AN ALMOST-ORTHOGONALITY PRINCIPLE IN L^2 FOR DIRECTIONAL MAXIMAL FUNCTIONS

ANGELES ALFONSECA, FERNANDO SORIA AND ANA VARGAS

ABSTRACT. In this work we improve our result in [2]. We prove a strong-type almost-orthogonality principle for maximal functions along several directions. We use geometric methods and a covering lemma.

1. INTRODUCTION

Let Ω be a subset of $[0, \pi)$. Associated to Ω we consider the basis \mathcal{B} of all rectangles in \mathbb{R}^2 whose longest side forms an angle θ with the x-axis, for some $\theta \in \Omega$. The maximal operator associated with the set Ω is defined by

$$M_{\Omega}f(x) = \sup_{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R} |f(y)| \, dy.$$

The study of directional maximal functions began many years ago, and some particular cases were studied by Strömberg [11], Córdoba and Fefferman [5], Nagel, Stein and Wainger [9], Sjögren and Sjölin [10]. More recently, the interest on these problems was renewed with the results of Barrionuevo [3] and Katz [7, 8]. Nevertheless, only the operators associated to some particular sets Ω are well understood. Namely, the cases of lacunary sets of directions ([9] and [10]) and of finite sets [8].

In [2] we proposed a new method to study this operators. We decomposed Ω into several consecutive blocks, Ω_i . We proved an almost-orthogonality

²⁰⁰⁰ Mathematics Subject Classification: 42B25

Key words and phrases: Maximal operators, strong-type estimates.

Research partially supported by EU network 'HARP', and by MCyT Grant $\rm BFM2001/0189$.

principle that essentially meant that the weak L^2 -norm of M_{Ω} is the supremum of the norms of the operators M_{Ω_j} , plus a term associated to the sequence of end-points of the blocks. Let us explain this.

Without loss of generality, we can assume that $\Omega \subset [0, \pi/4)$. Let $\Omega_0 = \{\theta_1 > \theta_2 > \ldots > \theta_j > \ldots\}$ be an ordered subset of Ω . We take $\theta_0 = \frac{\pi}{4}$ and consider, for each $j \geq 1$, sets $\Omega_j = [\theta_j, \theta_{j-1}) \cap \Omega$, such that $\theta_j \in \Omega_j$ for all j. Assume also that $\Omega = \bigcup \Omega_j$.

To each one of the sets Ω_j , j = 0, 1, 2, ..., we associate the corresponding basis \mathcal{B}_j , and define the maximal operators associated to the sets Ω_j by

$$M_{\Omega_j}f(x) = \sup_{x \in R \in \mathcal{B}_j} \frac{1}{|R|} \int_R |f(y)| \, dy, \ \ j = 0, 1, 2, \dots$$

In [2] we proved the following result.

Theorem 1. There exist constants C_1 and C_2 , independent of the set Ω , such that

(1)
$$\|M_{\Omega}\|_{L^2 \to L^{2,\infty}}^2 \leq C_1 \sup_{j \geq 1} \|M_{\Omega_j}\|_{L^2 \to L^{2,\infty}}^2 + C_2 \|M_{\Omega_0}\|_{L^2 \to L^{2,\infty}}^2,$$

where $\|T\|_{L^2 \to L^{2,\infty}}$ denotes the "weak type (2,2)" norm of the operator T .

The main result of this paper is the "strong type (2,2)" analogue of Theorem 1.

Theorem 2. There exists a constant C independent of Ω such that

(2)
$$||M_{\Omega}||_{L^2 \to L^2} \le \sup_{j \ge 1} ||M_{\Omega_j}||_{L^2 \to L^2} + C ||M_{\Omega_0}||_{L^2 \to L^2},$$

where $||T||_{L^2 \to L^2}$ denotes the "strong type (2,2)" norm of the operator T.

The proof, presented in Section 2, relies on geometric arguments like the ones used in [2], and on a covering lemma by Carbery [4]. A version of this principle for general p, 1 can be found in [1].

It is worth noting that in Theorem 2, the constant multiplying the supremum of the norms of the M_{Ω_i} is 1. As we shall see, this will allow us to give an alternative proof to the result by Katz [8]. This and other applications of Theorem 2 are presented in Section 3.

