
ASYMPTOTIC GROWTH OF MULTIPLICITY FUNCTIONS

CĂTĂLIN CIUPERCĂ

Abstract. We consider several multiplicity functions associated with a pair of ideals J ⊆ I

in a local noetherian ring R. In particular, given an arbitrary ideal J and an element x ∈ R,

we show that for each m the multiplicity f(n) of the R-module (J +xR)n/(J +xR)n−mJm

is eventually a constant ϕJ,x(m) which is non-zero only in the case when x is not integral

over J . We study the asymptotic growth of ϕJ,x(m) and some other multiplicity functions.

1. Introduction

Let R be a commutative local noetherian ring and let J be an ideal of R. An element

x ∈ R is said to be integral over J if x satisfies an equation of integral dependence xn +

a1x
n−1+· · ·+an−1x+an = 0 with coefficients ai ∈ J i. Equivalently, if we denote I := J+xR,

the element x is integral over J if and only if there exists n ≥ 1 such that JIn−1 = In, in

which case we say that J is a reduction of I. Roughly speaking, this means that the ideals

J and J + xR have the same asymptotic power growth. When the ideals are m-primary,

the classical Hilbert-Samuel multiplicity e(−) is a numerical invariant that can be used to

characterize reductions of ideals. More precisely, a well know result of Rees shows that if

J ⊆ I are m-primary ideals in a formally equidimensional local ring, then J is a reduction

of I if and only if e(I) = e(J). In the literature there are results in several directions that

generalize this numerical characterization of reductions to the situation when the ideals are

not necessarily m-primary, in which case the classical Hilbert-Samuel multiplicity is no longer

defined. One such direction was initiated by Amao [1] who showed that if J ⊆ I are ideals in

noetherian ring such that the length λ(I/J) is finite, then the function λ(In/Jn) is eventually

a polynomial function. If the ring R is local, Rees complemented Amao’s result and showed in

[4] that the degree of this polynomial function is at most the dimension of the ring. Moreover,

if R is a formally equidimensional local ring and J ⊆ I with λ(I/J) <∞, Rees proved that
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J is a reduction of I if and only if the degree of the polynomial function given by λ(In/Jn)

for n � 0 is at most dimR − 1. This extends the original characterization of reductions

given by the Hilbert-Samuel multiplicity in the case of m-primary ideals because λ(In/Jn) =

λ(R/Jn)− λ(R/In) = [e(J)− e(I)]nd/d! + lower degree terms, where d is the dimension of

R. In the same vein, in a more recent paper [2], a consequence of one of the results proved by

Herzog, Puthenpurakal, and Verma shows that given J ⊆ I arbitrary ideals, if we replace the

length λ(In/Jn) with the multiplicity of the R-module In/Jn, then the function e(In/Jn) is

eventually a polynomial function (see also Remark 2.5). Originally motivated by this result,

we begin this note by looking at the degree of this polynomial function and its relation with

the concept of reduction. We start in Section 1 by observing that the degree of this function

is at most dimR− t, where t is a constant equal to dimR/(Jn : In) for n� 0. We then show

in some particular cases that the maximal degree is attained if and only if J is not a reduction

of I (see Proposition 2.4 and Corollary 3.11). However, a general result of the type “J is a

reduction of I if and only if the degree of the function e(In/Jn) is at most dimR − t − 1”

does not hold in general (see Remark 2.8). As noted in Proposition 2.14, a better behavior

with respect to attaining a maximal degree is obtained by considering the integral closures

of the powers of the ideals and the function e(In/Jn). In Section 3, we modify our approach

by considering for each ideal J , each element x ∈ R, and each m ∈ N, the numerical function

fm(n) = e(In/In−mJm), where I = J + xR. Generalizing a result of Rees [4, 2.3], we show

that for every m the function fm(n) is eventually a constant, and therefore we can define

ϕJ,x(m) := fm(n) for n� 0. We study the asymptotic behavior of the function ϕJ,x(m) in a

formally equidimensional local ring and, in particular, show that for every x ∈ R the function

