A REMARK ON MAXIMAL OPERATORS ALONG DIRECTIONS IN \mathbb{R}^{2}

ANGELES ALFONSECA, FERNANDO SORIA, AND ANA VARGAS

Abstract

In this paper we give a simple proof of a long-standing conjecture, recently proved by N. Katz, on the weak-type norm of a maximal operator associated with an arbitrary collection of directions in the plane. The proof relies upon a geometric argument and on induction with respect to the number of directions. Applications are given to estimate the behavior of several types of maximal operators.

1. Introduction

Let Ω be a subset of $\left[0, \frac{\pi}{4}\right)$. Associated to it, we define the maximal operator M_{Ω} acting on locally integrable functions f on \mathbb{R}^{2} by

$$
M_{\Omega} f(x)=\sup _{x \in R \in \mathcal{B}_{\Omega}} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

where \mathcal{B}_{Ω} denotes the basis of all rectangles with longest side forming an angle α with the x -axis, for some $\alpha \in \Omega$.

For finite sets Ω, it was conjectured that the L^{2} norm of M_{Ω} had logarithmic growth with respect to the cardinality, N, of Ω. More precisely, that M_{Ω} satisfied the following estimate

$$
\begin{equation*}
\left\|M_{\Omega} f\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C(\log N)^{\beta}\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)} \tag{1}
\end{equation*}
$$

for some exponent β and with C independent of Ω and f.
This inequality was first proved in the seventies for some special sets Ω, such as uniformly distributed directions (see [9]). Also, for lacunary sequences the result holds with $\beta=0$ (see [4] and [7]) and therefore one can take an infinite sequence in this case. In 1995, Barrionuevo [3] obtained the following result:

$$
\left\|M_{\Omega} f\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C N^{2 / \sqrt{\log N}}\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

again for $\operatorname{card} \Omega=N<\infty$ and C independent of Ω and f.
Conjecture (1) for general finite sets Ω was finally proved by Katz in 1999, [6], (see also [5]), with the best possible exponent, that is, with $\beta=1$.

[^0]The main result of this paper (Theorem 1 below) establishes an estimate for the weak type $(2,2)$ of an operator in a related problem which gives, as a consequence, a simple proof of that conjecture. With our arguments we do not obtain the sharp exponent of the logarithm given in Katz' proof. Theorem 1 however does provide a wide range of applications which we explore in the last section. The proof of Theorem 1 uses some geometric arguments, in the same spirit of the work of Strömberg, [9], and Córdoba and Fefferman, [4].

In order to state our result, we introduce first some notation. Given the set $\Omega \subset\left[0, \frac{\pi}{4}\right)$ we consider a subset $\Omega_{0}=\left\{\theta_{l}: l=1,2, \ldots\right\} \subset \Omega$ with $\frac{\pi}{4}>\theta_{1}>\theta_{2}>\ldots>\theta_{l}>\ldots$. There is no restriction on whether Ω_{0} is finite or not. Let us define for $l=1,2, \ldots$, $\Omega_{l}=\left\{\alpha \in \Omega: \theta_{l} \leq \alpha<\theta_{l-1}\right\}$, where we have set $\theta_{0}=\frac{\pi}{4}$. We shall assume that Ω_{0} is chosen so that $\Omega=\cup_{l \geq 1} \Omega_{l}$. To each set $\Omega_{l}, l=0,1,2, \ldots$ we associate the corresponding basis $\mathcal{B}_{l} \subset \mathcal{B}_{\Omega}$. We define the maximal operators associated to each Ω_{l} as

$$
M_{\Omega_{l}} f(x)=\sup _{x \in R \in \mathcal{B}_{l}} \frac{1}{|R|} \int_{R}|f(y)| d y, \quad l=0,1,2, \ldots
$$

In the next section we shall prove the following

Theorem 1. There exist constants C_{1}, C_{2} independent of Ω such that

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} \leq C_{1} \sup _{1 \leq l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}+C_{2}\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} \tag{2}
\end{equation*}
$$

where $\|T\|_{L^{2} \rightarrow L^{2, \infty}}$ denotes the "weak type $(2,2)$ " norm of the operator T.