2. The proof of Theorem 2.

We first linearize the operators M_{Ω} and M_{Ω_j} . For any $\alpha \in \mathbb{Z}^2$, Q_{α} will denote the unit cube centered at α . Given a set $\Lambda \subset [0, \pi/4)$, for each α we choose a rectangle $R_{\alpha} \in \mathcal{B}_{\Lambda}$, such that $R_{\alpha} \supset Q_{\alpha}$. We define the operator T_{Λ} as

$$T_{\Lambda}f(x) = \sum_{\alpha} \frac{1}{|R_{\alpha}|} \left(\int_{R_{\alpha}} f \right) \chi_{Q_{\alpha}}(x).$$

By definition, one can easily see that

(3)
$$T_{\Lambda}f(x) \le M_{\Lambda}f(x),$$

for any choice of rectangles $\{R_{\alpha}\}$. On the other hand, there is a sequence of linearized operators $\{T_{\Lambda}f\}$, associated to grids of smaller cubes in \mathbb{R}^2 , which converge pointwise to $M_{\Lambda}f$. By scaling invariance, we need only prove (2) with M_{Ω} replaced by T_{Ω} .

We shall show this using the following result, proved by Carbery in [4]. For the sake of completeness, we give the proof of this result, at the same time that we check the constants.

Theorem 3. Let T_{Λ} be as above. Then T_{Λ} is of strong type (p, p) if and only if there exist a constant $C_{p'}$, such that for any sequence $\{\lambda_{\alpha}\} \subset \mathbb{R}_+$, we have

(4)
$$\int \left(\sum_{\alpha} \lambda_{\alpha} \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}\right)^{p'} \leq C_{p'} \sum_{\alpha} |\lambda_{\alpha}|^{p'}.$$

Moreover, the infimum of the constants $(C_{p'})^{1/p'}$ satisfying (4) is $||T_{\Lambda}||_{L^p \to L^p}$.

PROOF: If T_{Λ} is of strong type (p, p), then its adjoint T_{Λ}^* defined by

$$T^*_{\Lambda}g(x) = \sum_{\alpha} \left(\int_{Q_{\alpha}} g\right) \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}(x),$$

is of strong type (p', p'), with the same norm. Taking $g = \sum_{\alpha} \lambda_{\alpha} \chi_{Q_{\alpha}}$, we obtain (4) with $C_{p'} = \|T_{\Lambda}^*\|_{L^{p'} \to L^{p'}}^{p'} = \|T_{\Lambda}\|_{L^p \to L^p}^{p'}$.

Conversely, if we have (4) then, for all $h \in L^{p'}$, letting $\lambda_{\alpha} = |\int_{Q_{\alpha}} h|$, we get

$$\int |T_{\Lambda}^*h|^{p'} \le C_{p'} \sum_{\alpha} \left| \int_{Q_{\alpha}} h \right|^{p'} \le C_{p'} \int |h|^{p'}.$$

(Here we have used Jensen's inequality, since $|Q_{\alpha}| = 1$, and the fact that the Q_{α} have disjoint interiors). Hence, T_{Λ} is of strong type (p, p) and its norm is bounded by $(C_{p'})^{1/p'}$.

Let us continue with the proof of Theorem 2. We define T_{Ω} for some choice of rectangles $\{R_{\alpha}\}$. We only need to prove that inequality (4) is satisfied, with p = 2 and $C_2^{1/2} = \sup_{j \ge 1} \|M_{\Omega_j}\|_{L^2 \to L^2} + C \|M_{\Omega_0}\|_{L^2 \to L^2}$. Set

$$I^{2} = \int \left(\sum_{\alpha} \lambda_{\alpha} \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}\right)^{2} = \int \left(\sum_{l} \sum_{\alpha:R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}\right)^{2}$$
$$= \int \sum_{l} \left(\sum_{\alpha:R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}\right)^{2}$$
$$+ 2\sum_{l} \sum_{j < l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{|R_{\alpha}||R_{\beta}|} \chi_{R_{\alpha}} \chi_{R_{\beta}}$$

= A + B.

