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Abstract. In this paper we prove an almost-orthogonality principle for
maximal operators over arbitrary sets of directions in R2. Namely, we
obtain Lp-bounds for an operator of this type from the corresponding
Lp-bounds of the maximal functions associated to a certain partition of
the set of directions, and from the particular structure of this partition.
We give applications to several types of maximal operators.

1. Introduction

In this paper we continue the study of maximal functions along directions
in R2, initiated in [1] in connection with a certain notion of ‘planar’ almost-
orthogonality.

Let Ω0 be an ordered subset of [0, π
4 ). We denote its elements by θ1, θ2, . . .,

with
π

4
= θ0 > θ1 > θ2 > ... > θj > ...

We shall refer to Ω0 as the ‘separating’ set, and to its elements θj as the
‘separators’. For each j ≥ 1, we have a set Ωj ⊂ [θj , θj−1), with θj ∈ Ωj .
The maximal operators associated to these sets are defined as

MΩ0f(x, y) = sup
h>0,j≥1

∣∣∣∣ 1
2h

∫ h

−h
f(x− t cos θj , y − t sin θj) dt

∣∣∣∣ ,
and

MΩjf(x, y) = sup
h>0,θ∈Ωj

∣∣∣∣ 1
2h

∫ h

−h
f(x− t cos θ, y − t sin θ) dt

∣∣∣∣ ,
for j ≥ 1. The maximal function over all these directions, that is, on Ω =
∪j≥1Ωj is

MΩf(x, y) = sup
j≥1

MΩjf(x, y).

We want to determine Lp-bounds of MΩ from the corresponding Lp-
bounds of each MΩj and the particular structure of the separating set Ω0. In
[1], the author proved with F. Soria and A. Vargas the following relationship
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2 A. Alfonseca

between the L2-norms of MΩ and MΩj : there exist constants C1 and C2,
independent of the set Ω, such that

(1) ‖MΩ‖2
L2→L2,∞ ≤ C1 sup

j≥1
‖MΩj‖2

L2→L2,∞ + C2 ‖MΩ0‖2
L2→L2,∞ .

As a corollary, one gets a simple proof of a beautiful result by N. Katz
[7], solving a conjecture that was open for many years: if Ω has cardinality
N > 1, then

‖MΩ‖L2→L2,∞ ≤ C(logN)α,

for some constants C and α independent of Ω. Actually, Katz proves it with
the sharp exponent α = 1

2 .
Another direct consequence of (1) is the following. If Ω0 is a lacunary

sequence, then

(2) ‖ supMΩj‖L2→L2,∞ ≤ C sup ‖MΩj‖L2→L2,∞ ,

i.e. we bound the norm of a supremum by the supremum of the norms.
Notice that we cannot directly get strong type 2 inequalities by interpolation
between this and estimates on L1, since ∪j≥1Ωj is an infinite set.

Inequalities (1) and (2) show that the operators MΩj satisfy an almost-
orthogonality principle when we look at their weak type L2 norms. Our aim
is to find a similar relation between the strong-type norms of these maximal
functions. Instead of the geometrical arguments used in [1], we shall follow
the approach of Nagel, Stein, Wainger [8] (see also [9]). In order to do that,
we need to introduce a Littlewood-Paley decomposition and the associated
square function. All this work is presented in Section 2. The last section
contains several applications.

2. The Main Result

Let Ω0 = {θ1 > θ2 > ... > θj > ...} be a subset of [0, π
4 ). For each j ≥ 1,

we consider sets Ωj ⊂ [θj , θj−1), where we take θ0 = π
4 . We shall also assume

that θj ∈ Ωj . We define the maximal operators associated to the sets Ωj ,
j ≥ 0, as

MΩ0f(x, y) = sup
h>0,j

∣∣∣∣ 1
2h

∫ h

−h
f(x− t cos θj , y − t sin θj) dt

∣∣∣∣ ,
and, if j ≥ 1

MΩjf(x, y) = sup
h>0,θ∈Ωj

∣∣∣∣ 1
2h

∫ h

−h
f(x− t cos θ, y − t sin θ) dt

∣∣∣∣ ,
for f ∈ S . We also define the maximal function

MΩf(x, y) = sup
j≥1

MΩjf(x, y).

