Content | Navigation |

NDSU Mathematics

 


Algebra & Discrete Mathematics Seminar

  • Spring 2022 Location: Minard 404
  • Time: Tuesday 10:00 --10:50 am
  • Organizer: Jessica Striker

Spring 2022 Schedule

3 May 2022

Joseph Bernstein (NDSU): Title TBA

Abstract: TBA

26 April 2022

Brandon Allen (NDSU): Upper Bound on Chromatic Numbers of Coxeter Groups via Brink-Howlett Automaton 

Abstract:  We first will give a historical perspective on computing chromatic numbers for Coxeter groups for non-exceptional types $A_n$, $B_n$, $C_n$, and $D_n$. The Brink-Howlett automaton turns an affine irreducible Coxeter into a finite state automaton. The main application of the Brink-Howlett automaton is to enumerate words of length $n$ for a given Coxeter group. Since we have a finite state automaton, and using the geometry of our groups, we can construct chromatic polynomials by the Tutte polynomial to give an upper bound on the chromatic number of the Coxeter group.  

19 April 2022

Patricia Klein (University of Minnesota): Geometric vertex decomposition and liaison

Abstract: Geometric vertex decomposition and liaison are two frameworks that have been used to produce similar results about similar families of algebraic varieties, the former primarily from an algebraic combinatorics perspective and the latter primarily from a commutative algebra/algebraic geometry perspective.  In this talk, we will describe an explicit connection between these approaches. In particular, we describe how each geometrically vertex decomposable ideal is linked by a sequence of elementary G-biliaisons of height 1 to an ideal of indeterminates and, conversely, how every G-biliaison of a certain type gives rise to a geometric vertex decomposition. As a consequence, we can immediately conclude that several well-known families of ideals are in the Gorenstein liaison class of a complete intersection (glicci), including Schubert determinantal ideals, defining ideals of varieties of complexes, and defining ideals of graded lower bound cluster algebras. This connection also gives us a framework for implementing with relative ease Gorla, Migliore, and Nagel’s strategy of using liaison to establish Gröbner bases. This talk is based on joint work with Jenna Rajchgot.

5 April 2022

Joey Forsman (NDSU): Two new closure operations on ideals

Abstract: We describe two closure operations on ideals which arise out of a ring operation called root closure. We describe these operations in the context of other well-known operations on ideas, rings. Several insights are gained due to the interplay between ideals and rings. In particular, the Rees algebra of an ideal is a central tool in the study of these operations.

29 March 2022

Torin Greenwood (NDSU): Coloring the integers while avoiding monochromatic arithmetic progressions

Abstract: Consider coloring the positive integers either red or blue one at a time in order.  How many integers W(k) do you need to color before you can guarantee that there are k equally-spaced integers all colored the same?  Van der Waerden's classical result guarantees that W(k) exists for every k, but it remains challenging to find good bounds on the values of W(k).  As a related question, we will look for colorings of {1, 2, ..., n} that minimize the total number of k-term monochromatic arithmetic progressions.  We leverage a connection to coloring the continuous interval [0,1] that allows us to use tools from calculus. Our strategy will rely on identifying classes of colorings with permutations using mixed integer linear programming.  Joint work with Jonathan Kariv and Noah Williams.

22 March 2022

Jessica Striker (NDSU): Alternating sign matrix polytopes: Theme and variations

Abstract: Alternating sign matrices are {0, 1, −1}-matrices with deep connections to the symmetric group, enumerative combinatorics, algebraic geometry, and statistical physics. Their study from the geometric perspective of polytopes has been especially fruitful and includes many analogous properties to the classical Birkhoff polytope of doubly-stochastic matrices. In this talk, we’ll compare and contrast various properties of polytopes formed as convex hulls of alternating sign and related matrices, including their inequality descriptions, face lattices, and facet enumerations. This talk includes joint works with Dylan Heuer and Sara Solhjem.

Fall 2021 Schedule

  • Fall 2021 Location: Minard 404
  • Time: Tuesday 10:00 --10:50 am
  • Organizer: Cătălin Ciupercă
7 December 2021

Dennis Stanton (University of Minnesota): Combinatorics of polynomials: orthogonal and type $R_I$

Abstract: I will review the combinatorial general theory of orthogonal polynomials via lattice paths. I will then compare these known results to those for the type $R_I$ orthogonal polynomials defined by Ismail and Masson in 1995. Explicit examples are given in the Askey scheme, along with new continued fractions. Open problems will be presented. This is joint work with Jang Soo Kim and Mourad Ismail.

Note: This talk will be on zoom. The link will be sent by email.

26 October 2021

Ben Noteboom (NDSU): Decompositions of Symbolic Powers

Abstract: Symbolic powers of ideals have been a recent topic of study for commutative algebraists, particularly how they compare to regular powers. In this talk, we'll use tools from graph theory to find a decomposition of a certain class of symbolic powers, then use that decomposition to calculate an invariant of symbolic powers called the Waldschmidt constant.

5 October 2021

Jessica Striker (NDSU): Web invariant polynomials

Abstract: We discuss classical results on bases for subspaces of invariant polynomials and their relation to symmetric group actions using combinatorial gadgets such as standard Young tableaux and matchings. We then generalize to very recent work involving increasing tableaux and webs. Both settings showcase interactions between combinatorics and algebra. This talk is based on joint work with Rebecca Patrias and Oliver Pechenik.


Student Focused. Land Grant. Research University.

Follow NDSU
  • Facebook
  • Twitter
  • RSS
  • Google Maps

Department of Mathematics - North Dakota State University 
Phone: 701.231.8171
Campus Address: Minard 408
Physical/Delivery Address: Minard 408. 1210 Albrecht Boulevard, Fargo, ND 58102
Mailing Address: NDSU Dept #2750 / PO Box 6050 / Fargo, ND 58108 - 6050
Email: ndsu.math@ndsu.edu
Office Hours: Monday - Friday 8:00 - 5:00

Last Updated: Monday, April 25, 2022 10:30:49 AM
Privacy Statement