AN ALMOST-ORTHOGONALITY PRINCIPLE IN L^{2} FOR DIRECTIONAL MAXIMAL FUNCTIONS

ANGELES ALFONSECA, FERNANDO SORIA AND ANA VARGAS

Abstract

In this work we improve our result in [2]. We prove a strong-type almost-orthogonality principle for maximal functions along several directions. We use geometric methods and a covering lemma.

1. Introduction

Let Ω be a subset of $[0, \pi)$. Associated to Ω we consider the basis \mathcal{B} of all rectangles in \mathbb{R}^{2} whose longest side forms an angle θ with the x -axis, for some $\theta \in \Omega$. The maximal operator associated with the set Ω is defined by

$$
M_{\Omega} f(x)=\sup _{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

The study of directional maximal functions began many years ago, and some particular cases were studied by Strömberg [11], Córdoba and Fefferman [5], Nagel, Stein and Wainger [9], Sjögren and Sjölin [10]. More recently, the interest on these problems was renewed with the results of Barrionuevo [3] and Katz [7, 8]. Nevertheless, only the operators associated to some particular sets Ω are well understood. Namely, the cases of lacunary sets of directions ([9] and [10]) and of finite sets [8].

In [2] we proposed a new method to study this operators. We decomposed Ω into several consecutive blocks, Ω_{j}. We proved an almost-orthogonality

[^0]principle that essentially meant that the weak L^{2}-norm of M_{Ω} is the supremum of the norms of the operators $M_{\Omega_{j}}$, plus a term associated to the sequence of end-points of the blocks. Let us explain this.

Without loss of generality, we can assume that $\Omega \subset[0, \pi / 4)$. Let $\Omega_{0}=$ $\left\{\theta_{1}>\theta_{2}>\ldots>\theta_{j}>\ldots\right\}$ be an ordered subset of Ω. We take $\theta_{0}=\frac{\pi}{4}$ and consider, for each $j \geq 1$, sets $\Omega_{j}=\left[\theta_{j}, \theta_{j-1}\right) \cap \Omega$, such that $\theta_{j} \in \Omega_{j}$ for all j. Assume also that $\Omega=\cup \Omega_{j}$.

To each one of the sets $\Omega_{j}, j=0,1,2, \ldots$, we associate the corresponding basis \mathcal{B}_{j}, and define the maximal operators associated to the sets Ω_{j} by

$$
M_{\Omega_{j}} f(x)=\sup _{x \in R \in \mathcal{B}_{j}} \frac{1}{|R|} \int_{R}|f(y)| d y, \quad j=0,1,2, \ldots
$$

In [2] we proved the following result.
Theorem 1. There exist constants C_{1} and C_{2}, independent of the set Ω, such that

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} \leq C_{1} \sup _{j \geq 1}\left\|M_{\Omega_{j}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}+C_{2}\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}, \tag{1}
\end{equation*}
$$

where $\|T\|_{L^{2} \rightarrow L^{2, \infty}}$ denotes the "weak type $(2,2)$ " norm of the operator T.
The main result of this paper is the "strong type (2,2)" analogue of Theorem 1.

Theorem 2. There exists a constant C independent of Ω such that

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \leq \sup _{j \geq 1}\left\|M_{\Omega_{j}}\right\|_{L^{2} \rightarrow L^{2}}+C\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2}} \tag{2}
\end{equation*}
$$

where $\|T\|_{L^{2} \rightarrow L^{2}}$ denotes the "strong type $(2,2)$ " norm of the operator T.
The proof, presented in Section 2, relies on geometric arguments like the ones used in [2], and on a covering lemma by Carbery [4]. A version of this principle for general $p, 1<p \leq \infty$ can be found in [1].

It is worth noting that in Theorem 2, the constant multiplying the supremum of the norms of the $M_{\Omega_{j}}$ is 1 . As we shall see, this will allow us to give
an alternative proof to the result by Katz [8]. This and other applications of Theorem 2 are presented in Section 3.