In order to state our result, we need to introduce a certain square function
associated with Ω0. For each j ≥ 1, set δj = |θj−1− θj |. Let us consider the
following angular sectors
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∆j =
{

(x, y) ∈ R2

∣∣∣∣ θj −
1
20
δj ≤ arctan

(
x

−y

)
< θj−1 +

1
20
δj

}
,

and the wider sectors

∆̃j =
{

(x, y) ∈ R2

∣∣∣∣ θj −
1
10
δj ≤ arctan

(
x

−y

)
< θj−1 +

1
10
δj

}
.

Given j ≥ 1, we pick a function ωj , homogeneous of degree zero, C∞ on
S1, identically equal to 1 in ∆j and vanishing outside ∆̃j . The multiplier
operator Sj associated to ωj is defined by

(Sjf )̂ = ωj f̂ ,

and the square function S by

Sf(x) =

∑
j≥1

|Sjf(x)|2
1/2

.

The properties of S depend in a direct way on the geometry of Ω0.
We can now state the following two results.

Theorem 1. With the above notation, given 2 ≤ p < ∞, there exists a
finite constant Cp such that

(3) ‖MΩf‖p ≤ Cp

[
‖MΩ0f‖p +

(
sup
j≥1

‖MΩj‖Lp→Lp

)
‖Sf‖p

]
.

For 1 < p < 2, we get the following

Theorem 2. If 1 < p < 2, there exists a finite constant Cp such that

(4) ‖MΩf‖p ≤ Cp

[
‖MΩ0‖Lp→Lp +

(
sup
j≥1

‖MΩj‖Lp→Lp

)
‖S‖2/p

Lp→Lp

]
‖f‖p.

Theorem 1 will follow from the two lemmas below. Let us define the
directional Hardy-Littlewood maximal function, in the direction of θ by

Mθf(x) = sup
h>0

∣∣∣∣ 1
2h

∫ h

−h
f(x− t cos θ, y − t sin θ)dt

∣∣∣∣ .
Then we have

Lemma 3. For each j ≥ 1 and for all θ ∈ Ωj,

(5) Mθf(x) ≤ C[Mθj
f(x) +MMθ(Sjf)(x)],

where M is the ordinary Hardy-Littlewood maximal function.
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Proof. Our argument represents a slight modification of the proof of Lemma
3 in [5]. Choose a positive function ψ ∈ C∞0 (R) with ψ = 1 on [−1, 1]. Fix
j ≥ 1 and θ ∈ Ωj .

Then if f ≥ 0,

Mθf(x) ≤ C sup
h>0

1
2h

∫ ∞

−∞
ψ

(
t

h

)
f(x− t cos θ, y − t sin θ) dt =

(6) = C sup
h>0

Nh,j,θf(x).

Set m = ψ̂. Take a function φ ∈ C∞0 (R2), with φ(ξ) = 1 if |ξ| ≤ 1. We
decompose (Nh,j,θf )̂ (ξ) as

(Nh,j,θf )̂ (ξ) = m(hξ1 cos θ + hξ2 sin θ)f̂(ξ) =

= m(hξ1 cos θ + hξ2 sin θ)φ(hδj ξ) f̂(ξ) +

+m(hξ1 cos θ + hξ2 sin θ) (1− φ(hδj ξ)) (1− ωj(hξ))f̂(ξ) +

+m(hξ1 cos θ + hξ2 sin θ) (1− φ(hδj ξ))ωj(hξ)f̂(ξ) =

(7) = ̂Ih,j,θ(f)(ξ) + ̂IIh,j,θ(f)(ξ) + ̂IIIh,j,θ(f)(ξ).

