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3Facultad de Ingenieŕıa, Universidad Autónoma de Querétaro, México,
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Abstract

Let K ⊂ Rn, n ≥ 3, be a convex body. A point p ∈ intK is said to be a
Larman point of K if for every hyperplane Π passing through p the section Π∩K
has a (n−2)-plane of symmetry. If p is a Larman point of K and, in addition, for
every section Π ∩K, p is in the corresponding (n − 2)-plane of symmetry, then
we call p a revolution point of K. We conjecture that if K contains a Larman
point which is not a revolution point, then K is either an ellipsoid or a body of
revolution. This generalizes a conjecture of K. Bezdek for convex bodies in R3

to n ≥ 4. We prove several results related to the conjecture for strictly convex
origin symmetric bodies. Namely, if K ⊂ Rn is a strictly convex origin symmetric
body that contains a revolution point p which is not the origin, then K is a body
of revolution. This generalizes the False Axis of Revolution Theorem proven in
[7]. We also show that if p is a Larman point of K ⊂ R3 and there exists a line L
such that p /∈ L and, for every plane Π passing through p, the line of symmetry
of the section Π ∩K intersects L, then K is a body of revolution (in some cases,
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we conclude that K is a sphere). We obtain a similar result for projections of
K. Additionally, for K ⊂ Rn, n ≥ 4, we show that if every hyperplane section or
projection of K is a body of revolution and K has a unique diameter D, then K
is a body of revolution with axis D.

1 Introduction

In this work, we study Geometric Tomography problems in which we are given infor-
mation about the symmetries of sections (or projections) of a convex body K ⊂ Rn,
n ≥ 3, and want to obtain information about the symmetries of K.

Question 1. What can we say about a convex body K ⊂ Rn, n ≥ 3, with the property
that there exists a point p ∈ Rn such that all hyperplane sections of K passing through
p possess a certain type of symmetry?

A particularly simple case of Question 1 occurs when p is an interior point of K and
all the hyperplane sections passing through p are discs. In this case, K must be a
sphere. Indeed, by Hammer’s result [6, Thm. 3.1], there is a diametral chord of K
passing through p. Since for every hyperplane Π through p, the section Π ∩ K is a
(n− 1)-dimensional ball, the diametral chord is an axis of revolution of K. Therefore,
K is a solid sphere.

Another case of Question 1 occurs when all the sections of K through the point p are
assumed to be centrally symmetric, but p is not the center of symmetry of K. This
problem is known as the False Centre Theorem of Aitchison-Petty-Rogers and Larman.
In [15], Rogers proved, in a very elegant way, that if K ⊂ Rn, n ≥ 3, has a false centre,
then K must be centrally symmetric. In the same paper, Rogers conjectured that such
a K should be an ellipsoid. The conjecture was confirmed in [1] in the case when the
false centre is an interior point of K. Finally, the False Centre Theorem was proven in
all its generality in [8].

Instead of considering sections with central symmetry, as in the False Centre Theo-
rem, K. Bezdek formulated the following conjecture in which the sections have axial
symmetry.

Conjecture 1. [2, pg. 221] If all plane sections of a convex body K ⊂ R3 have an axis
of symmetry, then K is an ellipsoid or a body of revolution.

Conjecture 1 involves all sections of K, not just the sections passing through a fixed
point. In [11], Montejano gave an example showing that considering only sections
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through a fixed point is not enough. Indeed, in R3, the convex hull of two perpendicular
discs centered at the origin has the property that every section through the origin has
an axis of symmetry.

K. Bezdek’s conjecture can be generalized to higher dimensions in several ways. Let
K ⊂ Rn, n ≥ 4, be a convex body, and consider all hyperplane sections of K. We may
assume one of the following hypotheses:

H(i): All hyperplane sections have an axis of symmetry,

H(ii): All hyperplane sections have an (n− 2)-plane of symmetry,

H(iii): All hyperplane sections are (n− 1)-dimensional bodies of revolution.

When n = 3, all three conditions H(i), H(ii) and H(iii) reduce to K. Bezdek’s condition
that all plane sections of K have an axis of symmetry.

For n ≥ 4, in cases H(i) and H(ii), the conclusion of the conjecture should be that K
is either an ellipsoid or a body of revolution. However, in case H(iii), ellipsoids which
are not bodies of revolution are excluded, (note that if an ellipsoid is not a body of
revolution, it has n axes of symmetry but no axis of revolution). Thus, the conclusion
in case H(iii) should be that K is a body of revolution.

In this paper, we focus on the cases H(ii) and H(iii) with some additional hypotheses,
but we do not require the condition to hold for all sections ofK, just for sections passing
through a fixed point. We need to introduce some definitions.

Definition 1. A point p ∈ intK is said to be a Larman point of K if for every
hyperplane Π passing through p the section Π ∩K has a (n− 2)-plane of symmetry.

Definition 2. Let p ∈ intK be a Larman point of K. We call p a revolution point of
K if for every hyperplane Π passing through p the section Π∩K has a (n− 2)-plane of
symmetry which contains p.

As examples of Larman and revolution points, we note that if c is the centre of an
ellipsoid E ⊂ Rn, which is not a body of revolution, then c is a revolution point of
E. Furthermore, every point p ̸= c in the interior of the ellipsoid is a Larman point,
but not a revolution point. On the other hand, every point on the axis of a body of
revolution is a revolution point, while every point p not on the axis is a Larman point.
We prove these facts in Corollary 2 (page 13).

With this terminology, we state the following conjecture.
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Conjecture 2. Let K ⊂ Rn, n ≥ 3, be a convex body. Suppose that p ∈ intK is a
Larman point of K which is not a revolution point of K. Then either K is an ellipsoid
or K is a body of revolution.

Observe that if a Larman point p is also the centre of symmetry of K, then p is a
revolution point of K. Hence, Montejano’s example of the convex hull of two discs is
now excluded by the assumption that the Larman point p is not a revolution point.

Our main results are the following theorems:

Theorem 1. Let K ⊂ Rn be a centrally symmetric strictly convex body with centre at
o. Suppose that K has a revolution point p, p ̸= o. Then K is a body of revolution
whose axis is the line L(o, p) passing through the points o and p.

In the next two theorems, we need an additional hypothesis regarding the existence
of an auxiliary line. This condition is, in a way, natural: If K ⊂ R3 is a body of
revolution whose axis is the line L, and the point p is not in L, then, on the one hand,
p is a Larman point of K and, on the other hand, for every plane Π passing through
p, the section Π ∩K has a line of symmetry passing through the point Π ∩ L (if Π is
not parallel to L). Note that in case (i) of Theorem 2, the fact that p is the centre
of symmetry of K implies that p is a revolution point, and the existence of the line L
excludes Montejano’s counterexample.

Theorem 2. Let K ⊂ R3 be a centrally symmetric strictly convex body with centre at
o. Let L be a line such that o /∈ L, let Ω be the plane containing o and L, and let
p ∈ Ω \L be a Larman point of K. Assume that for all planes Π passing through p, the
section Π ∩K has a line of symmetry which intersects L in (the case where the plane
is parallel to L, then the line of symmetry of the section of K is assumed to be parallel
to L). Then

(i) if p = o, then K is a body of revolution,

(ii) if p ̸= o and the line op is not perpendicular to L, then K is a sphere.