What the theorem says is that if we decompose Ω into disjoint blocks, "separated" by the elements of certain collection of directions Ω_{0}, then the price that one pays to make the inequality

$$
\begin{equation*}
\left\|\sup _{l} M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}} \leq C \sup _{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}} \tag{3}
\end{equation*}
$$

true is given by the norm of the operator $M_{\Omega_{0}}$, associated to Ω_{0}, in the precise form stated above. This can be seen as a weak- L^{2} quasi-orthogonality principle for the family of operators $\left\{M_{\Omega_{j}}\right\}$. In particular, if the "separating" set Ω_{0} is given by a lacunary sequence, then (3) is true no matter how the "intermediate" sets $\Omega_{l}, l=1,2, \ldots$ are chosen. This extends a result by Sjögren and Sjölin [8]. In Section 3 we present this and some other applications of our theorem, such as the new proof of Katz's theorem that we mentioned above.

2. Proof of the main result

Let us start by changing slightly our previous hypotheses. Given a set $\Omega \subset\left[0, \frac{\pi}{4}\right)$, we consider the basis \mathcal{B}_{Ω} of all parallelograms with the shorter sides parallel to the y-axis and the longer sides forming an angle α with the x -axis, for some $\alpha \in \Omega$. With certain abuse of language, we shall call these parallelograms "rectangles".

We introduce now the following notation: given a rectangle $R \in \mathcal{B}_{\Omega}, P_{1}(R)$ will denote the projection of R on the x-axis. If $P_{1}(R)=\left[a_{R}^{1}, a_{R}^{2}\right]$, we also define $P_{2,1}(R)=\{y$: $\left.\left(a_{R}^{1}, y\right) \in R\right\}$ and $P_{2,2}(R)=\left\{y:\left(a_{R}^{2}, y\right) \in R\right\} . P_{2,1}(R)$ and $P_{2,2}(R)$ are the projections of the two "vertical sides" of R on the y -axis. Note that $\left|P_{2,1}(R)\right|=\left|P_{2,2}(R)\right|$ and $|R|=\left|P_{1}(R)\right| \cdot\left|P_{2,1}(R)\right|$.

Let Ω_{0} be any ordered subset of Ω. By a simple limiting argument, it is clear that in order to prove (2) we may assume with no loss of generality that Ω (and, hence, Ω_{0} too) is finite. We shall denote the elements of Ω_{0} by $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$, with

$$
\frac{\pi}{4}=\theta_{0}>\theta_{1}>\theta_{2}>\ldots>\theta_{N-1}>\theta_{N} \geq 0
$$

Define $\Omega_{l}=\left\{\alpha \in \Omega: \theta_{l} \leq \alpha<\theta_{l-1}\right\}$, for $l=1, \ldots, N$. Then $\Omega=\cup_{l=1}^{N} \Omega_{l}$ by assuming simply that $\theta_{N}=\min \Omega$. To each set $\Omega_{l}, l=0,1, \ldots, N$ we associate the corresponding basis $\mathcal{B}_{l} \subset \mathcal{B}_{\Omega}$.

We now define the maximal operators

$$
M_{\Omega} f(x)=\sup _{x \in R \in \mathcal{B}_{\Omega}} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

and

$$
M_{\Omega_{l}} f(x)=\sup _{x \in R \in \mathcal{B}_{l}} \frac{1}{|R|} \int_{R}|f(y)| d y, \quad l=0,1, \ldots, N .
$$