2. The proof of Theorem 2.

We first linearize the operators M_{Ω} and $M_{\Omega_{j}}$. For any $\alpha \in \mathbb{Z}^{2}, Q_{\alpha}$ will denote the unit cube centered at α. Given a set $\Lambda \subset[0, \pi / 4)$, for each α we choose a rectangle $R_{\alpha} \in \mathcal{B}_{\Lambda}$, such that $R_{\alpha} \supset Q_{\alpha}$. We define the operator T_{Λ} as

$$
T_{\Lambda} f(x)=\sum_{\alpha} \frac{1}{\left|R_{\alpha}\right|}\left(\int_{R_{\alpha}} f\right) \chi_{Q_{\alpha}}(x) .
$$

By definition, one can easily see that

$$
\begin{equation*}
T_{\Lambda} f(x) \leq M_{\Lambda} f(x), \tag{3}
\end{equation*}
$$

for any choice of rectangles $\left\{R_{\alpha}\right\}$. On the other hand, there is a sequence of linearized operators $\left\{T_{\Lambda} f\right\}$, associated to grids of smaller cubes in \mathbb{R}^{2}, which converge pointwise to $M_{\Lambda} f$. By scaling invariance, we need only prove (2) with M_{Ω} replaced by T_{Ω}.

We shall show this using the following result, proved by Carbery in [4]. For the sake of completeness, we give the proof of this result, at the same time that we check the constants.

Theorem 3. Let T_{Λ} be as above. Then T_{Λ} is of strong type (p, p) if and only if there exist a constant $C_{p^{\prime}}$, such that for any sequence $\left\{\lambda_{\alpha}\right\} \subset \mathbb{R}_{+}$, we have

$$
\begin{equation*}
\int\left(\sum_{\alpha} \lambda_{\alpha} \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}\right)^{p^{\prime}} \leq C_{p^{\prime}} \sum_{\alpha}\left|\lambda_{\alpha}\right|^{p^{\prime}} . \tag{4}
\end{equation*}
$$

Moreover, the infimum of the constants $\left(C_{p^{\prime}}\right)^{1 / p^{\prime}}$ satisfying (4) is $\left\|T_{\Lambda}\right\|_{L^{p} \rightarrow L^{p}}$.

Proof: If T_{Λ} is of strong type (p, p), then its adjoint T_{Λ}^{*} defined by

$$
T_{\Lambda}^{*} g(x)=\sum_{\alpha}\left(\int_{Q_{\alpha}} g\right) \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}(x)
$$

is of strong type $\left(p^{\prime}, p^{\prime}\right)$, with the same norm. Taking $g=\sum_{\alpha} \lambda_{\alpha} \chi_{Q_{\alpha}}$, we obtain (4) with $C_{p^{\prime}}=\left\|T_{\Lambda}^{*}\right\|_{L^{p^{\prime}} \rightarrow L^{p^{\prime}}}^{p^{\prime}}=\left\|T_{\Lambda}\right\|_{L^{p} \rightarrow L^{p}}^{p^{\prime}}$.

Conversely, if we have (4) then, for all $h \in L^{p^{\prime}}$, letting $\lambda_{\alpha}=\left|\int_{Q_{\alpha}} h\right|$, we get

$$
\int\left|T_{\Lambda}^{*} h\right|^{p^{\prime}} \leq C_{p^{\prime}} \sum_{\alpha}\left|\int_{Q_{\alpha}} h\right|^{p^{\prime}} \leq C_{p^{\prime}} \int|h|^{p^{\prime}}
$$

(Here we have used Jensen's inequality, since $\left|Q_{\alpha}\right|=1$, and the fact that the Q_{α} have disjoint interiors). Hence, T_{Λ} is of strong type (p, p) and its norm is bounded by $\left(C_{p^{\prime}}\right)^{1 / p^{\prime}}$.

Let us continue with the proof of Theorem 2. We define T_{Ω} for some choice of rectangles $\left\{R_{\alpha}\right\}$. We only need to prove that inequality (4) is satisfied, with $p=2$ and $C_{2}^{1 / 2}=\sup _{j \geq 1}\left\|M_{\Omega_{j}}\right\|_{L^{2} \rightarrow L^{2}}+C\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2}}$.

Set

$$
\begin{gathered}
I^{2}=\int\left(\sum_{\alpha} \lambda_{\alpha} \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}\right)^{2}=\int\left(\sum_{l} \sum_{\alpha: R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}\right)^{2} \\
=\int \sum_{l}\left(\sum_{\alpha: R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}\right)^{2} \\
+2 \sum_{l} \sum_{j<l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{\left|R_{\alpha}\right|\left|R_{\beta}\right|} \chi_{R_{\alpha}} \chi_{R_{\beta}} \\
=A+B .
\end{gathered}
$$