ϕJ,x(m) is eventually a polynomial function which is either identically zero (in the case when

x is integral over J) or otherwise of degree exactly dimR− dimR/(J : I), where J denotes

the integral closure of J (Theorem 3.13). Finally, when J ⊆ I = J + xR are regular ideals

in a formally equidimensional local ring, we show that there exists c such that the numerical

function e(Im+c/IcJm) is eventually polynomial of degree at most dimR − dimR/(J : I),

with equality if and only if x is not integral over J (Proposition 3.15).
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2. Degrees of relative multiplicity functions

Throughout this paper, if H(n) is a numerical function that is eventually a polynomial

function P (n), we refer to the degree of this polynomial as the degree of H(n).

We also recall that if (R,m) is a local noetherian ring with unique maximal ideal m and

M is a finitely generated R-module, the multiplicity e(M) is defined to be the normalized

leading coefficient of the Hilbert function associated with the ideal m and the module M ,

i.e.

λ(M/mnM) =
e(M)

d!
nd + lower degree terms (for n� 0)

where d = dimM . We caution that a slightly different definition is also used in the literature

(notably in [3]) where d is the dimension of the ring R (in which case the multiplicity of M

is non-zero if and only if dimM = dimR).

Amao and Rees ([1] and [4]) proved the following: if J ⊆ I are ideals in R such that the

length λ(IM/JM) is finite, then λ(InM/JnM) is eventually a polynomial function of degree

at most dimR.

Remark 2.1. Let us observe that in the Amao-Rees theorem it is enough to assume that

λ(In0M/Jn0M) < ∞ for some positive n0. Indeed, if λ(In0M/Jn0M) < ∞ we have

λ(In0M/JIn0−1M) <∞ and by applying the Amao-Rees theorem for the R-module In0−1M

we obtain that h1(n) := λ(InM/Jn−n0+1In0−1M) is eventually a polynomial function in n

of degree at most dimR. On the other hand, keeping in mind that λ(JIn0−1M/Jn0M) is

also finite, if we consider the finitely generated graded module
⊕

n≥n0
Jn−n0+1In0−1M/JnM

over the standard graded ring
⊕

n≥0 J
n, it follows that h2(n) := λ(Jn−n0+1In0−1M/JnM) is

eventually polynomial function of degree at most dimR (see, for example, [2, 4.6]). Then

λ(InM/JnM) = h1(n) + h2(n) is eventually a polynomial function of degree at most dimR.

We now begin the study of the asymptotic behavior of the function e(In/Jn) where J ⊆ I

are arbitrary ideals in a local noetherian ring R. First we observe that the dimension of the

R-modules In/Jn is eventually constant.
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Lemma 2.2. Let R be a noetherian ring and J ⊆ I ideals in R. Then there exists N such

that √
(Jn : In) =

√
(Jn+1 : In+1) for n ≥ N.

Proof. We will show that if x ∈ (Jn : In), then x2 ∈ (Jn+1 : In+1). Indeed, if x ∈ (Jn : In),

then x2In ⊆ xJn, so x2In+1 ⊆ xIJn. But IJn ⊆ InJ , and hence x2In+1 ⊆ xInJ ⊆

Jn+1. Finally, since R is noetherian, there exists N such that the ascending chain of ideals√
(Jn : In) stabilizes for n ≥ N . �

Notation 2.3. Let J ⊆ I be ideals in the noetherian ring R and let K :=
√

(Jn : In) for

n� 0. We denote t(J, I) := dimR/K.

Proposition 2.4. Let (R,m) be a local noetherian ring and J ⊆ I proper ideals of R. Let

f(n) := e(In/Jn) denote the multiplicity of the R-module In/Jn and set t = t(J, I). Then,

for n� 0, f(n) is a polynomial function of degree at most dimR− t. Moreover, if J ⊆ I is

a reduction, then the degree of f(n) is at most dimR− t− 1.