To prove (2) we look at the level sets of M_{Ω}. If $x \in\left\{M_{\Omega} f(x)>\lambda\right\}$, there is a rectangle $R_{x} \in \mathcal{B}_{\Omega}$ containing x such that

$$
\begin{equation*}
\frac{1}{\left|R_{x}\right|} \int_{R_{x}}|f(y)| d y>\lambda, \tag{4}
\end{equation*}
$$

and therefore

$$
\left\{M_{\Omega} f(x)>\lambda\right\} \subset \bigcup_{x \in\left\{M_{\Omega} f(x)>\lambda\right\}} R_{x} .
$$

So if we consider a compact set $K \subset\left\{M_{\Omega} f(x)>\lambda\right\}$, then $K \subset \bigcup_{j=1}^{s} R_{x_{j}}$ for some finite family of rectangles $\mathcal{F}=\left\{R_{x_{j}}\right\}_{j=1}^{s}$ satisfying (4).

From the family \mathcal{F} we select a subfamily $\overline{\mathcal{F}}=\left\{B_{k}\right\}$ in the following way: we take B_{1} as the rectangle $R \in \mathcal{F}$ with longest projection on the x -axis. Assuming we have already chosen B_{1}, \ldots, B_{n-1}, we take B_{n} as the rectangle R of the remaining collection $\mathcal{F} \backslash\left\{B_{k}\right\}_{j=1}^{n-1}$ such that $\left|P_{1}(R)\right|$ is maximal among the rectangles satisfying

$$
\sum_{k=1}^{n-1}\left|R \cap B_{k}\right| \leq \frac{1}{2}|R| .
$$

It is easy to see that the family $\left\{B_{k}\right\}$ has the following two properties:

$$
\begin{equation*}
\sum\left|B_{k}\right| \leq 2\left|\cup B_{k}\right| \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\int\left(\sum \chi_{B_{k}}\right)^{2} \leq 2 \sum\left|B_{k}\right| . \tag{6}
\end{equation*}
$$

In order to estimate the weak type $(2,2)$ norm for M_{Ω}, we first observe that

$$
\begin{aligned}
\sum\left|B_{k}\right| \leq & \frac{1}{\lambda} \sum \int_{B_{k}}|f| \leq \frac{1}{\lambda}\|f\|_{2}\left\|\sum \chi_{B_{k}}\right\|_{2} \leq \\
& \leq \frac{\sqrt{2}}{\lambda}\|f\|_{2}\left(\sum\left|B_{k}\right|\right)^{1 / 2}
\end{aligned}
$$

where we have used (6). This implies

$$
\begin{equation*}
\left(\sum\left|B_{k}\right|\right)^{1 / 2} \leq \frac{\sqrt{2}}{\lambda}\|f\|_{2} \tag{7}
\end{equation*}
$$

If we show that

$$
\begin{equation*}
\left|\cup R_{x_{j}} \backslash \cup B_{k}\right| \leq c_{0} \sum\left|B_{k}\right|, \tag{8}
\end{equation*}
$$

then, using (7) we get

$$
\begin{gathered}
|K| \leq\left|\cup R_{x_{j}}\right| \leq\left|\cup B_{k}\right|+\left|\cup R_{x_{j}} \backslash \cup B_{k}\right| \leq \\
\leq\left(1+c_{0}\right)\left(\sum\left|B_{k}\right|\right) \leq \frac{2\left(1+c_{0}\right)}{\lambda^{2}}\|f\|_{2}^{2} .
\end{gathered}
$$

Consequently, we would obtain

$$
\left|\left\{M_{\Omega} f(x)>\lambda\right\}\right| \leq \frac{2\left(1+c_{0}\right)}{\lambda^{2}}\|f\|_{2}^{2}
$$

provided c_{0} is independent of the compact set K.
It remains to prove then (8). Let R be one of the rectangles in $\mathcal{F} \backslash \overline{\mathcal{F}}$. Then

$$
\sum_{B_{k}:\left|P_{1}\left(B_{k}\right)\right| \geq\left|P_{1}(R)\right|}\left|R \cap B_{k}\right|>\frac{1}{2}|R| .
$$