Consider the multiplier in the first term, m(hξ1 cos θ + hξ2 sin θ)φ(hδjξ).
If we compose it with an appropriate rotation, we can write it in the form
m(hη1)φ(hδjη). Then, differentiating with respect to η1 and η2, we see that
the Fourier transform K1 of m(hη1)φ(hδj η) satisfies

|z1|α|z2|β |K1(z)| ≤ Cδ−1+β
j ,

so that the operator K1 ∗ f is bounded by the maximal function over rect-
angles of eccentricity δj and sides parallel to the coordinate axes. Therefore
suph Ih,j,θ(f) is bounded by Mθ,δj

f , the maximal function over rectangles
of eccentricity δj and sides parallel to the direction θ. Now, observe that
|θ− θj | ≤ δj , so the rectangles in the definition of Mθ,δj

f can be included in
rectangles of comparable area and sides parallel to θj . Hence,

| sup
h>0

Ih,j,θf(x)| ≤ CMθj
f(x).

The second term is treated in the same way. The third term is clearly
controlled by MMθ(Sjf). This finishes the proof of Lemma 3.

�

For the proof of Theorem 1, we also need the following lemma.

Lemma 4. Assume that for some p > 1, q ≥ 2 and for any sequence of
functions {fj}, one has

(8)

∥∥∥∥∥∥∥
 ∞∑

j=1

∣∣MΩjfj

∣∣q1/q
∥∥∥∥∥∥∥

p

≤ B

∥∥∥∥∥∥∥
 ∞∑

j=1

|fj |q
1/q

∥∥∥∥∥∥∥
p

.
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Then

(9) ‖MΩf‖p ≤ Cp [ ‖MΩ0f‖p +B‖Sf‖p ] ,

for some constant Cp.

Proof. From the pointwise estimate (5) in Lemma 3, we get

MΩf(x) = sup
j≥1,θ∈Ωj

Mθf(x) ≤ C

[
MΩ0f(x) + sup

j≥1,θ∈Ωj

MMθ(Sjf)(x)

]
.

Using the Hardy-Littlewood maximal theorem, we have∥∥∥∥∥ sup
j≥1,θ∈Ωj

MMθ(Sjf)

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥ sup
j≥1,θ∈Ωj

Mθ(Sjf)

∥∥∥∥∥
p

.

Notice that

sup
j≥1,θ∈Ωj

Mθ(Sjf) ≤

 ∞∑
j=1

sup
θ∈Ωj

(Mθ(Sjf))q

1/q

=

=

 ∞∑
j=1

(
MΩj (Sjf)

)q1/q

.

The hypothesis of the lemma implies now∥∥∥∥∥ sup
j≥1,θ∈Ωj

Mθ(Sjf)

∥∥∥∥∥
p

≤ B

∥∥∥∥∥∥∥
 ∞∑

j=1

|Sjf |q
1/q

∥∥∥∥∥∥∥
p

≤

≤ B

∥∥∥∥∥∥∥
 ∞∑

j=1

|Sjf |2
1/2

∥∥∥∥∥∥∥
p

= B ‖Sf‖p .

In the second inequality we have used that q ≥ 2. This gives (9) and,
therefore, Lemma 4.

�

Proof of Theorem 1. It is a simple consequence of Lemma 4, from the
trivial observation that (8) holds with B = sup ‖MΩj‖Lp→Lp and p = q.

�

Proof of Theorem 2. For technical reasons, we shall prove Theorem 2 for
a slightly different square function, S̃, adapted to the sectors ∆̃j . We take
a function ω̃j identically equal to 1 in ∆̃j and vanishing outside a slightly
wider sector. Then we define the operator S̃j by

(S̃jf )̂ = ω̃j f̂ ,

and consider the associated square function S̃.
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The proof follows the main circle of ideas that one can find in [3]. We
start by considering the operator Nh,j,θf(x) defined in the proof of Lemma
3 by (6). As we did there, we split it into three terms, by (7).

We already know that

(10) sup
h,j≥1,θ∈Ωj

(Ih,j,θ(f) + IIh,j,θ(f)) ≤MΩ0f.