We say that a line L is an axis of symmetry of K if, on the one hand, all sections of
K by hyperplanes orthogonal to L are centrally symmetric with center at a point in L,
and on the other hand, all sections of K by hyperplanes containing L have L as a line
of symmetry (i.e., given a hyperplane H, for every point x ∈ K ∩H, its reflection with
respect to L is also in K ∩H). With this terminology, we can state our next result.

Theorem 3. Let K ⊂ R3 be an origin symmetric, strictly convex body. Let L be an
axis of symmetry of K containing the origin o, and let p ∈ (intK) \ L be a Larman
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point of K. Suppose that for, every plane Π passing through p, the section Π∩K has a
line of symmetry which contains the point Π ∩ L. Then K is a body of revolution with
axis L.

As a corollary of Theorem 1 we obtain:

Corollary 1. Let K ⊂ R3 be a centrally symmetric strictly convex body with centre at
o. Suppose that K has two distinct revolution points p, q such that p ̸= o ̸= q and o
does not belong to L(p, q). Then K is a sphere.

This corollary is an improvement on a result by Jerónimo-Castro, Montejano, and
Morales-Amaya. Inspired by the False Centre Theorem, they give the following char-
acterization of the sphere as the only body which contains a “false axis of revolution”.

Theorem[7]: If a strictly convex body K ⊂ R3 contains a line L such that all points
in L are revolution points, but L is not an axis of revolution of K, then K must be a
sphere.

Observations:

1. In Corollary 1, only two revolution points are needed, rather than the whole line
needed in [7]. Note that, although the False Axis of Revolution Theorem does
not assume that K is centrally symmetric, the central symmetry actually follows
from the hypotheses (see [7, Lemma 2.4]). Therefore, the central symmetry in
our Corollary 1 is not an additional assumption.

2. The proof of the False Axis of Revolution uses strict convexity by considering the
set of extreme points t(x) of chords of K whose center is x ∈ intK. For a strictly
convex body K, the set t(x) is contained in a plane. For a non strictly convex
body this is no longer true. Our Theorems 1, 2 and 3 also make use of this fact
(see Lemma 6 in the present paper), which is why we need the strict convexity
hypothesis.

Our next result is the dual version of Theorem 2, but now the conclusion is that K is
a body of revolution, and we no longer obtain the case where K is a sphere.

Theorem 4. Let K ⊂ R3 be a strictly convex body and let L be a line. Suppose that
every orthogonal projection of K has a line of symmetry which intersects L (if the plane
of projection is parallel to L, then we assume that the line of symmetry of the projection
of K is parallel to L). Then K is a body of revolution.
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IfK is a body of revolution in Rn, for n ≥ 4, then all hypersections and projections ofK
are (n−1)-dimensional bodies of revolution (see Remark 2 in Section 3). Generalization
H(iii) is the converse of this result. In Section 3, we prove this converse when we know
that all sections (or projections) through a fixed point p are bodies of revolution, under
the additional assumption that K has a unique diameter.

Theorem 5. Let K ⊂ Rn, n ≥ 4, be a convex body. Suppose that K has a unique
diameter D and there is a point p ∈ Rn such that p /∈ D and for every hyperplane Π,
passing through p, the section Π ∩K is a (n− 1)-body of revolution. Then K is a body
of revolution with axis D.

Theorem 6. Let K ⊂ Rn, n ≥ 4, be a strictly convex body. Suppose that K has a
unique diameter D and every orthogonal projection of K is a (n−1)-body of revolution.
Then K is a body of revolution with axis D.

A more general result, without the diameter assumption, has recently been obtained by
B. Zawalski [19] in the case where K is an origin symmetric convex body with boundary
of class C3, and the point p is the origin.
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2 Definitions and auxiliary results

We refer to [5, Chapter 0] for the following definitions involving convex bodies. A body
in Rn is a compact set which is equal to the closure of its nonempty interior. A convex
body is a body K such that for every pair of points in K, the segment joining them is
contained in K. A convex body is strictly convex if its boundary does not contain a line
segment. A body K is origin symmetric if whenever x ∈ K, it follows that −x ∈ K. A
body K is centrally symmetric if a translate of K is origin symmetric, i.e. if there is a
vector c ∈ Rn such that K − c is origin symmetric.

A chord of a convex body K is any line segment in K whose endpoints are on the
boundary of K. The extreme points of a chord are the endpoints of the line segment.
A diameter of K is a chord of maximal length. For each unit vector ξ ∈ Rn, a chord
parallel to ξ of maximal length is called a diametral chord of K.

For n ≥ 3, we denote by O(n) the orthogonal group, i.e., the set of all the isometries of
Rn that fix the origin. Let K ⊂ Rn be a convex body, let Π be an affine hyperplane,
and p be a point in Π. We denote by O(Π, p, n− 1) the set of all isometries of Π that
fix p. When it is clear which affine hyperplane Π and point p we are considering, we
will abuse the notation and write O(n− 1) instead of O(Π, p, n− 1).

The section Π ∩ K is said to be symmetric if there exists a non-trivial Ω ∈ O(n − 1)
such that

Ω(Π ∩K) = Π ∩K.

Definition 3. Let K ⊂ Rn be a convex body, n ≥ 3, and let L be a line passing through
the origin. We denote by RL : Rn → Rn the element of O(n) that acts as the identity
on the line L, and sends x to −x on the hyperplane L⊥. The line L is said to be an
axis of symmetry of K if the following relation holds,

RL(K) = K.

Note: When the line L does not pass through the origin, we will abuse the notation and
denote also by RL the function that acts as the identity on L, and sends p+ x to p− x
for every p ∈ L and x ∈ p+ L⊥.

We observe that if L is an axis of symmetry of K, on the one hand, all sections of K
by hyperplanes orthogonal to L are centrally symmetric with center at L; on the other
hand, all sections of K by hyperplanes containing L have L as a line of symmetry, i.e.,
RL restricted to each hyperplane containing L is a reflection with respect to L. Due to
this property, the notion of axis of symmetry of a convex body will play an important
role in the proof of our Theorems.

7



We will make frequent use of the following Remark in our proofs.

Remark 1. Let K ⊂ Rn be an origin symmetric body. Let H be a hyperplane passing
through o. If the section K ∩H has an axis of symmetry L, then o ∈ L. (Similarly, if
K ∩H has a k dimensional plane of symmetry M , then o ∈ M .)

If K ⊂ R3 satisfies the property that for all the lines L passing through the origin,
RL(K) = K, then K is an sphere. Indeed, it follows from the hypothesis that all the
sections of K are centrally symmetric, and therefore K satisfies condition (2) of [4],
implying that K is an ellipsoid. But the unique ellipsoid with an infinite number of
axes of symmetry, not all contained in a plane, is the sphere. A stronger version of this
result was proven in [7], however it is not stated there as a theorem. Rather, it follows
from the proof of Theorem 1 in [7]. For the convenience of the reader, we state it and
prove it as a theorem here.

Theorem 7. Let K ⊂ R3 be a convex body, H be a plane, and p ∈ H be a point.
If every line L contained in H and passing through p is an axis of symmetry of K,
then H is a plane of symmetry of K. Furthermore, K is a centrally symmetric body of
revolution, whose axis is the line orthogonal to H passing through p.

Proof. Step 1: We first prove that H is a plane of symmetry. Consider the section
K ∩H. Since every line passing through p is a line of symmetry for K, in particular,
every line through p is a line of symmetry for K ∩H. This means that K ∩H is a disc
with center p.