If $R \in \mathcal{B}_{l}$, we observe that one of the following inequalities must hold:

$$
\sum_{B_{k} \in \mathcal{B}_{l}:\left|P_{1}\left(B_{k}\right)\right| \geq\left|P_{1}(R)\right|} \frac{\left|R \cap B_{k}\right|}{|R|}>\frac{1}{4},
$$

or

$$
\begin{equation*}
\sum_{B_{k} \notin \mathcal{B}_{l}:\left|P_{1}\left(B_{k}\right)\right| \geq\left|P_{1}(R)\right|} \frac{\left|R \cap B_{k}\right|}{|R|}>\frac{1}{4} . \tag{10}
\end{equation*}
$$

Let us denote

$$
\mathcal{F}_{1}=\bigcup_{l}\left\{R \in(\mathcal{F} \backslash \overline{\mathcal{F}}) \cap \mathcal{B}_{l}: \sum_{B_{k} \in \mathcal{B}_{l}:\left|P_{1}\left(B_{k}\right)\right| \geq\left|P_{1}(R)\right|} \frac{\left|R \cap B_{k}\right|}{|R|}>\frac{1}{4}\right\},
$$

and

$$
\mathcal{F}_{2}=\bigcup_{l}\left\{R \in(\mathcal{F} \backslash \overline{\mathcal{F}}) \cap \mathcal{B}_{l}: \sum_{B_{k} \notin \mathcal{B}_{l}:\left|P_{1}\left(B_{k}\right)\right| \geq\left|P_{1}(R)\right|} \frac{\left|R \cap B_{k}\right|}{|R|}>\frac{1}{4}\right\} .
$$

Observe that if $R \in \mathcal{B}_{l}$ and (9) holds, then $R \subset\left\{x: M_{\Omega_{l}}\left(\sum_{B_{k} \in \mathcal{B}_{l}} \chi_{B_{k}}\right)>\frac{1}{4}\right\}$. Hence,

$$
\begin{align*}
& \left|\cup_{\mathcal{F}_{1}} R\right| \leq \sum_{l=1}^{N}\left|\left\{M_{\Omega_{l}}\left(\sum_{B_{k} \in \mathcal{B}_{l}} \chi_{B_{k}}\right)>\frac{1}{4}\right\}\right| \leq 16 \sum_{l=1}^{N}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}\left\|\sum_{B_{k} \in \mathcal{B}_{l}} \chi_{B_{k}}\right\|_{2}^{2} \\
& \leq 16 \sup _{l=1, \ldots, N}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}\left\|\sum_{B_{k} \in \overline{\mathcal{F}}} \chi_{B_{k}}\right\|_{2}^{2} . \tag{11}
\end{align*}
$$

Now, suppose we know that there exists an universal constant c with the property that, for any $R \in \mathcal{F}_{2} \cap \mathcal{B}_{l}$, there are $\widehat{R_{+}}, \widehat{R_{-}} \in \mathcal{B}_{0}$ containing R so that

$$
\begin{equation*}
\frac{\left|B_{k} \cap R\right|}{|R|} \leq c \frac{\left|B_{k} \cap \widehat{R_{+}}\right|}{\left|\widehat{R_{+}}\right|}+c \frac{\left|B_{k} \cap \widehat{R_{-}}\right|}{\left|\widehat{R_{-}}\right|} \tag{12}
\end{equation*}
$$

for all $B_{k} \notin \mathcal{B}_{l}$. Then, we would have

$$
\begin{gather*}
\left|\cup_{\mathcal{F}_{2}} R\right| \leq\left|\left\{M_{\Omega_{0}}\left(\sum \chi_{B_{k}}\right)>\frac{1}{8 c}\right\}\right| \leq 64 c^{2}\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} \cdot\left\|\sum \chi_{B_{k}}\right\|_{2}^{2} \leq \\
\leq 128 c^{2}\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}\left|\cup B_{k}\right| . \tag{13}
\end{gather*}
$$

Combining (11) and (13), we get (8) with $c_{0}=32 \sup \left\|M_{\Omega_{l}}\right\|^{2}+128 c^{2}\left\|M_{\Omega_{0}}\right\|^{2}$. So we have to prove (12).