Without loss of generality, we can assume that Ω is a finite set. Then
there exists a minimal constant C(Ω) such that∥∥∥∥∥ sup

h,j≥1,θ∈Ωj

|IIIh,j,θ(f)|

∥∥∥∥∥
p

≤ C(Ω) ‖f‖p.

Let us take a sequence of functions {gj}. By (7) and (10),

sup
h,j≥1,θ∈Ωj

|IIIh,j,θ(gj)| ≤

sup
h,j≥1,θ∈Ωj

|Nh,j,θ(gj)|+ sup
h,j≥1,θ∈Ωj

|Ih,j,θ(gj) + IIh,j,θ(gj)| ≤

≤ sup
h,j≥1,θ∈Ωj

∣∣∣∣∣Nh,j,θ(sup
j
|gj |)

∣∣∣∣∣ +MΩ0

(
sup
j≥1

|gj |

)
≤

≤ sup
h,j≥1,θ∈Ωj

∣∣∣∣∣IIIh,j,θ(sup
j≥1

|gj |)

∣∣∣∣∣ + 2MΩ0

(
sup
j≥1

|gj |

)
.

Therefore,∥∥∥∥∥ sup
h,j≥1,θ∈Ωj

|IIIh,j,θ(gj)|

∥∥∥∥∥
p

≤ (C(Ω) + 2 ‖MΩ0‖Lp→Lp)

∥∥∥∥∥sup
j≥1

|gj |

∥∥∥∥∥
p

.

On the other hand, we have∥∥∥∥∥∥∥
∑

j≥1

sup
h,θ∈Ωj

|IIIh,j,θ(gj)|p
1/p

∥∥∥∥∥∥∥
p

≤

(
sup
j≥1

∥∥∥∥∥ sup
h,θ∈Ωj

|IIIh,j,θ|

∥∥∥∥∥
Lp→Lp

)∥∥∥∥∥∥∥
∑

j≥1

|gj |p
1/p

∥∥∥∥∥∥∥
p

.

By interpolation (taking θ = p
2),

(11)

∥∥∥∥∥∥∥
∑

j≥1

sup
h
|IIIh,j,θ(gj)|2

1/2
∥∥∥∥∥∥∥

p

≤
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(C(Ω) + 2 ‖MΩ0‖Lp→Lp)1−θ

(
sup
j≥1

∥∥∥∥∥ sup
h,θ∈Ωj

|IIIh,j,θ|

∥∥∥∥∥
Lp→Lp

)θ
∥∥∥∥∥∥∥
∑

j≥1

|gj |2
1/2

∥∥∥∥∥∥∥
p

.

Now, ∥∥∥∥∥ sup
h,j≥1,θ∈Ωj

|IIIh,j,θ(f)|

∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
h,j≥1,θ∈Ωj

|IIIh,j,θ(I − S̃j)(f)|

∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
∑

j≥1

sup
h,θ∈Ωj

|IIIh,j,θ(S̃jf)|2
1/2

∥∥∥∥∥∥∥
p

.

The first term in the last expression is 0, because of the definition of IIIh,j,θ

and S̃j . By (11), the second term is bounded by

(C(Ω) + 2 ‖MΩ0‖Lp→Lp)1−θ

(
sup
j≥1

∥∥∥∥∥ sup
h,θ∈Ωj

|IIIh,j,θ|

∥∥∥∥∥
Lp→Lp

)θ ∥∥∥S̃f∥∥∥
p
.

By the minimality of C(Ω),

C(Ω) ≤

(12)

(C(Ω) + 2‖MΩ0‖Lp→Lp)1−θ

(
sup
j≥1

∥∥∥∥∥ sup
h,θ∈Ωj

|IIIh,j,θ|

∥∥∥∥∥
Lp→Lp

)θ ∥∥∥S̃∥∥∥
Lp→Lp

.