Now consider a boundary point x of K not on H, and its projection Px on H. Let ℓx
be the line joining x and Px, and let d(x) be the distance between x and Px. The line
joining Px with p is an axis of symmetry of K and is perpendicular to ℓx. Therefore,
the other boundary point x′ on ℓx is at distance d(x) from Px. Since x is arbitrary, we
have shown that H is a plane of symmetry of K.

Step 2: Consider the point Px as in Step 1, and the point Py on the line joining Px and
p, such that d(Px, p) = d(Py, p). Take the line ℓy perpendicular to H passing through
Py, and let y, y′ be the boundary points of K on ℓy. By step 1, we know that y′ is the
reflection of y with respect to Py.

We want to show that the distance d(y) from y to Py is equal to the distance d(x) from
x to Px. Consider the diameter L of the disc K ∩ H which is perpendicular to the
line PxPy. This diameter is also an axis of symmetry of K, and the plane containing
x, y, x′ and y′ is perpendicular to L. Therefore, on this plane, x gets reflected to a point
z′ ∈ ℓy, and y gets reflected to z ∈ ℓy. If z

′ ̸= y′ or z ̸= y, we break the strict convexity
of K. Therefore, d(x) = d(y).
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Consider the circle centered at p and passing through Px and Py. We want to show
that for every point Pw on this circle, the boundary points w and w′ on the line ℓw
perpendicular to H and passing through Pw are at distance d(x) from Pw.

Let Λ be the diameter bisecting D and the line PxPy. Then the reflection of x with
respect to Λ is on the line ℓw , and by strict convexity it must equal w′. Then, by
considering the triangles with vertices x, Px, p and w′, Pw, p, we obtain that the distance
from w′ to Pw must be d(x). This shows that the section of K through x parallel to
H is a disc, and therefore K is a body of revolution with axis perpendicular to H and
passing through p.

Definition 4. A family of lines {L1, ..., Ln} is called a n-starline with vertex x0 if the
lines Li lie on the same plane, they are concurrent at x0, and the angle between two
consecutive lines is 2π

n
.

If L1 and L2 are two lines with nonempty intersection, we denote by Ω(L1, L2) the set
of all lines contained in the plane aff{L1, L2} and passing through the point L1 ∩ L2.

Definition 5. Let L1 and L2 be two axes of symmetry of the convex body K. The
starline determined by L1 and L2, which will be denoted by Σ(L1, L2), is the family of
lines {Tn} constructed in the following way: T1 = L1, T2 = L2, and, in general,

Tk = RTk−1
(Tk−2).

We observe, on the one hand, that each line in the family {Tn} is an axis of symmetry
of K and, on the other hand, that Ti ⊂ Ω(T1, T2) for all i.

Proposition 1. Let L1 and L2 be two axes of symmetry of the convex body K ⊂ R3.
If the angle between L1 and L2 is 2π

n
, for some integer n, then Σ(L1, L2) is a n-starline

for some integer n; otherwise, Σ(L1, L2) is a dense set in Ω(L1, L2) and, consequently,
Σ(L1, L2) ∩K is a circle.

The proofs of the following results and Lemmas are straightforward, so we will only
give the proof of Lemma 1.

I. Let Φ be a planar convex body and let {L1, ..., Ln} be the collection of all its lines
of symmetry. Then, {L1, ..., Ln} is an n-starline.

II. Let K ⊂ R3 be a convex body and let {Hi} be a sequence of hyperplanes that
intersect intK. Suppose that Hi → H, Li ⊂ Hi is an axis of symmetry (respec-
tively, pi ∈ Hi is a center of symmetry) of Hi ∩K, and Li → L (pi → p); then, L
is an axis of symmetry (respectively, p is a center of symmetry) of H ∩K.
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III. Let {Ki} be a sequence of planar convex bodies such that Ki → K and, for
every i ∈ N, the body Ki has two axes of symmetry determining an angle θi. If
limi→∞ θi = 0 then K is a disc.

Lemma 1. Let K ⊂ R3 be a convex body. Suppose that {Ln} ⊂ R3 is a sequence of
axes (hyperplanes) of symmetry of K, and L is a line (hyperplane) such that Ln → L.
Then L is an axis (hyperplane) of symmetry of K.

Proof. Since Ln → L, by [17, Theorem 1.8.7], for all q ∈ L∩K, there exists a sequence
qn ∈ Ln ∩ K such that qn → q. We denote by Γn the orthogonal hyperplane to Ln

passing through qn, and by Γ the orthogonal hyperplane to L passing through q. Since
Ln is an axis of symmetry of K, Γn ∩K is centrally symmetric with center at qn. By
virtue of the fact that Ln → L and qn → q, we have Γn → Γ. Thus Γn ∩K → Γ ∩K.
From II, it follows that Γ ∩ K is centrally symmetric with center at q. Thus L is an
axis of symmetry of K.

Lemma 2. Let M ⊂ R3 be a planar convex body contained in the plane Π and let a, b
be two points in Π. Let {Πk}∞k=1 be a sequence of planes, Πk containing L(a, b) and let
{Mk}∞k=1 be a sequence of planar convex bodies, Mk ⊂ Πk, k = 1, 2... Suppose that, for
each k, Mk has two lines of symmetry lk,mk so that a ∈ lk, b ∈ mk and

Mk → M. (1)

Then M has two lines of symmetry l,m such that a ∈ l, b ∈ m and

lk → l and mk → m. (2)

As a corollary of Lemma 2 we have

lk ∩mk → l ∩m. (3)

3 Sections and projections of bodies of revolution

In this section we obtain converses of the following remark, under the additional as-
sumption that the body K has a unique diameter.

Remark 2. If K is a body of revolution in Rn, n ≥ 4, then all hypersections and
projections of K are (n− 1)-dimensional bodies of revolution.

For completeness, we begin by giving a proof of Remark 2.
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Figure 1: A section of a body of revolution is a body of revolution.

Proof. (i) Hypersections: We denote by L the line containing the axis of revolution of
K. Let Π be a hyperplane such that Π ∩ intK ̸= ∅, and let u be a unit normal vector
of Π. Let ∆ be a two dimensional plane containing u and L, i.e., ∆ is perpendicular
to Π and L ⊂ ∆. We will show that Π ∩K is a body of revolution with axis Π ∩∆.

Let Γ be a hyperplane perpendicular to L such that (Γ ∩ Π) ∩ intK ̸= ∅. Since K is
a body of revolution Γ ∩K is a (n− 1)-Euclidean ball with centre at q := Γ ∩ L. The
line Γ ∩∆ passes through q because L ⊂ ∆, so it is a diameter of the ball Γ ∩K (See
Figure 1). Consequently (Γ∩Π)∩K is a (n− 2)-Euclidean ball with centre on the line
Γ ∩∆ and also on the line Π ∩∆. Since Γ is arbitrary, it follows that Π ∩K is a body
of revolution whose axis is the line Π ∩∆.

(ii) Projections: Let Π be a hyperplane and let u be a unit normal vector of Π. We
denote by ϕu : Rn → Π the orthogonal projection parallel to u, and by M and by Ku

the sets ϕu(L), ϕu(K), respectively. We will prove that Ku is a body of revolution with
axis M , by showing the every (n−2)-section of Ku perpendicular to M is a sphere with
centre on M .