Proof. ChooseN such thatK :=
√

(Jn : In) =
√

(Jn+1 : In+1) for n ≥ N , so that dim(In/Jn) =

t = dimR/K for n ≥ N . Using the associativity formula, for n ≥ N we have:

(2.4.1) e(In/Jn) =
∑

p⊇K,dimR/p=t

e(R/p)λ(Inp /J
n
p ).

For every prime ideal p that appears in the above sum, the Rp-module INp /J
N
p has finite

length, and by Remark 2.1 it follows that λ(Inp /J
n
p ) is eventually a polynomial function

of degree at most dimRp. Then f(n) is eventually a polynomial function of degree at

most max{dimRp | p ⊇ K and dimR/p = dimR/K} which is bounded above by dimR −

dimR/K.

In the case when J is a reduction of I, from the same paper of Rees [4, 2.3] we know that

the degree of each of the length functions λ(Inp /J
n
p ) is at most dimRp − 1, and hence the

degree of f(n) is at most dimR− t− 1. �

Remark 2.5. As noted in the introduction, the fact that e(In/Jn) is eventually a polynomial

function is also observed in [2]. (It is a particular case of the more general result [2, 3.2].)

Since we are only interested in the numerical function e(In/Jn), we provided above a direct
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and short argument which is different from the approach taken in [2] and, more importantly,

has the benefit of providing a better bound on the degree. Similarly, we prefer the direct

and short proof of Lemma 2.2 to show that dim(In/Jn) is constant for n � 0, which also

follows from [2, 3.3].

We next address the question whether the degree of e(In/Jn) is exactly dimR − t(J, I)

when J is not a reduction of I. We observe the following particular case when the answer is

positive.

Proposition 2.6. Let (R,m) be a formally equidimensional local ring and J ⊆ I proper

ideals of R with J integrally closed on the punctured spectrum. If J is not a reduction of I,

then the degree of the function f(n) = e(In/Jn) is exactly dimR− t(J, I).

Proof. As before, choose N such that K :=
√

(Jn : In) =
√

(Jn+1 : In+1) for n ≥ N and

let p be any prime containing K with dimR/p = t(J, I) = t. If p = m (i.e. t = 0),

then IN/JN is of finite length, JN is not a reduction of IN , and by [4, 2.1] it follows that

f(Nn) = λ(INn/JNn) has degree dimR in n, so f(n) has degree dimR. If p 6= m, then Jp is

integrally closed and hence Jp ⊆ Ip is not a reduction. By the same result [4, 2.1] it follows

that the degree of the function λ(Inp /J
n
p ) is exactly dimRp = dimR − t and by (2.4.1) we

get that the degree of f(n) is exactly dimR− t(J, I). �

Remark 2.7. In the above proposition we only need to know that Jp is integrally closed for

some p ∈ {q ∈ SpecR | q ⊇ K, dimR/q = dimR/K}.

Remark 2.8. In the case when λ(I/J) is finite and R is formally equidimensional, as proved

by Rees, one has that deg f(n) ≤ dimR − 1 if and only if J ⊆ I is a reduction. However,

in general, the inequality deg f(n) ≤ dimR − t − 1 does not imply that J is a reduction of

I. Indeed, by (2.4.1), deg f(n) ≤ dimR − t − 1 if and only if Jp ⊆ Ip is a reduction for all

p ⊇ K with dimR/p = t. On the other hand, J ⊆ I is not a reduction if Jp ⊆ Ip is not a

reduction for some p ⊇ (J : I).

Motivated by the last statement of Remark 2.8, we next consider the asymptotic behavior

of e(In/Jn).
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Remark 2.9. If J ⊆ I are ideals in an analytically unramified local ring such that λ(I/J) <

∞, then λ(In/Jn) is eventually a polynomial function in n of degree at most dimR (see [2,

4.11]). In fact, using an argument similar to the one used in Remark 2.1, it is enough to

assume that λ(In0/Jn0) <∞ for some positive n0.

As in Lemma 2.2, we have the following.