For the first term we use (3) and Theorem 3 with p = 2 and $\Lambda = \Omega_l$. We obtain

$$A \leq \sum_{l} \|M_{\Omega_{l}}\|_{L^{2} \to L^{2}}^{2} \left(\sum_{\alpha: R_{\alpha} \in \Omega_{l}} |\lambda_{\alpha}|^{2}\right)$$
$$\leq \left(\sup_{l} \|M_{\Omega_{l}}\|_{L^{2} \to L^{2}}^{2}\right) \left(\sum_{l} \sum_{\alpha: R_{\alpha} \in \Omega_{l}} |\lambda_{\alpha}|^{2}\right)$$

DIRECTIONAL MAXIMAL FUNCTIONS

(5)
$$\leq \left(\sup_{l} \|M_{\Omega_{l}}\|_{L^{2} \to L^{2}}^{2}\right) \left(\sum_{\alpha} |\lambda_{\alpha}|^{2}\right).$$

Now we have to study B. Using the same geometric arguments as in [2], we have that there exists a constant C such that, if $R_{\alpha} \in \Omega_{l}$ and $R_{\beta} \in \Omega_{j}$ with j < l, then we can find certain rectangles $\widetilde{R}_{\alpha}^{-}$ and $\widetilde{R}_{\beta}^{+}$, containing R_{α} and R_{β} , respectively, pointing in the direction of θ_{j} and so that

$$\frac{|R_{\alpha} \cap R_{\beta}|}{|R_{\alpha}||R_{\beta}|} \le C \frac{|\widetilde{R}_{\alpha}^{-} \cap R_{\beta}|}{|\widetilde{R}_{\alpha}^{-}||R_{\beta}|} + C \frac{|R_{\alpha} \cap \widetilde{R}_{\beta}^{+}|}{|R_{\alpha}||\widetilde{R}_{\beta}^{+}|}.$$

Observe that both \widetilde{R}^-_{α} and \widetilde{R}^+_{β} are rectangles of the basis \mathcal{B}_0 . Then,

$$B \leq 2C \sum_{l} \sum_{j < l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{|\tilde{R}_{\alpha}^{-}||R_{\beta}|} \chi_{\tilde{R}_{\alpha}^{-}} \chi_{R_{\beta}}$$
$$+ 2C \sum_{l} \sum_{j < l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{|R_{\alpha}||\tilde{R}_{\beta}^{+}|} \chi_{R_{\beta}} \chi_{\tilde{R}_{\beta}^{+}}$$
$$= B^{-} + B^{+}.$$

We shall only work with the B^- (the other term is analogous). So,

(6)
$$B = 2C \sum_{l} \sum_{j < l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{|\widetilde{R}_{\alpha}^{-}||R_{\beta}|} \chi_{\widetilde{R}_{\alpha}^{-}} \chi_{R_{\beta}}$$
$$\leq 2C \int \left(\sum_{l} \sum_{R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{\chi_{\widetilde{R}_{\alpha}^{-}}}{|\widetilde{R}_{\alpha}^{-}|} \right) \left(\sum_{j} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\beta} \frac{\chi_{R_{\beta}}}{|R_{\beta}|} \right).$$

We use Cauchy-Schwarz's inequality to bound (6) by

$$\leq 2C \left(\int \left(\sum_{l} \sum_{R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{\chi_{\widetilde{R}_{\alpha}^{-}}}{|\widetilde{R}_{\alpha}^{-}|} \right)^{2} \right)^{1/2} \left(\int \left(\sum_{j} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\beta} \frac{\chi_{R_{\beta}}}{|R_{\beta}|} \right)^{2} \right)^{1/2} d\beta$$

Now, notice that $\widetilde{R}_{\alpha}^{-} \in \Omega_0$ for all α . Hence, we can majorize the first integral using again Theorem 3 and (3), and obtain

(7)
$$B^{-} \leq 2C \|M_{\Omega_{0}}\|_{L^{2} \to L^{2}} \left(\sum_{\alpha} |\lambda_{\alpha}|^{2}\right)^{1/2} I,$$

and also the same bound for B^+ . Combining the bounds (5) for A and (7) for B^{\pm} we get

$$I^{2} \leq \left(\sup_{l} \|M_{\Omega_{l}}\|_{L^{2} \to L^{2}}^{2}\right) \left(\sum_{\alpha} |\lambda_{\alpha}|^{2}\right) + C \|M_{\Omega_{0}}\|_{L^{2} \to L^{2}} \left(\sum_{\alpha} |\lambda_{\alpha}|^{2}\right)^{1/2} I.$$

This implies

$$I \le \left(\sup_{l} \|M_{\Omega_{l}}\|_{L^{2} \to L^{2}} + C \|M_{\Omega_{0}}\|_{L^{2} \to L^{2}} \right) \left(\sum_{\alpha} |\lambda_{\alpha}|^{2} \right)^{1/2}.$$

By Theorem 3, this finishes the proof of Theorem 2.