Let N ⊂ Π be an affine subspace of dimension n − 2 orthogonal to M , and such that
N ∩ intKu ̸= ∅. Let Γ = ϕ−1

u (N) and ∆ = ϕ−1
u (M). By (i), Γ ∩ K is a body of

revolution with axis Γ ∩ ∆ (see Figure 2). Notice that Γ ∩ ∆ is parallel to u. Thus
ϕu(Γ∩K) = N ∩Ku is a sphere with centre at M . Since N is arbitrary, it follows that
Ku is a body of revolution with axis of revolution M .
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Figure 2: A projection of a body of revolution is a body of revolution.

Now we prove the converse for sections, under the assumption that K has a unique
diameter.

Proof of Theorem 5.

Proof. Fix an arbitrary point x ∈ D as the origin of coordinates. Let w0 be a unit
vector parallel to D. We will show that w⊥

0 ∩K is a sphere with centre at x.

Since p /∈ D, there exists a unit vector w1 in aff{w0, p} such that w1 ⊥ w0. We
choose any orthonormal basis of w⊥

0 which contains w1 as one of its vectors, i.e. ,
w⊥

0 = span(w1, w2, w3, ..., wn−2, wn−1).

For each choice {wi1 , . . . , win−3} of n− 3 vectors from the set {w2, w3, ..., wn−2, wn−1} ⊂
w⊥

0 , we consider the hyperplane Π̃ := Π(wi1 , . . . , win−3) = p+span{w0, w1, wi1 , . . . , win−3},
passing through p. By hypothesis, we have that Π̃∩K is a (n− 1)-body of revolution.

Since D is the unique diameter of Π̃ ∩K, D must be its axis of revolution. Thus, the
section

aff{w1, wi1 , . . . , win−3} ∩ (Π̃ ∩K)
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is an (n− 2)-dimensional Euclidean ball with centre at x. Repeating the argument for
every choice of {wi1 , . . . , win−3} of n − 3 vectors from the set {w2, w3, ..., wn−2, wn−1},
we conclude that w⊥

0 ∩K is a sphere with centre at x. Finally, by the arbitrariness of
the choice of the point x ∈ intD, the theorem follows.

3.1 Proofs of Theorems 4 and 6

In order to prove the converse for projections, we first need to establish some lemmas.
For n ≥ 2, let W ⊂ Rn be a set, and let Π ⊂ Rn be a hyperplane with unit normal
vector u (if Π passes through the origin o, we denote it by u⊥). Let ϕu : Rn → Π
be the orthogonal projection parallel to u, and by Wu the set ϕu(W ) ⊂ Π. If the
hyperplane of projection is not specified, then we will assume that the projection is
onto the hyperplane u⊥.

Lemma 3. Let K ⊂ R3 be a strictly convex body and let L be a line. Suppose that, for
every unit vector u orthogonal to L, Ku has an axis of symmetry parallel to L. Then
K has an axis of symmetry parallel to L.

In the proof of Lemma 3 we use the following lemma, whose proof is immediate.

Lemma 4. Let W ⊂ R2 be a planar convex body and let p ∈ R2. If, for every unit
vector u, the point ϕu(p) is the midpoint of Wu, then W is centrally symmetric with
centre at p.

Proof of Lemma 3. We choose a coordinate system such that the origin is contained
in L. Let Π1,Π2 be supporting planes of K perpendicular to L, making contact with
∂K at the points E and F , respectively. Let u be a unit vector perpendicular to L,
Ku = ϕu(K) be the projection of K onto u⊥. We have that L = ϕu(L), since L ⊂ u⊥

for all u perpendicular to L. We denote ϕu(E) = A and ϕu(F ) = B.

By hypothesis, there exists a line of symmetry M of Ku that is parallel to L. Since
L and u⊥ are parallel, the line M is perpendicular to Π1 ∩ u⊥ and to Π2 ∩ u⊥. By
the strict convexity of Ku, it follows that M = L(A,B). Thus, we conclude that the
orthogonal projection of the diametral chord EF of K onto u⊥ is perpendicular to Π1

and Π2. By the arbitrariness of u we obtain that EF is perpendicular to Π1 and Π2,
and thus parallel to L. Therefore, for the remainder of the proof, we will assume that
L is the line containing the segment EF .

We will prove that for every plane Γ perpendicular to L with Γ∩ intK ̸= ∅, the section
Γ∩K is centrally symmetric with centre at Γ∩L. In order to prove this, we will show
that the section Γ ∩K and the point Γ ∩ L satisfy the conditions of Lemma 4.

13



Let w be a unit vector perpendicular to L. By hypothesis, Kw is symmetric with respect
to a line M parallel to L. By the argument of the previous paragraph, ϕw(L) = M .
Thus the chord ϕw(Γ)∩Kw has its midpoint at ϕw(Γ)∩M = ϕw(Γ)∩ϕw(L). It follows
that ϕw(Γ) ∩ ϕw(L) = ϕw(Γ) ∩ L = ϕw(Γ ∩ L), i.e., ϕw(Γ) ∩ Kw has its midpoint at
ϕw(Γ ∩ L). By Lemma 4, Γ ∩K is centrally symmetric with centre at Γ ∩ L. Varying
Γ, always perpendicular to L and such that Γ ∩ intK ̸= ∅, we conclude that EF is an
axis of symmetry of K.

With almost the exact same arguments, one can also prove the following Lemma.

Lemma 5. Let K ⊂ Rn be a strictly convex body, n > 3 and let L be a line. Suppose
that, for every unit vector u orthogonal to L, Ku has an axis of revolution parallel to
L. Then K has an axis of revolution parallel to L.

Now are are ready to prove Theorems 4 and 6.

Proof of Theorem 4.

Proof. By hypothesis, the projection of K on any plane parallel to L has a line of
symmetry parallel to L. Hence, by Lemma 3, L is an axis of symmetry of K.

On the other hand, if Φ ⊂ R2 is a convex body with a line of symmetry W , and q
is a point contained in W , then in order to determine W we must find two parallel
supporting lines L1, L2 of Φ, such that the distance between q and L1 is equal to the
distance between q and L2 (since W is equidistant from L1 and L2). It is clear that if
q does not belong to Φ such couple L1, L2 is unique. Hence, if for a unit vector u, M is
a line of symmetry of Ku passing through the point u⊥ ∩ L, then there exists a pair of
supporting planes ∆1, ∆2 of K, parallel to u and M , and such that M is equidistant
from ∆1 and ∆2. Let w be a unit vector perpendicular to u and L and let Π1,Π2 two
parallel supporting planes of K perpendicular to w. Since L is an axis of symmetry of
K, RL(Π1) = Π2 and L is equidistant from Π1 and Π2. Thus, the supporting parallel
lines ϕu(Π1), ϕu(Π2) of Ku are at the same distance from the point u⊥∩L ∈ M . Hence,
by the aforesaid, M ⊂ w⊥ (the origin of a system of coordinates is in L). Now, varying
u while keeping w fixed, we conclude that w⊥ is a plane of symmetry of K (all the
orthogonal projections of K in direction perpendicular to w have a line of symmetry in
w⊥). Given that all the planes containing L are planes of symmetry of K, K is a body
of revolution with axis L.