Lemma 2.10. Let R be an analytically unramified local ring and J ⊆ I ideals in R. Then

there exists N such that √
(Jn : In) =

√
(Jn+1 : In+1) for n ≥ N.

Proof. Since R is analytically unramified, there exists t such that for n ≥ t we have In+1 =

InI [3, 9.2.1]. Let x ∈ (Jn : In). Then x2In ⊆ xJn ⊆ xIn−1J , which implies that x2InI ⊆

xIIn−1J ⊆ xInJ ⊆ JnJ = Jn+1. So, for n ≥ t, we have x2In+1 ⊆ Jn+1. In particular,

x ∈
√

(Jn+1 : In+1). Finally, there exists N ≥ t such that the ascending sequence of ideals√
(Jn : In) stabilizes for n ≥ N . �

Notation 2.11. Let J ⊆ I be ideals in an analytically unramified local ring R. If L :=√
(Jn : In) for n� 0, we denote t̄ = t̄(J, I) = dimR/L.

Proposition 2.12. Let (R,m) be an analytically unramified local ring and J ⊆ I proper

ideals of R. Let g(n) := e(In/Jn) denote the multiplicity of the R-module In/Jn and set

t̄ = t̄(J, I). Then, for n� 0, g(n) is a polynomial function of degree at most dimR− t̄.

Proof. The proof is very similar to the one used for Proposition 2.4. Choose N such that

L :=
√

(Jn : In) =

√
(Jn+1 : In+1) for all n ≥ N . From the associativity formula, for n ≥ N

we have:

(2.12.1) e(In/Jn) =
∑

p⊇L, dimR/p=t̄

e(R/p)λ(Inp/Jnp).

For every prime ideal p that appears in the above sum, the Rp-module IN p/JN p has finite

length, and therefore, as noted in Remark 2.9, λ(Inp/Jnp) is a polynomial function of degree
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at most dimRp. Then deg g(n) ≤ max{dimRp | p ⊇ L, dimR/p = dimR/L} ≤ dimR −

t̄. �

Remark 2.13. In the case when λ(I/J) is finite and R is an analytically unramified and

formally equidimensional local ring, in [2, 4.11] it is also proved that the degree of the

function λ(In/Jn) is exactly dimR when J is not a reduction of I. This the analogue of

Rees’s result for the filtration of integral closure of powers of ideals. In contrast to what we

noted in Remark 2.8, this result does generalize to the case when I/J is not necessarily of

finite length, as shown in the following proposition.

Proposition 2.14. Let (R,m) be an analytically unramified, formally equidimensional local

ring and let J ⊆ I be proper ideals of R such that J is not a reduction of I. Let t̄ = t̄(J, I).

Then the degree of g(n) = e(In/Jn) is exactly dimR− t̄.

Proof. Since R is analytically unramified there exists a positive integer t such that (I t)k = I tk

for all k ≥ 1, i.e. I t is a normal ideal. Similarly for J , there exists t′ such that I t′ is a normal

ideal. Also, we can choose the same t that works for both I and J , i.e. both I t and J t are

normal ideals. Since J is not a reduction of I we know that J t 6= I t. By applying Propo-

sition 2.6, we obtain that the function e((I t)n/(J t)n) is eventually a polynomial function of

degree exactly dimR− t(J t, I t). Note that t(J t, I t) = t̄(J, I) and hence g(nt) is a polynomial

function of n of degree exactly dimR− t̄. Since g(n) is known to be eventually a polynomial

function, it follows that the degree of g(n) is exactly dimR− t̄. �

3. A different direction: other multiplicity functions

In this section we study the asymptotic behavior of several multiplicity functions associated

with an ideal J and an element x in a noetherian local ring (R,m).

We begin by considering the following closure operation of ideals.

Definition 3.1. Let I be a proper ideal in a noetherian ring R. For each ideal J of R we

denote J (I) :=
⋃
n≥1(JIn : In).
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Remark 3.2. If I has positive height, then J (I) ⊆ J . This is an immediate consequence of

the determinantal trick [3, 1.1.8]. In particular, if ht I > 0 and J is integrally closed, then

J (I) = J .