For the first term we use (3) and Theorem 3 with $p=2$ and $\Lambda=\Omega_{l}$. We obtain

$$
\begin{aligned}
& A \leq \sum_{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2}}^{2}\left(\sum_{\alpha: R_{\alpha} \in \Omega_{l}}\left|\lambda_{\alpha}\right|^{2}\right) \\
\leq & \left(\sup _{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2}}^{2}\right)\left(\sum_{l} \sum_{\alpha: R_{\alpha} \in \Omega_{l}}\left|\lambda_{\alpha}\right|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq\left(\sup _{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2}}^{2}\right)\left(\sum_{\alpha}\left|\lambda_{\alpha}\right|^{2}\right) . \tag{5}
\end{equation*}
$$

Now we have to study B. Using the same geometric arguments as in [2], we have that there exists a constant C such that, if $R_{\alpha} \in \Omega_{l}$ and $R_{\beta} \in \Omega_{j}$ with $j<l$, then we can find certain rectangles $\widetilde{R}_{\alpha}^{-}$and $\widetilde{R}_{\beta}^{+}$, containing R_{α} and R_{β}, respectively, pointing in the direction of θ_{j} and so that

$$
\frac{\left|R_{\alpha} \cap R_{\beta}\right|}{\left|R_{\alpha}\right|\left|R_{\beta}\right|} \leq C \frac{\left|\widetilde{R}_{\alpha}^{-} \cap R_{\beta}\right|}{\left|\widetilde{R}_{\alpha}^{-}\right|\left|R_{\beta}\right|}+C \frac{\left|R_{\alpha} \cap \widetilde{R}_{\beta}^{+}\right|}{\left|R_{\alpha}\right|\left|\widetilde{R}_{\beta}^{+}\right|} .
$$

Observe that both $\widetilde{R}_{\alpha}^{-}$and $\widetilde{R}_{\beta}^{+}$are rectangles of the basis \mathcal{B}_{0}. Then,

$$
\begin{gathered}
B \leq 2 C \sum_{l} \sum_{j<l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{\left|\widetilde{R}_{\alpha}^{-}\right|\left|R_{\beta}\right|} \chi_{\widetilde{R}_{\alpha}^{-}} \chi_{R_{\beta}} \\
+2 C \sum_{l} \sum_{j<l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{\left|R_{\alpha}\right|\left|\widetilde{R}_{\beta}^{+}\right|} \chi_{R_{\beta}} \chi_{\widetilde{R}_{\beta}^{+}} \\
=B^{-}+B^{+} .
\end{gathered}
$$

We shall only work with the B^{-}(the other term is analogous). So,

$$
\begin{aligned}
& B=2 C \sum_{l} \sum_{j<l} \int \sum_{R_{\alpha} \in \Omega_{l}} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\alpha} \lambda_{\beta} \frac{1}{\left|\widetilde{R}_{\alpha}^{-}\right|\left|R_{\beta}\right|} \chi_{\widetilde{R}_{\alpha}^{-}} \chi_{R_{\beta}} \\
& \leq 2 C \int\left(\sum_{l} \sum_{R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{\chi_{\widetilde{R}_{\alpha}^{-}}}{\left|\widetilde{R}_{\alpha}^{-}\right|}\right)\left(\sum_{j} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\beta} \frac{\chi_{R_{\beta}}}{\left|R_{\beta}\right|}\right) .
\end{aligned}
$$

We use Cauchy-Schwarz's inequality to bound (6) by

$$
\leq 2 C\left(\int\left(\sum_{l} \sum_{R_{\alpha} \in \Omega_{l}} \lambda_{\alpha} \frac{\chi_{\widetilde{R}_{\alpha}^{-}}}{\left|\widetilde{R}_{\alpha}^{-}\right|}\right)^{2}\right)^{1 / 2}\left(\int\left(\sum_{j} \sum_{R_{\beta} \in \Omega_{j}} \lambda_{\beta} \frac{\chi_{R_{\beta}}}{\left|R_{\beta}\right|}\right)^{2}\right)^{1 / 2}
$$

Now, notice that $\widetilde{R}_{\alpha}^{-} \in \Omega_{0}$ for all α. Hence,we can majorize the first integral using again Theorem 3 and (3), and obtain

$$
\begin{equation*}
B^{-} \leq 2 C\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2}}\left(\sum_{\alpha}\left|\lambda_{\alpha}\right|^{2}\right)^{1 / 2} I \tag{7}
\end{equation*}
$$

and also the same bound for B^{+}. Combining the bounds (5) for A and (7) for $B^{ \pm}$we get

$$
I^{2} \leq\left(\sup _{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2}}^{2}\right)\left(\sum_{\alpha}\left|\lambda_{\alpha}\right|^{2}\right)+C\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2}}\left(\sum_{\alpha}\left|\lambda_{\alpha}\right|^{2}\right)^{1 / 2} I
$$

This implies

$$
I \leq\left(\sup _{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2}}+C\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2}}\right)\left(\sum_{\alpha}\left|\lambda_{\alpha}\right|^{2}\right)^{1 / 2}
$$

By Theorem 3, this finishes the proof of Theorem 2.