In order to do this, we introduce first some notation
Definition: Given $U, V \in \mathcal{B}_{\Omega}$, we say that U crosses V entirely if there exists an interval J such that

$$
J \subset P_{1}(U), P_{1}(V),
$$

and, if S is the strip $S=\{(x, y): x \in J\}, \widetilde{U}=U \cap S, \widetilde{V}=V \cap S$, then

$$
\begin{gathered}
\widetilde{U} \cap \widetilde{V} \neq \emptyset \\
P_{2, i}(\widetilde{U}) \cap P_{2, i}(\widetilde{V})=\emptyset \text { for } i=1,2 .
\end{gathered}
$$

Observe that U crosses entirely V if and only if V crosses entirely U.

Lemma 2. If V_{1}, V_{2} cross entirely U, with $\left|P_{2,1}\left(V_{1}\right)\right|=\left|P_{2,1}\left(V_{2}\right)\right|$ and $\operatorname{angle}\left(V_{2}, U\right)=\alpha_{2} \leq \alpha_{1}=\operatorname{angle}\left(V_{1}, U\right)$, then

$$
\left|V_{1} \cap U\right| \leq\left|V_{2} \cap U\right| .
$$

Proof: We may assume without loss of generality that U has sides parallel to the axis. Then, if $a=\left|P_{2,1}(U)\right|$ and $b=\left|P_{2,1}\left(V_{j}\right)\right|$,

$$
\left|V_{j} \cap U\right|=\frac{a \cdot b}{\tan \alpha_{j}},
$$

so if $\alpha_{2} \leq \alpha_{1}$, then $\left|V_{1} \cap U\right| \leq\left|V_{2} \cap U\right|$.

Lemma 3. If V_{1}, V_{2} are parallel, cross entirely U and $\left|P_{1}\left(V_{1}\right)\right|=\left|P_{1}\left(V_{2}\right)\right|=L$, then

$$
\frac{\left|U \cap V_{1}\right|}{\left|V_{1}\right|}=\frac{\left|U \cap V_{2}\right|}{\left|V_{2}\right|} .
$$

Proof: Again, we may assume that U has sides parallel to the axis. Set $a=\left|P_{2,1}(U)\right|, \alpha=\operatorname{angle}\left(V_{j}, U\right)$ and $b_{j}=\left|P_{2,1}\left(V_{j}\right)\right|$ for $j=1,2$ (note that α does not depend on j). Then, as in lemma 2, we have

$$
\frac{\left|U \cap V_{j}\right|}{\left|V_{j}\right|}=\frac{a \cdot b_{j}}{\tan \alpha} \cdot \frac{1}{b_{j} \cdot L}=\frac{a}{L \tan \alpha},
$$

which does not depend on j.
Once we have these two lemmas, let us prove (12). Let $R \in \mathcal{F}_{2} \cap \mathcal{B}_{l}, B \in \overline{\mathcal{F}} \backslash \mathcal{B}_{l}$ such that $B \cap R \neq \emptyset$ and $\left|P_{1}(B)\right| \geq\left|P_{1}(R)\right|$. Let α_{R} be the angle that R forms with the x-axis, and α_{B} the angle that B forms with the x-axis. We shall assume that $\alpha_{B}>\alpha_{R}$. (The case $\alpha_{B}<\alpha_{R}$ can be handled in a similar way.) Then there exists $\theta_{k} \in \Omega_{0}$ such that

