MATH 756 HW1: Due Monday Jan 28

1. Let $p \in (1, \infty)$ and $f \in L^p[0, 1]$. Show that

$$\lim_{y \to 0^+} y^{\frac{1-p}{p}} \int_0^y f(x) \, dx = 0.$$

2. Let (X, μ) and (Y, ν) be σ -finite measure spaces and let $K \in L^2(\mu \times \nu)$. For $f \in L^2(\nu)$, we define the operator

$$Tf(x) = \int_{Y} K(x, y) f(y) d\nu(y).$$

Prove

- (a) Tf(x) is well defined for μ -a.e. x.
- (b) $Tf \in L^2(\mu)$.
- (c) $||Tf||_2 \le ||K||_2 ||f||_2$.
- **3.** For this problem, read first Theorem 6.20 and Corollary 6.21 (and their proofs) in Folland.
 - (a) Let K(x) be a non-negative measurable function on $(0, \infty)$ such that for every 0 < s < 1,

$$\int_0^\infty K(x)x^{s-1}dx = \phi(s) < \infty.$$

Let 1 , let q be its conjugate exponent, and let <math>f, g be non-negative measurable functions on $(0, \infty)$. Show

$$\int_0^\infty \int_0^\infty K(xy) f(x) g(y) dx dy \le \phi(p^{-1}) \left[\int_0^\infty x^{p-2} f(x)^p dx \right]^{1/p} \left[\int_0^\infty g(x)^q dx \right]^{1/q}.$$

(b) Use (a) to show that the operator

$$Tf(x) = \int_0^\infty K(xy)f(x)dx$$

is bounded on $L^2(0,\infty)$ with norm less than or equal $\phi(1/2)$.

- (c) What are T and ϕ in the particular case where $K(x) = e^{-x}$?
- (d) Let 1 and let q be its conjugate exponent. Define

$$Tf(x) = x^{-1/p} \int_0^x f(t) dt.$$

Show that T is a bounded linear map from $L^q(0,\infty)$ to $C_0(0,\infty)$ (the set of continuous functions vanishing at infinity).

- 4. Show that weak L^p is a vector space.
- **5.** Let (X, μ) be a measure space.
 - (a) Let $1 \le p < r \le \infty$, and let $f \in L^p(\mu) \cap L^r(\mu)$. Prove that $f \in L^q(\mu)$ for every p < q < r.
 - (b) Let $0 . Show that <math>L^p(\mu) \not\subset L^q(\mu)$ if and only if X contains sets of arbitrarily small positive measure.
 - (c) Let $0 . Show that <math>L^{q}(\mu) \not\subset L^{p}(\mu)$ if and only if X contains sets of arbitrarily large finite measure.
 - (d) Prove that if f is in weak L^p and $\mu(\{x : f(x) \neq 0\} < \infty$, then $f \in L^q$ for every q < p. On the other hand, if f is in weak L^p and in L^{∞} , then $f \in L^q$ for all q > p.