3.3. Let (R,m) be a local noetherian ring with infinite residue field, I and J proper ideals

of R, and P1, . . . , Pt prime ideals of R that do not contain I. Then there exists x ∈ I \ (P1 ∪

. . . ∪ Pt) and c ∈ N such that

(3.3.1) xR ∩ InJm = xIn−1Jm for n ≥ c and all m ≥ 0.

For a proof, see [5, Lemma 1.2]. In fact, there exists a non-empty Zariski open U ⊆ I/mI

and c ∈ N such that (3.3.1) holds whenever x̄ ∈ U ⊆ I/mI. In particular, if depthI R > 0

and {P1, . . . , Pt} is the set of associated primes of R, there exists x ∈ I non-zero-divisor

and c ∈ N such that (InJm : x) = In−1Jm for n ≥ c and m ≥ 0. Note that we also have

(In : x) = In−1 for n� 0.

Lemma 3.4. Let J ⊆ I be proper ideals in a local noetherian ring R. Assume that

depthI R > 0. Then there exists a positive integer c such that for all n ≥ c and all m ≥ 0

we have

(JmIn)(I) = JmIn.

Proof. Replacing the local ring R with the faithfully flat extension R[X]m[X] which always has

infinite residue field (R/m)(X), without loss of generality we may assume that the residue

field of R is infinite.

As discussed in (3.3), there exists x ∈ I non-zero-divisor and c ∈ N such that

(InJm : x) = In−1Jm for n ≥ c and m ≥ 0.

Then (InJm : I) = In−1Jm for n ≥ c and m ≥ 0, which implies that

(In+kJm : Ik) = (In+kJm : I) : Ik−1 = . . . = InJm

for n ≥ c, m ≥ 0 and k ≥ 1. In particular, (JmIn)(I) = JmIn for n ≥ c and m ≥ 0. �

Remark 3.5. If J ⊆ I are ideals such that J (I) = J , then√
(J : I) =

√
(J2 : I2) = . . . =

√
(Jn : In) = . . . .
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We have already seen in the proof of Lemma 2.2 that
√

(Jn : In) ⊆
√

(Jn+1 : In+1) for

all n. On the other hand, if x ∈ (Jn+1 : In+1), then xIn+1 ⊆ Jn+1 ⊆ JIn, and hence

xI ⊆ (JIn : In) ⊆ J (I) = J , which implies that x ∈ (J : I).

Let J be an ideal in a local noetherian ring R and x an element of R. Let I := J +

xR. Inspired by [4], we now consider the behavior of the numerical functions fm(n) =

e(In/In−mJm) for all m ≥ 1. The next proposition generalizes [4, 2.3] which only applies in

the case λ(I/J) <∞.

Proposition 3.6. Let J ⊆ I be proper ideals in the local noetherian ring R. For each m ≥ 1

consider the function fm(n) := e(In/In−mJm) defined for n ≥ m. Assume that I/J is cyclic.

Then the following are true:

(a) For each m ≥ 1 there exists c = c(m) ∈ N such that for all n ≥ c we have

fm(n) ≥ fm(n+ 1).

(b) If J (I) = J , then fm(n) ≥ fm(n+ 1) for all n ≥ m.

(c) Assume that depthI R > 0. Then there exists c ∈ N such that for all m ≥ 1 and all

n ≥ m+ c we have

fm(n) ≥ fm(n+ 1).

Proof. (a) Since I = J + xR for some x ∈ I, we have

In+1 = In−m+1(J + xR)m = In−m+1(Jm + xIm−1) = xIn + In−m+1Jm.

Then the map

θ : In/In−mJm → In+1/In+1−mJm

defined by multiplication by x is surjective. On the other hand, the ascending chain of ideals

{(In−mJm : In)}n eventually stabilizes, so there exists c = c(m) such that for all n ≥ c the

two R-modules in the map θ have the same dimension, and therefore fm(n) ≥ fm(n+ 1) for

n ≥ c.