$$
\alpha_{B} \geq \theta_{k}>\alpha_{R} .
$$

Let \widetilde{R} be the smallest rectangle in the direction of θ_{k} containing R. We define $\widehat{R_{+}}$as the rectangle concentric with \widetilde{R} and 9 times bigger. We will call $\widehat{R}_{m i d}$ to the middle third of $\widehat{R_{+}}$, i.e. the rectangle in the direction of θ_{k} satisfying

$$
\begin{aligned}
& P_{1}\left(\widehat{R}_{m i d}\right)=P_{1}\left(\widehat{R_{+}}\right), \\
& \widetilde{R} \subset \widehat{R}_{m i d}, \\
&|\widetilde{R}|=\frac{1}{3}\left|\widehat{R}_{m i d}\right| .
\end{aligned}
$$

We have to show that

$$
\frac{|B \cap R|}{|R|} \leq c \frac{\left|B \cap \widehat{R_{+}}\right|}{\left|\widehat{R_{+}}\right|} .
$$

Since $\widehat{R_{+}} \in \mathcal{B}_{0}$, this gives (12).
To simplify the notation, from now and on we shall write \widehat{R} instead of $\widehat{R_{+}}$. We define R^{∞} as the smallest infinite strip containing R and with the same slope. Let B^{\prime} be the smallest rectangle containing B with $P_{1}\left(B^{\prime}\right) \supset P_{1}(\widehat{R})$, and define

$$
B^{*}=B^{\prime} \cap\left[P_{1}(\widehat{R}) \times \mathbb{R}\right]
$$

Observe that $\left|B^{*} \cap \widehat{R}\right| \leq 3|B \cap \widehat{R}|$.
We shall consider two cases:
CASE 1: B^{*} crosses entirely \widehat{R}.
Let $R^{\text {rot }}$ be a rectangle in the direction of θ_{k} such that

$$
P_{1}\left(R^{r o t}\right)=P_{1}(\widehat{R}),
$$

$$
\begin{gathered}
R^{\text {rot }} \subset \widehat{R}_{\text {mid }}, \\
\left|P_{2,1}\left(R^{\text {rot }}\right)\right|=\left|P_{2,1}(R)\right| .
\end{gathered}
$$

Then, by Lemma 2,

$$
\left|B^{*} \cap R\right| \leq\left|B^{*} \cap R^{\infty}\right| \leq\left|B^{*} \cap R^{r o t}\right|,
$$

and

$$
\frac{\left|B^{*} \cap R\right|}{|R|} \leq \frac{\left|B^{*} \cap R^{\text {rot }}\right|}{|R|}=\frac{3\left|B^{*} \cap R^{\text {rot }}\right|}{\left|R^{\text {rot }}\right|}=\frac{3\left|B^{*} \cap \widehat{R}\right|}{|\widehat{R}|} .
$$

In the last equality we have used Lemma 3. So we get

$$
\frac{|B \cap R|}{|R|} \leq \frac{\left|B^{*} \cap R\right|}{|R|} \leq \frac{3\left|B^{*} \cap \widehat{R}\right|}{|\widehat{R}|} \leq \frac{9|B \cap \widehat{R}|}{|\widehat{R}|} .
$$

CASE 2: B^{*} does not cross entirely \widehat{R}.
We may assume that $\left|P_{2,1}\left(B^{*}\right)\right| \leq \frac{1}{3}\left|P_{2,1}(\widehat{R})\right|$, because otherwise we would have

$$
R \subset \widehat{R}_{\text {mid }} \subset 25 B^{*} \subset 125 B .
$$

But if $\left|P_{2,1}\left(B^{*}\right)\right| \leq \frac{1}{3}\left|P_{2,1}(\widehat{R})\right|$, then we have

$$
\left|B^{*}\right| \leq 3\left|B^{*} \cap \widehat{R}\right| .
$$

Let $B^{* r o t}$ be a rectangle with slope θ_{k} such that

$$
\begin{gathered}
P_{1}\left(B^{* r o t}\right)=P_{1}(\widehat{R})=P_{1}\left(B^{*}\right), \\
B^{* r o t} \subset \widehat{R}_{m i d}, \\
\left|P_{2,1}\left(B^{* r o t}\right)\right|=\left|P_{2,1}\left(B^{*}\right)\right| .
\end{gathered}
$$