From equation (12), we derive the following expression for C(Ω)

C(Ω) ≤ 2

[
‖MΩ0‖Lp→Lp +

(
sup
j≥1

∥∥∥∥∥ sup
h,θ∈Ωj

|IIIh,j,θ|

∥∥∥∥∥
Lp→Lp

)
‖S̃‖2/p

Lp→Lp

]
.

Now, we notice that

IIIh,j,θf ≤M(Nh,j,θ(ω̃j
∨ ∗ f)),

where M is the Hardy-Littlewood maximal function. The Hardy-Littlewood
maximal theorem and the uniform boundedness of the L1-norm of the ω̃j

∨

imply that

sup
j≥1

∥∥∥∥∥ sup
h,θ∈Ωj

|IIIh,j,θ|

∥∥∥∥∥
Lp→Lp

≤ Cp sup
j≥1

‖MΩj‖Lp→Lp ,

and thus Theorem 2 is proved.
�
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3. Some applications

Our first application of Theorem 1 will be a generalization of the result by
Nagel, Stein and Wainger [8]. Let Ω0 = {θj}j≥1 be a lacunary sequence of
numbers in [0, π

4 ) tending to zero, that is, assume that there exists 0 < λ < 1
such that 0 ≤ θj+1 ≤ λθj for all j ∈ N. The above authors proved that MΩ0

is bounded in Lp for all 1 < p ≤ ∞. We shall show that we can introduce
new directions Ωj between the lacunary separators of Ω0 and still get a
bounded operator.

Theorem 5. Let Ω0 be a lacunary sequence. Then, under the hypothesis of
Theorem 1,

(13) ‖MΩf‖p ≤ Cp

(
sup
j≥1

‖MΩj‖Lp→Lp

)
‖f‖p , 1 < p <∞.

Theorem 5 also generalizes the result by Sjögren and Sjölin [9]. In that
paper they proved the same estimate but in the special case in which Ωj

is given by a lacunary sequence, for all j. Our result does not depend
on the particular structure of the Ωj ’s, and it shows, in a neat way, that
the orthogonality property mentioned in the introduction holds when the
separating set is lacunary.

Proof. Without loss of generality, we can assume that 1
2 < λ < 1. We shall

also assume that there exists 0 < λ0 < λ such that θj+1 ≥ λ0θj for all j.
Actually we can take λ0 = λ2, and add some terms to the initial sequence
in order to get this. Obviously, the maximal operator associated to the new
sequence is greater than the maximal operator of the former one. We need
this lower bound λ0 in order to ensure that, for every j ≥ 1, the sectors ∆̃j

and ∆̃j+2 do not overlap.
To get (13), we apply Theorems 1 and 2. In our case, because of Nagel,

Stein and Wainger’s result, ‖MΩ0‖Lp→Lp ≤ Cp, and so we get

‖MΩf‖p ≤ Cp ‖f‖p + Cp

(
sup

j
‖MΩj‖Lp→Lp

)
‖Sf‖p , if 2 ≤ p <∞,

and

‖MΩf‖p ≤ Cp ‖f‖p +Cp

(
sup
j≥1

‖MΩj‖Lp→Lp

)
‖S‖2/p

Lp→Lp‖f‖p , if 1 < p < 2.

Finally, a standard argument, as in [8], gives

‖Sf‖p ≤ Cp‖f‖p , 1 < p <∞,

and this proves (13).
�
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Theorem 5, in turn, gives us the following application: let {θj}j≥1 be a
lacunary sequence as above and take, for each j, a family of N directions
{αj,k}k=1,...,N ⊂ [θj , θj−1). Define, as usual, the maximal operators MΩj by

MΩjf(x, y) = sup
h>0

sup
k=1,...,N

∣∣∣∣ 1
2h

∫ h

−h
f(x− t cosαj,k, y − t sinαj,k) dt

∣∣∣∣ ,
and

MΩf(x, y) = sup
j≥1

MΩjf(x, y).

Using Nets Katz’s result [7], we have

sup
j≥1

‖MΩj‖L2→L2 ≤ C logN.