Proof of Theorem 6.
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Proof. We denote by L the line generated by D. We will show that K and L satisfy
the conditions of Lemma 3 and, consequently, we will conclude that K is a body of
revolution with axis L. Let u be a unit vector orthogonal to L and we take a system of
coordinates such the origin is in L. Thus ϕu(L) = L and, since D is a binormal ( i.e.,
the normal vectors of K at the endpoints of D are parallel to D), and u is orthogonal
to L, ϕu(D) = D. Therefore, ϕu(D) is the unique diameter of Ku. We claim that L is
the axis of revolution of Ku. Otherwise, Ku would not have a unique diameter. Hence
K and L satisfy the conditions of Lemma 3.

4 Proof of Theorem 1

We begin by proving Lemma 6, a crucial fact needed in the proofs of Theorems 1, 2
and 3. This is the main reason why our Theorems need the strict convexity hypothesis,
as discussed in Observation 2 on page 4.

For x ∈ intK we denote by C(x) the family of chords of K whose midpoint is x. Let
t(x) be the locus of the extreme points of the chords in C(x). Lemma 6 shows that, if
K is origin symmetric, strictly convex and has an axis of symmetry Λ, then the set t(x)
lies on the hyperplane H perpendicular to Λ passing through p. The heuristic idea is as
follows: Suppose that a chord whose midpoint is p is not contained in H. By reflecting
the endpoints of this chord around o (using the central symmetry) and around Λ (using
that it is an axis of symmetry), one obtains three boundary points of K that line on
the same line. This contradicts the strict convexity.

Lemma 6. Let K ⊂ Rn be a centrally symmetric strictly convex body with centre at o
and let p be a point, p ̸= o. Suppose that K has an axis of symmetry Λ and p ∈ Λ. Let
H be the hyperplane perpendicular to Λ that passes through p. Then t(p) = H ∩ ∂K.

Proof. Suppose that there exists a chord AB ∈ C(p) such that AB is not contained in
the hyperplane H. We consider the two dimensional plane containing the line Λ and
the chord AB, and on that plane take a system of coordinates (x1, x2) such that p is
the origin and Λ is the x1-axis. Since K is centrally symmetric and Λ is an axis of
symmetry, we have that the centre o lies on Λ, see Figure 3. We denote by A′, B′ the
points on the plane x1x2 which are reflections of A,B with respect to the line Λ, and
by Ā, B̄ the images of A,B under the central reflection with respect to o.

Let (r, 0), (a1, a2), (b1, b2) be the coordinates of o, A and B, respectively, where r < 0.
Since we are assuming that the chord AB is not contained in the hyperplane x1 = 0,
exchanging if needed the points A,B, we have only two possible cases: a1 < r and
b1 > r, or a1 > r and b1 > r.
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In the case where a1 < r and b1 > r, we denote by M the half-plane {(x1, x2) : x1 > r}.
Thus Ā ∈ M and, in particular, Ā ̸= A′. Observe that the lines L(A,B′), L(A′, B) are
parallel to Λ and equidistant from it. Hence, Ā ∈ L(A′, B) (see Figure 3). On the other
hand, since p ̸= o, it follows that Ā ̸= B. Consequently, the line L(A′, B) contains
three different boundary points of K, which contradicts the strict convexity of K.

Similarly, the case a1 > r and b1 > r is impossible. Let S∂(K,Λ) denote the shadow
boundary of K in the direction of Λ, which is equal to

S∂(K,Λ) = {x1 = r} ∩ ∂K, (4)

since K is origin symmetric and Λ is an axis of symmetry. If a1 > r and b1 > r, there
would exist a point x ∈ S∂(K,Λ) such that x ∈ M , which would contradict (4).

Thus, we conclude that

t(p) = {x1 = 0} ∩ ∂K. (5)

Figure 3: t(p) is a planar curve.

Before proving Theorem 1, we will outline the main ideas of the proof in the three
dimensional case: The first step is to prove that L(o, p) is an axis of symmetry of K.
Consider the pencil of planes containing the line L(o, p). Since p is a revolution point,
for each such plane H, the section K ∩H has a line of symmetry that passes through p.
But by Remark 1, this line of symmetry also passes through o, and hence it is L(o, p).
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In the second step, we consider any line L′ passing through the point p and perpendicular
to L(o, p). For any plane on the pencil containing L′, we show that the line of symmetry
given by the hypothesis is perpendicular to L′. Hence, the union of all such lines for
the pencil of planes containing L′ form a plane of symmetry of K. Combining Steps 1
and 2 gives that L(o, p) is not only an axis of symmetry but also an axis of revolution.

Proof of Theorem 1.

Proof. We take a system of coordinates (x1, x2, . . . , xn) of Rn such that p is the origin,
the line L(o, p) generated by o and p corresponds to the axis xn, and o has coordinate
(0, 0, . . . , r), r > 0. Let H be a hyperplane containing the line L(o, p). By hypothesis,
K ∩H has an (n− 2) plane of symmetry that passes through p (since p is a revolution
point) and through o (by Remark 1). Therefore, the line L(o, p) is an axis of symmetry
of K, since it is contained in all such (n− 2) planes.

Now fix any line L in Rn which is perpendicular to the xn axis. By changing the
coordinate system, we may assume without loss of generality that L lies on the x1x2

plane and makes an angle θ ∈ [0, π] with the x1 axis. Let Γ be a hyperplane containing
L and let M be an (n − 2) plane of symmetry of Γ ∩K passing through p. We claim
that M is perpendicular to L. On the contrary, assume that M is not perpendicular
to L and let ϕ : Γ → Γ be the reflection on Γ with respect to the plane M . Since M
is not perpendicular to L, the relation ϕ(L ∩ K) ̸= L ∩ K holds. Thus ϕ(L ∩ K) is
not contained in {(x1, x2, . . . , xn) ∈ R3 : xn = 0} which contradicts Lemma 6). This
shows that M must be perpendicular to L. Varying Γ among the pencil of hyperplanes
containing L, it follows that the union of all such (n − 2) planes of symmetry M is
the hyperplane Π(L) perpendicular to L and passing through p. Consequently, Π(L)
is a hyperplane of symmetry of K for any line L perpendicular to L(o, p) and passing
through p. Thus, K is a body of revolution with axis L(o, p), completing the proof of
Theorem 1.

As a corollary, we identify all the Larman and revolution points of ellipsoids and strictly
convex, origin symmetric bodies of revolution.

Corollary 2. (i) Let E ⊂ Rn be an ellipsoid which is not a body of revolution, and let
o be its center. Then o is a revolution point of E, and any interior point p ∈ E such
that p ̸= o is a Larman point, but is not a revolution point of E.

(ii) Let K ⊂ Rn be an origin symmetric, strictly convex body of revolution which is not
a ball. Then any interior point p ∈ K that is on the axis of revolution is a revolution
point, while any p ∈ K not on the axis of revolution is a Larman point which is not a
revolution point of K.
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Proof. Any hyperplane section of an ellipsoid in Rn is an (n− 1) dimensional ellipsoid,
and any hyperplane section of a body of revolution is an (n − 1) dimensional body of
revolution (see Remark 2). Hence, any hyperplane section of an ellipsoid or a body of
revolution has an (n− 2) plane of symmetry, which implies that any interior point is a
Larman point.