Note that $\left|B^{*}\right|=\left|B^{* r o t}\right|$. By Lemma 2, we have

$$
\left|B^{*} \cap R\right| \leq\left|B^{*} \cap R^{\infty}\right| \leq\left|B^{* r o t} \cap R^{\infty}\right|,
$$

and so we get

$$
\frac{\left|B^{*} \cap R\right|}{\left|B^{*}\right|} \leq \frac{\left|B^{* r o t} \cap R^{\infty}\right|}{\left|B^{* r o t}\right|} .
$$

By Lemma 3, this is equal to

$$
\frac{\left|\widehat{R}_{m i d} \cap R^{\infty}\right|}{\left|\widehat{R}_{m i d}\right|} \leq \frac{3|R|}{\left|\widehat{R}_{m i d}\right|}=\frac{9|R|}{|\widehat{R}|} .
$$

This implies

$$
\frac{\left|B^{*} \cap R\right|}{|R|} \leq \frac{9\left|B^{*}\right|}{|\widehat{R}|} \leq 27 \frac{\left|B^{*} \cap \widehat{R}\right|}{|\widehat{R}|}
$$

Hence

$$
\frac{|B \cap R|}{|R|} \leq 81 \frac{|B \cap \widehat{R}|}{|\widehat{R}|}
$$

and (12) is proved.

3. Some Applications

We can use Theorem 1 to give a simple proof of the following
Theorem 4. There exist positive constants C and α such that for any set $\Omega \subset\left[0, \frac{\pi}{4}\right)$ of cardinality $N>1$ one has

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}} \leq C(\log N)^{\alpha}, \tag{14}
\end{equation*}
$$

Proof: The proof is by induction on the number N of directions. It is clear that (14) holds for small N . Let us assume now that it is true for all $k<N$. We choose a subset Ω_{0} of cardinality $N^{1 / 2}$ so that the corresponding subsets $\Omega_{l}, l=1,2, \ldots, N^{1 / 2}$ have all cardinality $N^{1 / 2}$. Note that $N^{1 / 2}$ may not be an integer, but we may assume this with appropriate initial assumptions on N.

Then, by Theorem 1,

$$
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} \leq C_{1} \sup _{1 \leq l \leq N^{1 / 2}}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2}+C_{2}\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} .
$$

By hypothesis, (14) holds for $M_{\Omega_{0}}$ and $M_{\Omega_{l}}, l=1, \ldots, N^{1 / 2}$. So we get

$$
\begin{gathered}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}}^{2} \leq C_{1} C^{2}\left(\log \left(N^{1 / 2}\right)\right)^{2 \alpha}+C_{2} C^{2}\left(\log N^{1 / 2}\right)^{2 \alpha} \leq \\
\leq C^{2}\left(C_{1}\left(\frac{1}{2}\right)^{2 \alpha}+C_{2}\left(\frac{1}{2}\right)^{2 \alpha}\right)(\log N)^{2 \alpha} .
\end{gathered}
$$

Now we choose α appropriately so that $\left(C_{1}\left(\frac{1}{2}\right)^{2 \alpha}+C_{2}\left(\frac{1}{2}\right)^{2 \alpha}\right)$ is less than or equal to 1 and the theorem is proved.

Well known interpolation arguments show that from (14) one has the strong type estimate

$$
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \leq C(\log N)^{\alpha+\frac{1}{2}}
$$

It is interesting to observe that the exponent α that we obtain in (14) depends only on the constants C_{1} and C_{2} in Theorem 1. In particular, inequality (2) with $C_{1}=1$ would give the sharp exponent $\alpha=1 / 2$.