3. Some Applications

As a corollary of Theorem 2, we give a simple proof of the following result by Katz [8].

Corollary 4. There exists a constant K such that, for any set $\Omega \subset\left[0, \frac{\pi}{4}\right)$ with cardinality $N>1$, one has

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \leq K(\log N) \tag{8}
\end{equation*}
$$

In [2] we obtained the bound $K(\log N)^{\alpha}$, for some $\alpha>1$ which depended only on the constants C_{1} and C_{2} in Theorem 1. Here we are able to obtain the optimal exponent $\alpha=1$, due to the fact that we have a constant 1 in front of the term $\sup _{j \geq 1}\left\|M_{\Omega_{j}}\right\|_{L^{2} \rightarrow L^{2}}$ in (2).

Proof: We can assume that $N=2^{M}$. We use induction on M. For $M=1,2$ the inequality (8) follows from the boundedness of the strong maximal function. Now assume $M \geq 3$ and that (8) is true for all sets with cardinality 2^{k} where $1 \leq k<M$; we may assume that K is big (indeed we shall need $K \geq 2 C / \log 2$ where C is the constant in Theorem 2). If the elements of Ω are ordered, $\left\{\phi_{1}>\phi_{2}>\ldots>\phi_{N}\right\}$, we define Ω_{0} to be the set consisting only on ϕ_{N} and the middle element $\phi_{\frac{N}{2}}$. In this way, there
are only two sets Ω_{1} and Ω_{2}. Each one of them has $N / 2$ elements. So by Theorem 2 and the induction hypothesis,

$$
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \leq K \log \frac{N}{2}+2 C=K \log N-K \log 2+2 C \leq K \log N
$$

since we had assumed $K \geq \frac{2 C}{\log 2}$.

In his paper [8], Katz also proves an analogous result to (8) for the weak type of M_{Ω}. Namely,

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}, \infty} \leq K(\log N)^{1 / 2} \tag{9}
\end{equation*}
$$

for any set $\Omega \in\left[0, \frac{\pi}{4}\right)$ with cardinality N.
In [2], as a corollary of the almost-orthogonality principle (1), we showed that

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}} \leq K(\log N)^{\beta} \tag{10}
\end{equation*}
$$

for some $\beta>1 / 2$ which depended on C_{1} and C_{2}. If we were able to prove (1) with $C_{1}=1$, the same argument of Corollary 4 would give us the optimal exponent $\beta=1 / 2$. With a different argument, Anthony Carbery has shown that an improvement of (10) can be derived from a slight change in the proof of Theorem 2. We include this result here.

We need first the following weak-type analogue of Theorem 3, whose proof can be found in [4].

Theorem 5. Let T_{Λ} be as in Theorem 3. Then T_{Λ} is of weak type $(2,2)$ if and only if there exist a constant C_{2}, such that for any $A \subset \mathbb{Z}^{2}$, we have

$$
\begin{equation*}
\int\left(\sum_{\alpha \in A} \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}\right)^{2} \leq C_{2}(\sharp A) . \tag{11}
\end{equation*}
$$

Moreover, if $B_{2}\left(T_{\Lambda}\right)$ denotes the infimum of all the constants C_{2} satisfying (11), then $B_{2}\left(T_{\Lambda}\right)$ is equivalent to $\left\|T_{\Lambda}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}$.

Corollary 6. (A. Carbery.) There exists a constant C such that for any set $\Omega \subset\left[0, \frac{\pi}{4}\right)$ with cardinality $N>1$, one has

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}, \infty} \leq C(\log N)^{1 / 2}(\log \log N) \tag{12}
\end{equation*}
$$