We also have the trivial bound

sup
j≥1

‖MΩj‖L1→L1,∞ ≤ CN.

This give us, by interpolation,

sup
j≥1

‖MΩj‖Lp→Lp ≤ CpN
2
p
−1(logN)2−

2
p , 1 < p ≤ 2.

Then, using (13), we get

‖MΩf‖p ≤ CpN
2
p
−1(logN)2−

2
p ‖f‖p , 1 < p ≤ 2.

Let us now see some other consequences of Theorem 1.

Theorem 6. Let Ω0 be a set of N uniformly distributed directions, and
assume that

(
supj≥1 ‖MΩj‖L2→L2

)
<∞ . Then

‖MΩf‖2 ≤

[
C1 logN + C2

(
sup
j≥1

‖MΩj‖L2→L2

)]
‖f‖2,

for some universal constants C1, C2.

Proof. It is just a consequence of Theorem 1. Notice that

‖MΩ0‖L2→L2 ≤ C logN,

as Strömberg proved in [11]. We also use the fact that, in this case, ‖Sf‖2 ∼
‖f‖2 by Plancherel.

�

Remark. A similar result can be obtained for other values of p 6= 2.
In particular, for 2 ≤ p ≤ 4, we can use Cordoba’s bound for the square
function associated to these directions (see [4]). We have restricted ourselves
to the case p = 2 for the sake of simplicity.
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We shall now consider more general sets Ω0. In order to do this, we need
some definitions. Given an open set U ⊂ R, we say that a set of intervals
{Iβ} is a Whitney decomposition for U (with constant C) if

(i) Iβ ⊂ U, for all β.
(ii)

⋃
Iβ = U.

(iii) 1
C |Iβ | ≤ d(Iβ , ∂U) ≤ C|Iβ|.

We shall say that a set S of finite cardinality N is of Whitney type with
constants (C1, C2) if for each s ∈ S there is a Whitney decomposition {Is

β}
of {s}c (with constant C1) such that at most C2(logN)2 of the Is

β have
nonempty intersection with S. This type of set was introduced by Katz in
[6].

Theorem 7. Assume Ω0 is a set of Whitney type of cardinality N > 1.
Then

‖MΩf‖2 ≤ C logN

(
sup
j≥1

‖MΩj‖L2→L2

)
‖f‖2.

Proof. Since Ω0 has cardinality N , ‖MΩ0‖L2→L2 ≤ C logN , by Katz’s
result [7]. In order to get the conclusion from Theorem 1, we must find an
appropriate bound for the square function term in (3). We shall show that,
for all ξ, ∑

j

ωj(ξ) ≤ C(logN)2.

This estimate, together with Plancherel’s theorem, will prove Theorem 7.
Given θk ∈ Ω0 ∪ θ0, let ξk = (cos θk, sin θk). Note that if θk−1 > θ ≥ θk

and ξ = (cos θ, sin θ), then∑
j

ωj(ξ) ≤
∑

j

ωj(ξk−1) +
∑

j

ωj(ξk),

so we need only prove
∑

j ωj(ξk) ≤ C(logN)2 for all k = 1, . . . , N .
Fix k and consider the Whitney decomposition {Ik

β} of {θk}c given by the
definition of a set of Whitney type. We shall show that for any fixed β,

(14)
∑

j:θj∈Ik
β

ωj(ξk) ≤ C,

and this will imply that∑
j

ωj(ξk) = 1 +
∑
β

∑
j:θj∈Iβ

ωj(ξk) = 1 + C(logN)2.

Let us prove (14). Observe that the width of the support of ωj is less than
3
2(θj−1 − θj). So if

(θj−1 − θj) ≤
2
3

min(|θk − θj |, |θk − θj−1|),
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then ωj(θk) = 0. On the other hand, if the reverse inequality is true, then

(θj−1 − θj) >
2
3

min(|θk − θj |, |θk − θj−1| ≥
2

3C1
|Ik

β |.

