MATH 857: Homework 1: Due Feb 22

1. Folland, Chapter 6, Ex. 2 and 5.
2. Use induction to prove the following generalization of Hölder's inequality: Let (X, \mathcal{M}, μ) be a measure space. Given $1<p_{1}, p_{2}, \ldots, p_{n}<\infty$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+$ $\cdots+\frac{1}{p_{n}}=1$, and measurable functions $f_{j} \in L_{j}^{p}(X)$, show that

$$
\left|\int_{X} f_{1} f_{2} \cdots f_{n} d \mu\right| \leq\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{n}\right\|_{p_{n}} .
$$

3. Let $1 \leq p<\infty$. If $f_{n}, f \in L^{p}$ and $f_{n} \rightarrow f$ a.e., then $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ if and only if $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.
4. If $\mu(X)=1$, prove that $\lim _{q \rightarrow \infty}\|f\|_{q}=\|f\|_{\infty}$, even in the case where $\|f\|_{\infty}=\infty$. (In fact, the result is also true for any space X with finite measure).
5. Let p be a real number, $0<p<\infty$.
(a) Find a measure space (X, μ) and a function $f \in L^{p} \backslash \bigcup_{p<r<\infty} L^{r}$.
(b) Find a measure space (X, μ) and a function $f \in L^{p} \backslash \bigcup_{0<r<p} L^{r}$.
(c) Find a measure space (X, μ) and a function $f \in L^{p} \backslash \bigcup_{r \neq p} L^{r}$.

Hint: Consider functions of the type $\frac{1}{x^{a}}$ or $\frac{1}{x^{a}(1+\log x)^{b}}$ for appropriate powers a, b.
6. Let p be a real number, $0<p<\infty$.
(a) Find a measure space (X, μ) and a function $f \in\left(\bigcap_{p<r<\infty} L^{r}\right) \backslash L^{p}$.
(b) Find a measure space (X, μ) and a function $f \in\left(\bigcap_{0<r<p} L^{r}\right) \backslash L^{p}$.
(c) Prove that it is impossible to find a measure space (X, μ) and a function $f \in$ $\left(\bigcap_{r \neq p} L^{r}\right) \backslash L^{p}$.
7. Consider the 2π-periodic odd function defined on $[0, \pi]$ by $f(x)=x(\pi-x)$.
(a) Draw the graph on f on $[-\pi, \pi]$.
(b) Compute the Fourier coefficients of f and show that

$$
f(x)=\frac{8}{\pi} \sum_{k \text { odd }, k>0} \frac{\sin (k x)}{k^{3}}
$$

8. Consider the function defined on $[-\pi, \pi]$ by $f(x)=|x|$.
(a) Draw the graph on f on $[-\pi, \pi]$.
(b) Compute the Fourier coefficients of f.
(c) Write the Fourier series of f in terms of sines and cosines.
(d) Taking $x=0$, show that

$$
\sum_{n \text { odd }, n>1} \frac{1}{n^{2}}=\frac{\pi^{2}}{8} \text { and } \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

9. Consider an interval $[a, b] \subset[-\pi, \pi]$ and $f(x)=\chi_{[a, b]}(x)$.
(a) Find the Fourier series of f (in terms of exponentials).
(b) Show that if $a \neq \pi$ or $b \neq \pi$, and $a \neq b$, then the Fourier series does not converge absolutely for any x. Hint: Take $x_{0}=(b-a) / 2$ and check that $\left|\sin \left(n x_{0}\right)\right| \geq c>0$ for many values of n.
(c) However, prove that the Fourier series converges at every point x. What happens in the case $a=-\pi$ and $b=\pi$?