Proof: Let us denote by B_{N} the supremum of $B_{2}\left(T_{\Lambda}\right)$, the supremum taken on all T_{Λ} such that the cardinality of Λ is N. Thus, we have to show

$$
B_{N} \leq C \log N(\log \log N)^{2} .
$$

We fix Ω of cardinality N and T_{Ω}. As we did in the proof of Corollary 4, we define Ω_{0} as the set consisting only on the last and the middle element in Ω. Consequently, each one of the sets Ω_{1} and Ω_{2} has $N / 2$ elements. Then, a repetition of the proof of Theorem 2 gives

$$
\begin{gathered}
\int\left(\sum_{\alpha \in A} \frac{1}{\left|R_{\alpha}\right|} \chi_{R_{\alpha}}\right)^{2} \leq B_{N / 2}(\sharp A) \\
+2 C\left(\int\left(\sum_{l} \sum_{R_{\alpha} \in \Omega_{l}} \frac{\chi_{\widetilde{R}_{\alpha}^{ \pm}}}{\left|\widetilde{R}_{\alpha}^{ \pm}\right|}\right)^{p^{\prime}}\right)^{1 / p^{\prime}}\left(\int\left(\sum_{j} \sum_{R_{\beta} \in \Omega_{j}} \frac{\chi_{R_{\beta}}}{\left|R_{\beta}\right|}\right)^{p}\right)^{1 / p} .
\end{gathered}
$$

Here, instead of applying Cauchy-Schwarz's inequality in (6), we have used Hölder's inequality for some $p<2$ (which implies $p^{\prime}>2$) that will be chosen later. Now, by Theorem 3, the right hand side of (13) is bounded by

$$
\begin{equation*}
B_{N / 2}(\sharp A)+2 C\left\|M_{\Omega_{0}}\right\|_{L^{p} \rightarrow L^{p}}(\sharp A)^{1 / p^{\prime}}\left\|M_{\Omega}\right\|_{L^{p^{\prime}} \rightarrow L^{p^{\prime}}}(\sharp A)^{1 / p} . \tag{14}
\end{equation*}
$$

By Corollary 4 and interpolation with L^{∞},

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{p^{\prime}} \rightarrow L^{p^{\prime}}} \leq C(\log N)^{2 / p^{\prime}} \leq \widehat{C} \tag{15}
\end{equation*}
$$

for some absolute constant \widehat{C}, provided that we choose p^{\prime} such that $\frac{2}{p^{\prime}}=$ $\frac{1}{\log \log N}$. Thus, (14) and (15) imply that

$$
B_{N} \leq B_{N / 2}+\widetilde{C}\left\|M_{\Omega_{0}}\right\|_{L^{p} \rightarrow L^{p}}
$$

Since Ω_{0} has only two elements, by Jessen-Marcinkiewicz-Zygmund theorem [6] and our choice of p^{\prime}, we have

$$
\left\|M_{\Omega_{0}}\right\|_{L^{p} \rightarrow L^{p}} \leq \frac{C}{(p-1)^{2}} \leq C(\log \log N)^{2}
$$

Applying now an induction argument, we easily obtain that $B_{N} \leq C \log N(\log \log N)^{2}$, and hence (12).

Acknowledgement: We would like to thank Anthony Carbery for many nice and interesting discussions on this subject and for letting us include Corollary 6 in this paper.

References

[1] A. Alfonseca, Strong type inequalities and an almost-orthogonality principle for families of maximal operators along directions in \mathbb{R}^{2}. To appear in the Journal of the London Math. Soc.
[2] A. Alfonseca, F. Soria, A. Vargas, A remark on maximal operators along directions in $\mathbf{R}^{\mathbf{2}}$. To appear in Mathematical Research Letters.
[3] J.A. Barrionuevo, A note on the Kakeya maximal operator. Mathematical Research Letters, 3, (1995) 61-65.
[4] A. Carbery, Covering Lemmas Revisited. Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 1, 145-150.
[5] A. Córdoba, R. Fefferman, On differentiation of integrals. Proc. Natl. Acad. Sci. USA 74, (1977), No 6, 2211-2213.
[6] B. Jessen, J. Marcinkiewicz, A. Zygmund, Note on the differentiability of multiple integrals. Fund. Math. 25 (1935), 217-234.
[7] N.H. Katz, Remarks on maximal operators over arbitrary sets of directions. Bull. London Math. Soc. 31 (1999), No. 6, 700-710.
[8] N.H. Katz, Maximal operators over arbitrary sets of directions. Duke Math. J. 97 (1999), No. 1, 67-79.
[9] A. Nagel, E.M. Stein, S. Wainger, Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA 75, (1978), No 3, 1060-1062.
[10] P. Sjögren, and P. Sjölin, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets. Ann. Inst. Fourier, Grenoble 31, 1 (1981), 157-175.
[11] J.O. Strömberg, Maximal functions associated to rectangles with uniformly distributed directions. Annals of Math. 107 (1978), 399-402.

[^0]: 2000 Mathematics Subject Classification: 42B25
 Key words and phrases: Maximal operators, strong-type estimates.
 Research partially supported by EU network 'HARP', and by MCyT Grant BFM2001/0189 .