3. Some Applications

As a corollary of Theorem 2, we give a simple proof of the following result by Katz [8].

Corollary 4. There exists a constant K such that, for any set $\Omega \subset [0, \frac{\pi}{4})$ with cardinality N > 1, one has

(8)
$$\|M_{\Omega}\|_{L^2 \to L^2} \le K(\log N).$$

In [2] we obtained the bound $K(\log N)^{\alpha}$, for some $\alpha > 1$ which depended only on the constants C_1 and C_2 in Theorem 1. Here we are able to obtain the optimal exponent $\alpha = 1$, due to the fact that we have a constant 1 in front of the term $\sup_{j\geq 1} \|M_{\Omega_j}\|_{L^2 \to L^2}$ in (2).

PROOF: We can assume that $N = 2^M$. We use induction on M. For M = 1, 2 the inequality (8) follows from the boundedness of the strong maximal function. Now assume $M \ge 3$ and that (8) is true for all sets with cardinality 2^k where $1 \le k < M$; we may assume that K is big (indeed we shall need $K \ge 2C/\log 2$ where C is the constant in Theorem 2). If the elements of Ω are ordered, $\{\phi_1 > \phi_2 > \ldots > \phi_N\}$, we define Ω_0 to be the set consisting only on ϕ_N and the middle element $\phi_{\frac{N}{2}}$. In this way, there

are only two sets Ω_1 and Ω_2 . Each one of them has N/2 elements. So by Theorem 2 and the induction hypothesis,

$$\|M_{\Omega}\|_{L^2 \to L^2} \le K \log \frac{N}{2} + 2C = K \log N - K \log 2 + 2C \le K \log N$$

since we had assumed $K \ge \frac{2C}{\log 2}$.

In his paper [8], Katz also proves an analogous result to (8) for the weak type of M_{Ω} . Namely,

(9)
$$||M_{\Omega}||_{L^2 \to L^{2,\infty}} \le K (\log N)^{1/2},$$

for any set $\Omega \in [0, \frac{\pi}{4})$ with cardinality N.

In [2], as a corollary of the almost-orthogonality principle (1), we showed that

(10)
$$\|M_{\Omega}\|_{L^2 \to L^{2,\infty}} \le K (\log N)^{\beta},$$

for some $\beta > 1/2$ which depended on C_1 and C_2 . If we were able to prove (1) with $C_1 = 1$, the same argument of Corollary 4 would give us the optimal exponent $\beta = 1/2$. With a different argument, Anthony Carbery has shown that an improvement of (10) can be derived from a slight change in the proof of Theorem 2. We include this result here.

We need first the following weak-type analogue of Theorem 3, whose proof can be found in [4].

Theorem 5. Let T_{Λ} be as in Theorem 3. Then T_{Λ} is of weak type (2,2) if and only if there exist a constant C_2 , such that for any $A \subset \mathbb{Z}^2$, we have

(11)
$$\int \left(\sum_{\alpha \in A} \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}\right)^2 \le C_2(\sharp A)$$

Moreover, if $B_2(T_\Lambda)$ denotes the infimum of all the constants C_2 satisfying (11), then $B_2(T_\Lambda)$ is equivalent to $||T_\Lambda||^2_{L^2 \to L^{2,\infty}}$. **Corollary 6.** (A. Carbery.) There exists a constant C such that for any set $\Omega \subset [0, \frac{\pi}{4})$ with cardinality N > 1, one has

(12)
$$\|M_{\Omega}\|_{L^2 \to L^{2,\infty}} \le C(\log N)^{1/2} (\log \log N).$$