Now, since the intervals [θj , θj−1) are pairwise disjoint, there are at most
[3C1

2 ] + 1 of those θj ∈ Ik
β . Hence (14) is proved. This finishes the proof of

Theorem 7.
�

Finally, let us see a result in the spirit of the work of Barrionuevo [2].

Theorem 8. There is a constant C0 > 0 such that for every Ω0 with
](Ω0) = N , we have

(15) ‖MΩ‖L2→L2 ≤ C0

(
sup
j≥1

‖MΩj‖L2→L2

)
N

C0√
log N .

Proof. The proof will be by induction on N . If C0 is big enough, (15) is
true for small N . Now, given a small ε to be determined later, we shall say
θl ∈ Ω0 is ‘bad’ if ∑

j

ωj(θl) ≥ N ε,

i.e. the overlapping of the ωj ’s on θl is high.
For a fixed bad θl, we consider the indices j(1) < j(2) < . . . < j(k) <

. . . < l, such that ωj(θl) 6= 0. This means that

θl ∈
[
θj(k) −

δj(k)

20
, θj(k)−1 +

δj(k)

20

]
.

Then θj(k) form a lacunary sequence tending to θl. Indeed,

|θl − θj(k)| <
1
20
|θj(k) − θj(k)−1| <

1
20
|θj(k) − θj(k−1)|,

and, as j(k) < l for all k, this implies

|θj(k) − θj(k−1)| ≤ |θl − θj(k−1)| ≤
1
20
|θj(k−1) − θj(k−2)|.

We define the sets
G−(θl) = {j < l : ωj(θl) 6= 0},
G+(θl) = {j > l : ωj(θl) 6= 0}.

Then, for a ‘bad’ θl, ](G−(θl) ∪G+(θl)) ≥ N ε. Set η−1 = θl(1), where

l(1) = min{k : ](G−(θk)) ≥ N ε}.
Next set η−2 = θl(2), where

l(2) = min{k : θk /∈ G−(η−1 ) and ][G−(θk) \G(η−1 )] ≥ N ε}.
and we proceed by induction. For each k, the set G−(η−k ) is a lacunary
sequence. We similarly define η+

k , associated to the sets G+. The set
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{η+
k , η

−
k : k ≥ 1} has at most 2N1−ε elements. Then, applying Theorem

5, we have that for each k,

(16) ‖ sup
j∈G±(η±k )

MΩj‖L2→L2 ≤ C ′ sup
j∈G±(η±k )

‖MΩj‖L2→L2 .

Now we use the induction hypothesis on the cardinality of the separating
set, taking instead of Ω0 the set {η±k }k which, as we pointed out, has at
most 2N1−ε elements. Thus,

(17) ‖ sup
k

sup
j∈G±(η±k )

MΩj‖L2→L2 ≤ C0C
′ sup ‖MΩj‖L2→L2(N1−ε)ε.

Set G =
(
∪kG−(η−k )

)
∪
(
∪kG+(η+

k )
)
. Then

∑
j /∈G ωj(θ) < N ε for all θ.

Hence Lemma 3 and an argument as in the proof of Theorem 7 give

(18) ‖ sup
l /∈G

MΩl
‖L2→L2 ≤ C ′′N ε sup ‖MΩl

‖L2→L2 .

Combining (17) and (18), we get

‖ sup
j
MΩj‖L2→L2 ≤

(
C0C

′(N1−ε)ε + C ′′N ε
)
sup ‖MΩj‖L2→L2 .

If we now choose ε = C0√
log N

, we have C0C
′N−ε2 + C ′′ ≤ C0, for big C0

depending on C ′, C ′′, and (15) is proved.
�
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[9] P. Sjögren, and P. Sjölin, ‘Littlewood-Paley decompositions and Fourier multi-
pliers with singularities on certain sets’, Ann. Inst. Fourier, Grenoble (1) 31 (1981),
157-175.

[10] E. M. Stein, Singular integrals and differentiability properties of functions, (Prince-
ton University Press 1970).
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