(i) By Remark 1, the center of the ellipsoid E is a revolution point. Let us assume that
an interior point p ̸= o is a revolution point. The ellipsoid E has n axes of symmetry,
none of which are axes of revolution. First, consider the case in which p is not on an
axis of symmetry of E. Let Π be a hyperplane containing the line L(o, p). On the one
hand, since p is a revolution point of E, there exists an (n−2) plane of symmetry W of
Π∩E passing through p. On the other hand, by Remark 1, W must also pass through
o. Thus L(o, p) ⊂ W . Since this is true for any Π containing L(o, p), it follows that
L(o, p) is an axis of symmetry of E. This contradicts the choice of p.

Now we assume that p is on an axis of symmetry I of E. Since E is strictly convex,
by Lemma 6, the equality t(x) = H ∩ E holds, where H is the plane perpendicular to
I and passing through x. By an analogous argument as the one used in the proof of
Theorem 1, it follows that E is a body of revolution with axis I. This contradicts the
assumption that E is not a body of revolution.

(ii) Let K ⊂ Rn be a strictly convex, origin symmetric body of revolution with axis of
revolution L, and assume that K is not a ball. Assume that p ∈ L. Since L must be
contained in the (n− 2) plane of symmetry of any hyperplane section K ∩ Π where Π
contains L, then p is on the (n − 2) plane of symmetry. If Π does not contain L, the
(n − 2) plane of symmetry must contain the line of symmetry of the section Π ∩ K,
which is the line passing through p and the point Π ∩ L (see Figure 1 and the proof of
Remark 2). In both cases, it follows that p is a revolution point. On the other hand, if
we assume that p /∈ L is a revolution point, it follows from Theorem 1 that K is a body
of revolution with axis the line L(o, x), i.e., K is a body of revolution with respect two
different axis of revolution. Thus K is a ball, contradicting our hypothesis.

5 Proof of Theorems 2 and 3

We will first outline the main ideas of the proof of Theorem 2, which requires several
auxiliary Lemmas.

Our first Lemma 7 shows that, under the hypotheses of Theorem 2, if o = p then
any line passing through o and contained in the plane Ω is an axis of symmetry of K.
Then, by Theorem 7, K is a body of revolution. This concludes the proof of case (i) of
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Theorem 2.

In case (ii), when o ̸= p, Lemma 7 yields that the line Λ := L(o, p) is axis of symmetry
of K. By Remark 1, Λ is the unique axis of symmetry of K that contains the point p.

Next, we consider the line L(θ) contained in the plane Ω, passing through p and making
an angle θ with Λ, and the family of planes in R3 that contain the line L(θ). In each of
these planes, the corresponding section of K has either one or two lines of symmetry:
the first line is given by the Larman point hypothesis, and the second line (which may
coincide with the first one) is obtained by reflection of this line on the axis of symmetry
Λ. Lemma 8 shows that these two lines must be distinct for almost every plane in the
family.

Having now two different lines of symmetry on almost all plane sections, Lemmas 9, 10
and 11 use topological arguments to conclude that the corresponding sections of K by
planes in the family containing L(θ) must be discs. Finally, Lemmas 12 and 13 allow
us to conclude that K is a ball.

Lemma 7. Let K ⊂ R3 be a centrally symmetric strictly convex body with centre at o,
let L be a line and let p be a Larman point of K. Suppose that o /∈ L, p ∈ Ω\L and,
for all planes Π through p, one line of symmetry of Π ∩K passes through Π ∩ L. (In
the case where Π is parallel to L, then the line of symmetry of Π ∩K is assumed to be
parallel to L). Then the line Λ is an axis of symmetry of K.

Furthermore, if o = p (that is, if K is centrally symmetric with respect to the Larman
point), then K is a body of revolution with an axis perpendicular to the plane Ω and
passing through o.

Proof. First we consider the case o ̸= p. Since p ∈ Ω, then either Λ ∩ L ̸= ∅ or Λ and
L are parallel. Let us assume first that Λ ∩ L ̸= ∅ and we denote by q the intersection
Λ ∩ L ̸= ∅. We denote by F the bundle of planes containing Λ, and we will show that
Λ is an axis of symmetry of K, by proving that, for every plane Π ∈ F , the section
Π ∩K has Λ as line of symmetry. Let Π ∈ F . Since p is a Larman point of K, there
is at least one line of symmetry of Π ∩ K and, by hypothesis, one of these lines (say
W ) passes through Π ∩ L. But the only point of intersection of Π and L is q. On the
other hand, since Π∩K is centrally symmetric, W must pass through o. It follows that
W = L(o, q) = Λ. The case where L and Λ are parallel can be considered analogously.

In the case where o = p, every line V ⊂ Ω passing through o is an axis of symmetry ofK.
By Theorem 7, we conclude that K is a body of revolution with an axis perpendicular
to Ω and passing through o.

Proof of Theorem 2. If o = p, by the second part of Lemma 7, K is a body of revolution
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and we are done. On the other hand, if o ̸= p, by the first part of Lemma 7, the line Λ is
an axis of symmetry ofK. Furthermore, sinceK has centre at o, every axis of symmetry
of K must pass through o, and it follows that Λ is the unique axis of symmetry of K
containing p. We may have that Λ intersects L or that they are parallel.

We take a system of coordinates (x1, x2, x3) in R3 such that p is the origin, Ω is given by
the equation x3 = 0 and Λ corresponds to the axis of the first coordinate x1. For each
θ ∈ (−π/2, π/2], we denote by L(θ) the line making an angle θ with the positive axis
x1, by Ω(θ, ϕ) the plane containing L(θ) and making a positive angle ϕ with the plane
x3 = 0, and by K(θ, ϕ) the section Ω(θ, ϕ) ∩K. We denote by M the line obtained by
reflecting L with respect to Λ, i. e., M = RΛ(L), which is also contained in Ω, (see
Figure 4).

Since L and Λ are not perpendicular, we have that L ̸= M . Denote by q(θ) and m(θ)
the intersections of L(θ) with L and with M , respectively. For θ ̸= π/2, we have that

RΛ(m(θ)) ̸= q(θ). (6)

Let D(θ, ϕ) be the line of symmetry of K(θ, ϕ) passing through q(θ), given by the
hypothesis of Theorem 2. Also by the hypothesis, the plane Ω(−θ,−ϕ) = RΛ(Ω(θ, ϕ))
has a line of symmetry D((−θ,−ϕ) passing through RΛ(m(θ)) ∈ L.

Figure 4: Case 1 of Theorem 2.
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Since Λ is an axis of symmetry of K, we have that

RΛ(K(−θ,−ϕ)) = K(θ, ϕ).

Thus, the section K(θ, ϕ) has two (possibly equal) lines of symmetry, namely D(θ, ϕ)
through q(θ) and RΛ(D(−θ,−ϕ)) throughm(θ). We have the following two possibilities:

(I) D(θ, ϕ) = RΛ(D(−θ,−ϕ)) = L(θ) or

(II) D(θ, ϕ) ̸= RΛ(D(−θ,−ϕ)).

Suppose that there is a fixed θ0 ∈ (−π/2, π/2], θ0 ̸= 0, such that (I) holds for θ0 and all
ϕ ∈ (−π/2, π/2]. Then L(θ0) must be an axis of symmetry of K. But L(θ) contains the
point p and, as we observed above, Λ is the unique axis of symmetry of K containing
p. Therefore this situation is impossible. In fact, we can weaken the hypothesis that
(I) holds for a single θ0 and every ϕ, as the next Lemma shows.

