MATH 857: Homework 1: Due Feb 22

- 1. Folland, Chapter 6, Ex. 2 and 5.
- 2. Use induction to prove the following generalization of Hölder's inequality: Let (X, \mathcal{M}, μ) be a measure space. Given $1 < p_1, p_2, \dots, p_n < \infty$ such that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_2}$ $\cdots + \frac{1}{n_{r}} = 1$, and measurable functions $f_j \in L_j^p(X)$, show that $\left| \int_{X} f_1 f_2 \cdots f_n \, d\mu \right| \le \|f_1\|_{p_1} \, \|f_2\|_{p_2} \cdots \|f_n\|_{p_n}.$
- 3. Let $1 \le p < \infty$. If $f_n, f \in L^p$ and $f_n \to f$ a.e., then $||f_n f||_p \to 0$ if and only if $||f_n||_p \to ||f||_p$.
- 4. If $\mu(X) = 1$, prove that $\lim_{q \to \infty} \|f\|_q = \|f\|_{\infty}$, even in the case where $\|f\|_{\infty} = \infty$. (In fact, the result is also true for any space X with finite measure).
- 5. Let p be a real number, 0 .
 - (a) Find a measure space (X, μ) and a function $f \in L^p \setminus \bigcup_{p < r < \infty} L^r$.
 - (b) Find a measure space (X, μ) and a function $f \in L^p \setminus \bigcup_{0 \le r \le p} L^r$.
 - (c) Find a measure space (X, μ) and a function $f \in L^p \setminus \bigcup_{r \neq p} L^r$. *Hint: Consider functions of the type* $\frac{1}{x^a}$ *or* $\frac{1}{x^a(1+\log x)^b}$ *for appropriate powers*

a,*b*.

- 6. Let p be a real number, 0 .
 - (a) Find a measure space (X, μ) and a function $f \in \left(\bigcap_{r \in T \subseteq \infty} L^r\right) \setminus L^p$.
 - (b) Find a measure space (X, μ) and a function $f \in \left(\bigcap_{r \in I} L^r\right) \setminus L^p$.
 - (c) Prove that it is impossible to find a measure space (X, μ) and a function $f \in$ $\left(\bigcap L^{r}\right)\setminus L^{p}.$
- 7. Consider the 2π -periodic odd function defined on $[0, \pi]$ by $f(x) = x(\pi x)$.
 - (a) Draw the graph on f on $[-\pi, \pi]$.

(b) Compute the Fourier coefficients of f and show that

$$f(x) = \frac{8}{\pi} \sum_{k \text{ odd } k > 0} \frac{\sin(kx)}{k^3}$$

- 8. Consider the function defined on $[-\pi, \pi]$ by f(x) = |x|.
 - (a) Draw the graph on f on $[-\pi, \pi]$.
 - (b) Compute the Fourier coefficients of f.
 - (c) Write the Fourier series of f in terms of sines and cosines.
 - (d) Taking x = 0, show that

$$\sum_{n \text{ odd } , n > 1} \frac{1}{n^2} = \frac{\pi^2}{8} \text{ and } \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- 9. Consider an interval $[a, b] \subset [-\pi, \pi]$ and $f(x) = \chi_{[a,b]}(x)$.
 - (a) Find the Fourier series of f (in terms of exponentials).
 - (b) Show that if $a \neq \pi$ or $b \neq \pi$, and $a \neq b$, then the Fourier series does not converge **absolutely** for any x. Hint: Take $x_0 = (b a)/2$ and check that $|sin(nx_0)| \geq c > 0$ for many values of n.
 - (c) However, prove that the Fourier series converges at every point x. What happens in the case $a = -\pi$ and $b = \pi$?