PROOF: Let us denote by B_N the supremum of $B_2(T_\Lambda)$, the supremum taken on all T_Λ such that the cardinality of Λ is N. Thus, we have to show

$$B_N \le C \log N (\log \log N)^2.$$

We fix Ω of cardinality N and T_{Ω} . As we did in the proof of Corollary 4, we define Ω_0 as the set consisting only on the last and the middle element in Ω . Consequently, each one of the sets Ω_1 and Ω_2 has N/2 elements. Then, a repetition of the proof of Theorem 2 gives

$$\int \left(\sum_{\alpha \in A} \frac{1}{|R_{\alpha}|} \chi_{R_{\alpha}}\right)^2 \le B_{N/2} \left(\sharp A\right)$$

(13)
$$+2C\left(\int \left(\sum_{l}\sum_{R_{\alpha}\in\Omega_{l}}\frac{\chi_{\widetilde{R}_{\alpha}^{\pm}}}{|\widetilde{R}_{\alpha}^{\pm}|}\right)^{p'}\right)^{1/p'}\left(\int \left(\sum_{j}\sum_{R_{\beta}\in\Omega_{j}}\frac{\chi_{R_{\beta}}}{|R_{\beta}|}\right)^{p}\right)^{1/p}.$$

Here, instead of applying Cauchy-Schwarz's inequality in (6), we have used Hölder's inequality for some p < 2 (which implies p' > 2) that will be chosen later. Now, by Theorem 3, the right hand side of (13) is bounded by

(14)
$$B_{N/2}(\sharp A) + 2C \|M_{\Omega_0}\|_{L^p \to L^p} (\sharp A)^{1/p'} \|M_{\Omega}\|_{L^{p'} \to L^{p'}} (\sharp A)^{1/p}.$$

By Corollary 4 and interpolation with L^{∞} ,

(15)
$$||M_{\Omega}||_{L^{p'} \to L^{p'}} \le C(\log N)^{2/p'} \le \widehat{C},$$

for some absolute constant \widehat{C} , provided that we choose p' such that $\frac{2}{p'} = \frac{1}{\log \log N}$. Thus, (14) and (15) imply that

$$B_N \le B_{N/2} + C \| M_{\Omega_0} \|_{L^p \to L^p}.$$

Since Ω_0 has only two elements, by Jessen-Marcinkiewicz-Zygmund theorem [6] and our choice of p', we have

$$\|M_{\Omega_0}\|_{L^p \to L^p} \le \frac{C}{(p-1)^2} \le C(\log \log N)^2.$$

Applying now an induction argument, we easily obtain that $B_N \leq C \log N (\log \log N)^2$, and hence (12).

ACKNOWLEDGEMENT: We would like to thank Anthony Carbery for many nice and interesting discussions on this subject and for letting us include Corollary 6 in this paper.

References

- A. Alfonseca, Strong type inequalities and an almost-orthogonality principle for families of maximal operators along directions in R². To appear in the Journal of the London Math. Soc.
- [2] A. Alfonseca, F. Soria, A. Vargas, A remark on maximal operators along directions in R². To appear in Mathematical Research Letters.
- [3] J.A. Barrionuevo, A note on the Kakeya maximal operator. Mathematical Research Letters, 3, (1995) 61-65.
- [4] A. Carbery, *Covering Lemmas Revisited*. Proc. Edinburgh Math. Soc. (2) **31** (1988), no. 1, 145-150.
- [5] A. Córdoba, R. Fefferman, On differentiation of integrals. Proc. Natl. Acad. Sci. USA 74, (1977), No 6, 2211-2213.
- B. Jessen, J. Marcinkiewicz, A. Zygmund, Note on the differentiability of multiple integrals. Fund. Math. 25 (1935), 217-234.
- [7] N.H. Katz, Remarks on maximal operators over arbitrary sets of directions. Bull. London Math. Soc. 31 (1999), No. 6, 700-710.
- [8] N.H. Katz, Maximal operators over arbitrary sets of directions. Duke Math. J. 97 (1999), No. 1, 67-79.
- [9] A. Nagel, E.M. Stein, S. Wainger, Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA 75, (1978), No 3, 1060-1062.
- [10] P. Sjögren, and P. Sjölin, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets. Ann. Inst. Fourier, Grenoble 31, 1 (1981), 157-175.

[11] J.O. Strömberg, Maximal functions associated to rectangles with uniformly distributed directions. Annals of Math. 107 (1978), 399-402.