ moves
faster towards the outer interface. Figure 27(c) then shows the trajectory of the inner droplet centroid
for three cases with different values of δ. The deformation of the inner and outer droplets is plotted
in Fig. 28. The abrupt increase in the deformation Di indicates the close contact of the two interfaces.
The outer droplet deformation Do also deviates from that of the concentric case (i.e., δ = 0) due to
the approach and contact of the inner interface.

IV. CONCLUSIONS

A three-dimensional spectral boundary element method has been employed to investigate the
motion of a viscous compound droplet in a planar extensional flow. The numerical approach has
been validated by comparing with analytical predictions and other numerical results. In addition, we
compute the deformation of a compound droplet with a extremely small inner droplet and compare
the deformation of the outer droplet with that of a correspondent simple droplet. The similar values
in deformation of the two aforementioned cases again confirm the validity of the current algorithm.

In this study, the stability of a compound droplet in the planar extensional flow is investigated
under the influences of inner droplet size, capillary number, relative surface tension of the inner
droplet, as well as the initial location of the inner droplet. We find that given the same viscosities,
surface tensions, and shear rate, both the inner and outer droplets deform more substantially if the
inner droplet is larger. The increase in the size of the inner droplet leads to the instability of the
compound droplet. The compound droplet with a smaller surface tension on the inner interface tends
to deform more significantly for both the inner and outer droplet. A smaller inner surface tension
also promotes the break-up of the entire compound droplet. We observe two break-up mechanism
for compound droplets: (i) dimple development on the outer interface, pointing corner formed on
the inner interface, and the resulting contact of the two interfaces; (ii) the extensive elongation of
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the inner droplet, or the instability of the inner droplet alone. A large inner droplet with moderate
deformation for the outer droplet may result in the first mechanism, while an inner surface tension
which is less than the critical inner surface tension may incur the second mechanism. We also
examine the influence of viscosity ratios on the steady-state droplet deformation by considering a
wide range of values for the viscosities. The investigation reveals that the deformation of a stable
compound droplet is affected by viscosity ratios only when the ratios are moderate. For moderate
viscosity ratios, a compound droplet which has a more viscous “shell” exhibits larger deformation
at steady state.

The influence of the initial location of the inner droplet on eccentric compound droplets is
examined by computing with parameters which would give stable or unstable concentric droplets.
Results show that the initial location of the inner droplet has negligible influence on the deformation
of the outer droplet. However, the stability of the compound droplet may be affected by the initial
location and/or the size of the inner droplet. For compound droplets suspended in a planar extensional
flow as described in this study, no steady state could be found for completely engulfing droplets if the
inner droplet has an initial offset in y direction. We also notice that the initially eccentrically located
inner droplet results in not only the migration of the inner droplet but also the motion of the outer
droplet. It is found that the outer droplet always moves in the same direction with the inner droplet
although its velocity magnitude is in orders of magnitude smaller than that of the inner droplet. In
addition, the compound droplet shows a faster migration speed if the inner droplet is located further
away from the center of the outer droplet.

This study demonstrates the feasibility of the three-dimensional spectral boundary element
method in the investigation of the dynamics of complex fluid, namely, compound droplets. The
nature of this high-order numerical method facilitates the investigation for the dynamics of eccentric
compound droplets in three dimensions, which is difficult to perform experimentally. Although
streamlines in the fluid volume are not shown due to the fact that the numerical approach only
solves for interfacial velocities, the flow velocity distributions in the fluid volume may be obtained
independently based on current solutions, i.e., time dependent droplet configurations and interfacial
velocities. In addition, this work provides foundation for future numerical studies on the dynamics
of compound droplets, capsules, or blood cells in confined geometries.
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