MATH 756

HW3: Due Friday March 1

1. Let $F_{N}(x)$ be the N-th Fejer kernel, i.e. $\frac{1}{N+1} \sum_{k=0}^{N} D_{k}(x)$, where $\left\{D_{k}(x)\right\}$ are the Dirichlet kernels.
(a) Show that the Fejer kernel can also be written as follows:

$$
F_{N}(x)=\frac{1}{N+1}\left(\frac{\sin ((N+1) \pi x)}{\sin (\pi x)}\right)^{2}
$$

(b) Compute the Fourier coefficients of F_{N}.
(c) Show that for every $j \in \mathbb{Z}, \lim _{N \rightarrow \infty} \widehat{F_{N}}(j)=1$.
(d) Prove that $\lim _{N \rightarrow \infty}\left\|F_{N}\right\|_{2}=\infty$.
(e) Compute $\lim _{N \rightarrow \infty} \frac{\left\|F_{N}\right\|_{2}}{\left\|D_{N}\right\|_{2}}$.
2. Let $f \in L^{1}(\mathbb{T})$ such that $\{\widehat{f}(n)\}_{n \in \mathbb{Z}} \in \ell^{1}(\mathbb{Z})$. Show that there is a countinuous function g such that $g=f$ a.e.
3. Riemann-Lebesgue Lemma says that the Fourier coefficients of a function in $L^{1}(\mathbb{T})$ tend to zero. This exercise shows that they can tend arbitrarily slowly. Given a sequence of positive numbers $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$, prove that there is a function $f \in C[0,1]$ such that $|\widehat{f}(n)|+|\widehat{f}(-n)| \geq \epsilon_{n}$ for infinite values of n (hint: consider an appropriate subsequence of $\left\{\epsilon_{n}\right\}$ and use Problem $2)$.
4. Compute the Fourier coefficients of the function $f(x)=a x+b x^{2}+c x^{3}$, defined on $[0,1]$ and extended periodically to \mathbb{R}. Use the coefficients to find the numerical value of the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \sum_{n=1}^{\infty} \frac{1}{n^{4}}, \sum_{n=1}^{\infty} \frac{1}{n^{6}}
$$

Turn over
5. Compute the Fourier series of the following functions (considered defined on $[0,1)$ and extended periodically).
(a) $f_{1}(x)=\sin (4 \pi x) \cos (2 \pi x)$
(b) $f_{2}(x)=\sin (x)$
(c) $f_{3}(x)=e^{x}$
(d) $f_{4}(x)=\cosh (2 \pi x)$
(e) $f_{5}(x)=\chi(1 / 3,2 / 3)(x)$