Lemma 8. It is impossible for condition (I) to hold for a fixed θ0 ∈ (−π/2, π/2], θ0 ̸= 0,
and ϕ ∈ [ϕ1, ϕ2], −π/2 < ϕ1 < ϕ2 < π/2.

Proof. Assume that condition (I) holds, i.e the line L(θ0) is a line of symmetry of
K(θ0, ϕ) for ϕ ∈ [ϕ1, ϕ2]. Observe that the line L(θ0) is not an axis of symmetry of K
(because Λ is the only axis of symmetry of K passing through p). Since Λ is an axis
of symmetry of K, the section {x1 = 0} ∩K is centrally symmetric with centre at p.
In addition, by Lemma 6 we have that t(p) = ∂K ∩ {x1 = 0}. On the other hand,
since t(p) is a curve and, since L(θ0) is a line of symmetry for K(θ0, ϕ), ϕ ∈ [ϕ1, ϕ2],
there exists a plane Σ0 perpendicular to L(θ0) and containing p, such that for every
ϕ ∈ [ϕ1, ϕ2] the chords (Ω(θ0, ϕ) ∩ Σ0) ∩ K belong to C(p), i.e., there exist two arcs
ρ0, τ0 of t(p) such that ρ0, τ0 ⊂ Σ and τ0 = −ρ0 (See Figure 5). Since θ0 ̸= 0, it follows
that Σ0 ̸= {x1 = 0}. Thus the arcs ρ0 and τ0 would not be contained in {x1 = 0}
contradicting Lemma 6.
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Figure 5: What if (I) holds for some ϕ and (II) for other ϕ?

Now we suppose that the case (II) is satisfied for all θ ∈ (−π/2, π/2) and almost
every ϕ in (−π/2, π/2), θ, ϕ ̸= 0, i.e., the section K(θ, ϕ) has two different lines of
symmetry, namely, D(θ, ϕ) through q(θ) and RΛ(D(−θ,−ϕ)) through m(θ). We denote
by Em(θ, ϕ) the line RΛ(D(−θ,−ϕ)), and by z(θ, ϕ) the point of intersection of the lines
of symmetry D(θ, ϕ) and Em(θ, ϕ). For θ fixed, we consider the following two functions:
fθ : [0, π] → [0, a], a ∈ R+, is defined as the distance from the point z(θ, ϕ) to the line
L(θ), and gθ : [0, π] → (0, π] is defined as the angle between the two axes of symmetry. It
follows directly from Lemma 2 that, for θ fixed, the functions fθ and gθ are continuous
as functions of ϕ. By the compactness of [0, π] there exist α, β, γ, δ ∈ R such that
fθ(α) ≤ fθ(ϕ) ≤ fθ(β) and gθ(γ) ≤ gθ(ϕ) ≤ gθ(δ).

Lemma 9. For each θ ∈ [0, π] there exists ϕθ ∈ [0, π] such that K(θ, ϕθ) has L(θ) as
line of symmetry.

Proof. We will show that fθ(α) = 0. Denote by u the unit vector (cos θ, sin θ, 0), which
is the direction vector of the line L(θ). Let π : R3 → u⊥ be the orthogonal projection
corresponding to u. We define a map ξ : S2 ∩ u⊥ → R2 as follows: for ϕ ∈ [0, π] we
define v = (cosϕ, sinϕ) ∈ Su :=S2 ∩ u⊥ and ξ(v) = π(z(θ, ϕ)). This is a point on the
line of intersection of the planes u⊥ and Ω(θ, ϕ). Naturally, we have ξ(−v) = ξ(v) ,
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where −v = (cos(ϕ+ π), sin(ϕ+ π)), because −v and v define the same plane Ω(θ, ϕ).
Since ξ is a continuous function (this follows from the continuity of fθ), there exist a
ϕ0 such that for v0 = (cosϕ0, sinϕ0) we have ξ(v0) = 0, otherwise, the standard vector
bundle of 1-dimensional sub-spaces of R2, γ1 : E → RP n would have a non-zero section,
which it would be a contradiction (see Proposition 4 and Example 3 in Section 4 of [9]).
Consequently, fθ(ϕ0) = 0, and ϕθ = ϕ0 is the number the we were looking for.

Lemma 10. For all θ ∈ [0, π] the equality ϕθ =
π
2
holds.

Proof. Contrary to the statement of the Lemma, suppose that there exists θ0 ∈ [0, π]
such that ϕθ0 ̸= π

2
. Then the inequality

[Ω(θ0, ϕθ0) ∩ {x1 = 0}] ̸= [{x1 = 0} ∩ {x2 = 0}]. (7)

holds. We denote by A,B the extreme points of the chord [Ω(θ0, ϕθ0)∩ {x1 = 0}]∩ ∂K
and by A′, B′ the images of A,B under the reflection in Ω(θ0, ϕθ0) with respect to the
line L(θ). Notice, on the one hand, the segment AB has midpoint p, since Λ is an axis
of symmetry of K, and on the other hand, A′B′ has midpoint p by the definition of ϕθ0 .
By equation (7), the chord A′B′ is not contained in the plane x1 = 0. However, this
contradicts Lemma 6 since A′B′ has midpoint at p.

Lemma 11. For all θ ∈ [0, π], the section K(θ, ϕθ) is a circle.

Proof. Let {ϕn} ⊂ [0, π] be a sequence such that ϕn → ϕθ when n → ∞. By Lemma
9, fθ(ϕθ) = 0, i.e., as n → ∞ the point z(θ, ϕn) converges to a point z0 := z(θ, ϕθ) on
the line L(θ). In this situation, we have three possible cases for the sequence gθ(ϕn):
either the angle between the two lines of symmetry converges to π (if the point z0 lies
between q(θ) and m(θ), or it converges to 0 (if the point z0 lies outside of the segment
joining q(θ) and m(θ)), or the angle gθ(ϕn) remains constant as n → ∞, as is the case
if the the point of intersection of the lines lies on an arc of a circle containing both q(θ)
and m(θ), in which case z0 is equal to q(θ) or m(θ).

First we consider the case where gθ(ϕn) → π when n → ∞. If the lines D(θ, ϕn),
E(θ, ϕn) determine an m(n)-star, for some integer m(n) depending of n, and for an
infinite set of indices n, the assumption that gθ(ϕn) → π implies that m(n) → ∞, (since
gθ(ϕn) → π then [π − gθ(ϕn)] → 0 and the number of lines of symmetries of K(θ, ϕn)
increases with n and, consequently, m(n) → ∞). Since K(θ, ϕn) → K(θ, ϕθ), by
Proposition 1 it follows thatK(θ, ϕθ) is a circle. On the other hand, if the linesD(θ, ϕn),
E(θ, ϕn) determine an m(n)-star, for some integer m(n) depending of n and for a finite
set of indices I = {n1, ..., nk}, since gθ(ϕn) → π, then for n ∈ N\I the angle gθ(ϕn) is
irrational thus K(θ, ϕn) is a circle. By virtue of the fact that K(θ, ϕn) → K(θ, ϕθ), it
follows from Proposition 1 that K(θ, ϕθ) is a circle. The argument in the case where
gθ(ϕn) → 0 when n → ∞ is similar.
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Next, we will show that it is impossible to have gθ(ϕn) = k for some constant number k
and for all n. Assume, to the contrary, that this is the case. We will prove that either
z(θ, ϕ) → q(θ) or z(θ, ϕ) → m(θ). Since fθ(ϕn) → 0, there exists z0 ∈ L(θ) such that
z(θ, ϕ) → z0. Let Bq, Bm be two balls with ratio ϵ and with centres at q(θ) and m(θ),
respectively. Suppose that w ∈ L(θ)\{Bq ∪ Bm}. Let {wi} ⊂ R3\{Bq ∪ Bm ∪ L(θ)}
be a sequence such that wi → w when i → ∞. Since {wi} ⊂ R3\{Bq ∪ Bm ∪ L(θ)},
the lines L(q(θ), wi) and L(m(θ), wi) are well defined. Given that wi → w, the angle
αi determined by L(q(θ), wi) and L(m(θ), wi) tends either to π (if w is in the line
segment determined by q(θ) and m(θ)) or 0 (if w is in the complement of line segment
determined by q(θ) and m(θ)). Consequently, z0 = q(θ) or z0 = m(θ), otherwise we
would contradict the condition gθ(ϕn) = k for some constant number k and for all n.