Our second application is an extension of a result by Sjögren and Sjölin [8]. We follow the notation introduced in Section 2.

Theorem 5. Let $\Omega_{0} \subset\left[0, \frac{\pi}{4}\right)$ denote the elements of a lacunary sequence $\left\{\theta_{l}\right\}_{l}$, say $\theta_{l} \leq$ $\frac{1}{2} \theta_{l-1}$ and consider $\Omega_{l}, l=1,2, \ldots$ arbitrary sets with $\Omega_{l} \subset\left[\theta_{l}, \theta_{l-1}\right)$. Set $\Omega=\cup_{l \geq 0} \Omega_{l}$. Then the maximal function M_{Ω} has the property

$$
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2, \infty}} \leq C \sup _{l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2, \infty}}
$$

In particular, if each set Ω_{l} is given by the elements of a lacunary set as above (i.e., Ω is a double lacunary set), then M_{Ω} is of weak type (2,2).

The proof follows easily from Theorem 1 .
Remark. At the time of submission of this paper for publication, the authors obtained a new result, similar to Theorem 1, but concerning now the strong type 2. Namely, under the hypothesis of Theorem 1 and with the notation given there, they showed that

$$
\begin{equation*}
\left\|M_{\Omega}\right\|_{L^{2} \rightarrow L^{2}} \leq \sup _{1 \leq l}\left\|M_{\Omega_{l}}\right\|_{L^{2} \rightarrow L^{2}}+C_{2}\left\|M_{\Omega_{0}}\right\|_{L^{2} \rightarrow L^{2}} \tag{15}
\end{equation*}
$$

This estimate yields a very simple proof of Katz's result, (1), with the sharp exponent, $\beta=1$. The details will appear in [2].

Also, the first author has recently extended these results to the case $p \neq 2$ in [1].

References

[1] A. Alfonseca, Strong Type Inequalities and an Almost-orthogonality Principle for Families of Maximal Operators along Directions in \mathbb{R}^{2}. To appear in Jour. London Math. Soc.
[2] A. Alfonseca, F. Soria, A. Vargas, An Almost-Orthogonality Principle in L ${ }^{2}$ for Directional Maximal Functions. To appear in Proceedings of the Mount Holyoke Conference, Contemporary Mathematics, Amer. Math. Soc.
[3] J.A. Barrionuevo, A note on the Kakeya maximal operator. Mathematical Research Letters, 3, (1995) 61-65.
[4] A. Córdoba, R. Fefferman, On differentiation of integrals. Proc. Natl. Acad. Sci. USA 74, (1977), No 6, 2211-2213.
[5] N.H. Katz, Remarks on maximal operators over arbitrary sets of directions. Bull. London Math. Soc. 31 (1999), No. 6, 700-710.
[6] N.H. Katz, Maximal operators over arbitrary sets of directions. Duke Math. J. 97 (1999), No. 1, 67-79.
[7] A. Nagel, E.M. Stein, S. Wainger, Differentiation in lacunary directions. Proc. Natl. Acad. Sci. USA 75, (1978), No 3, 1060-1062.
[8] P. Sjögren, and P. Sjölin, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets. Ann. Inst. Fourier, Grenoble 31, 1 (1981), 157-175.
[9] J.O. Strömberg, Maximal functions associated to rectangles with uniformly distributed directions. Annals of Math. 107 (1978), 399-402.

Departamento de Matemáticas, Universidad Autónoma de Madrid
E-mail address: angeles.alfonseca@uam.es
Departamento de Matemáticas, Universidad Autónoma de Madrid
E-mail address: fernando.soria@uam.es
Departamento de Matemáticas, Universidad Autónoma de Madrid
E-mail address: ana.vargas@uam.es

[^0]: 2000 Mathematics Subject Classification. 42B25 .
 Key words and phrases. Maximal operators, weak-type estimates .
 Research partially supported by TMR network "Harmonic Analysis", and by Grant PB97/0030.