In the case where L ∩K = ∅, we have that q(θ),m(θ) ∈ R3\K. Hence, since z(θ, ϕ) →
q(θ) or z(θ, ϕ) → m(θ), there exist an integer N such that z(θ, ϕ) ∈ R3\K for all n > N .
On the other hand, since z(θ, ϕ) is the intersection point of two lines of symmetry of
K(θ, ϕn) necessarily such point belongs to intK(θ, ϕn). This contradiction shows that
the case where gθ(ϕn) is a constant sequence is impossible.

Alternatively, assume that L ∩ K ̸= ∅. Recall that we denote by C(x) the family of
chords of K whose midpoint is x, and by t(x) the endpoints of these chords. We claim
that t(p(θ)) and t(m(θ)) are curves with center at p(θ) and m(θ) respectively. For
each θ, ϕ ∈ [0, π] there exist two different lines of symmetry D(θ, ϕ) and E(θ, ϕ) of
K(θ, ϕ), passing through p(θ) and m(θ), respectively. By symmetry, the chord A(θ, ϕ)
on Ω(θ, ϕ) passing through p(θ) and perpendicular to D(θ, ϕ) is in the family C(p(θ)),
and similarly, the chord B(θ, ϕ) passing through m(θ) and perpendicular to E(θ, ϕ) is
in the family C(m(θ)), (see Figure 6). Hence, the endpoints of A(θ, ϕ) belong to t(p(θ))
and the endpoints of B(θ, ϕ) belong to t(m(θ)). Varying θ and ϕ, we conclude that
t(p(θ)) and t(m(θ)) are curves with centers at p(θ) and m(θ), respectively.

On the other hand, since A(θ, ϕ) ⊥ D(θ, ϕ) and B(θ, ϕ) ⊥ E(θ, ϕ), the angle between
the lines generated by A(θ, ϕ) and B(θ, ϕ) is equal to π − g(θ, ϕ). Notice that, by
Lemma 10, A(θ, π/2) and B(θ, π/2) are orthogonal to Ω, i.e., the chords A(θ, π/2) and
B(θ, π/2) are parallel. By virtue of the fact that g(θ, 0) > 0 (since the lines D(θ, 0)
E(θ, 0) pass through o and p(θ) ̸= m(θ)), we have that g(θ, π/2) = π. Indeed, A(θ, π/2)
and B(θ, π/2) are parallel, which means that the angle between the lines generated by
A(θ, π/2) and B(θ, π/2) is equal to 0 and, on the other hand, it is equal to π−g(θ, π/2).
Consequently, g(θ, π/2) = π, and since g(θ, ϕ) is continuous, it cannot be constant in
a neighborhood of π/2. Hence, also in this case we conclude that gθ(ϕn) cannot be a
constant sequence as n → ∞, i.e., ϕn → π/2.

Lemma 12. The section K0 := Ω ∩K is a circle.

Proof. In order to prove that K0 is a circle we are going to show that all the lines
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Figure 6: Case: L ∩K ̸= ∅.

contained in Ω, passing through the centre o of K0, are lines of symmetry of K0. Let
W ⊂ Ω be a line passing through the centre o and let θ ∈ [0, π] such that q(θ) = W ∩L,
i.e., L(θ) meet L at W ∩ L. Let {ϕn} ⊂ [0, π] be a sequence such that ϕn → 0 when
n → ∞. It clear that K(θ, ϕn) → K0 when n → ∞. Each section K(θ, ϕn) has two
lines of symmetry D(θ, ϕn) and E(θ, ϕn) passing through q(θ) and m(θ), respectively.
By Lemma 2, K0 has a line of symmetry T passing through q(θ) and, since K0 has o
as a centre, T is also passing through o. Thus T = W . Hence K0 is a circle.

Lemma 13. K is a sphere with centre at o.

Proof. By Lemma 12, K0 is a circle. We suppose that the radius of K0 is equal to 1.
We are going to prove that K is a sphere of ratio 1 with centre at o. Let x ∈ ∂K. Let
θ ∈ [0, π] such that x ∈ K(θ, ϕθ) (by Lemmas 10 and 11 such θ exists). Let r be a real
number such that o = (r, 0, 0). By Lemma 11, the section K(θ, ϕθ) is a circle of radius

|L(θ) ∩K|
2

=
√
1− r2 sin2 θ.

Hence
||x− o|| = a2 +

(√
1− r2 sin2 θ

)2
= 1,

where a = r sin θ is the distance from o to L(θ).
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In Theorem 2, the hypothesis asks that the line L does not pass through the center of
symmetry o of K. The next result considers the case where o ∈ L. In this case, we
obtain the conclusion that K is a body of revolution. The proof is very similar to the
proof of Theorem 1.

Proof of Theorem 3

Proof. In order to prove that K is a body of revolution with axis L we are going to
show that every plane containing L is a plane of symmetry of K. Let Π be a plane,
L ⊂ Π. Let Γ be the plane perpendicular to Π, L ⊂ Γ and we denote by Γ1, Γ2 the
half-spaces defined by Γ. First we suppose that p /∈ Γ, say p ∈ Γ1. First, we will show
that Γ2 ∩K is a symmetric set with respect to Π. Let W be a line perpendicular to Π,
p ∈ W . Let x ∈ Γ2 ∩K. We denote by ∆ the plane generated by x and W . We claim
that

(∆ ∩ Γ) ∩ (L ∩ intK) ̸= ∅.

If (∆ ∩ Γ) ∩ (L ∩ intK) = ∅, it would have that ∆ ∩K ⊂ Γ1 but this would contradict
that x ∈ ∆ ∩K and x ∈ Γ2. Let Σ be the plane perpendicular to L passing through
y := (∆ ∩ Γ) ∩ (L ∩ intK). By Lemma 6, which we can use since L is an axis of
symmetry, the relation

t(y) = Σ ∩ ∂K (8)

holds. By hypothesis, there exists a line of symmetry H of ∆ ∩K passing through y.
We claim that H = Π ∩∆. Suppose that H ̸= Π ∩∆. We denote by ϕ : ∆ → ∆ the
reflection with respect to the line H. Since H ̸= Π∩∆ it follows that, on the one hand,
ϕ(M) ̸= M , where M := ∆ ∩ Γ, and, on the other hand, the line segment ϕ(M) ∩K
has y as mid-point. But, since ϕ(M) ̸= M , ϕ(M)∩K is not contained in Σ∩K, which
contradicts (8).
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