(b) If x ∈ (In−mJm : In), then xI ⊆ (JIn−1 : In−1) ⊆ J (I) = J , so (In−mJm : In) ⊆

(J : I). Moreover, (Jn : In) ⊆ (In−mJm : In) for all n ≥ m, and therefore, by Remark
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3.5,
√

(In−mJm : In) =
√

(J : I) for all n ≥ m, which shows that the two R-modules in the

above map have the same support for all n ≥ m, and therefore fm(n) ≥ fm(n + 1) for all

n ≥ m.

(c) As in the previous cases we consider the surjective R-module homomorphism θ. By

Lemma 3.4, there exists c such that (JmIc)(I) = (JmIc) for m ≥ 1. Then, for n ≥ m + c,

we have (In−mJm : In) = (In−m−cIcJm : In−m−c) : Im+c ⊆ (IcJm)(I) : Im+c = IcJm : Im+c,

which implies that the two R-modules in the homomorphism θ have the same support for

all n ≥ m+ c. Then fm(n) ≥ fm(n+ 1) for n ≥ m+ c and all m ≥ 1. �

Remark 3.7. If J ⊆ I and I/J cyclic such that λ(I/J) <∞, then fm(n) ≥ fm(n+ 1) for all

n ≥ m. This follows because both R-modules of the surjective homomorphism θ have finite

length. (Note that in this case fm(n) = λ(In/In−mJm).) This particular case was proved by

Rees in [4, 2.3].

As an immediate consequence we have the following.

Corollary 3.8. Let J ⊆ I be proper ideals in the local noetherian ring R such that I/J is

cyclic, i.e. I = J + xR for some x ∈ R. Then the following hold:

(a) For each m ≥ 1 the function fm(n) is constant for n� 0, and therefore we can define

ϕ(m) = ϕJ,x(m) := fm(n) for n� 0.

(b) If J (I) = J , then e(Im/Jm) ≥ ϕ(m) for all m ≥ 1.

(c) If depthI R > 0, then there exists c0 ∈ N such that e(Im+c/IcJm) ≥ ϕ(m) for all m ≥ 1

and c ≥ c0.

Remark 3.9. Note that in the case when J ⊆ I = J + xR is a reduction, the function ϕ is

identically zero.

We next focus on the properties of the function ϕ(m). We use methods that generalize

those used by Rees [4, Section 2] in the case when λ(I/J) <∞.

At the beginning we work under the assumption J (I) = J .
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Theorem 3.10. Let (R,m) be a noetherian local ring and J ⊆ I proper ideals of R such

that I/J is cyclic and J is not a reduction of I. Assume that J (I) = J . Then for all m we

have

(3.10.1) ϕ(m) =
∑
p∈Γ

e(R/p)λ
( R[It]γp
QmR[It]γp

)
where Q = ((J : I), Jt)R[It], γp = pR[It] + Q and the sum is taken over all prime ideals in

Γ = {p ∈ Spec(R) | (J : I) ⊆ p, dim(R/p) = dimR/(J : I)}.

Proof. With the assumption J (I) = J , since J (I) = (JIn : In) for n � 0, note that J ⊆ I

not reduction simply means J 6= I. In the Rees ring R = R[It] the homogeneous ideal Q

has the following decomposition:

Q = (J : I)⊕ Jt⊕ JIt2 ⊕ JI2t3 ⊕ · · · ,

and hence

R[It]/Q ∼= R/(J : I)⊕ I/J ⊕ I2/JI ⊕ I3/JI2 ⊕ · · · .

Since I = J + xR for some x ∈ I, for each n we have In = (J + xR)n = xnR + JIn−1, and

therefore each homogeneous component In/JIn−1 of R[It]/Q is a cyclic R-module generated

by the image of xn. We claim that in fact R[It]/Q is isomorphic to the polynomial ring

(R/(J : I))[X]. To show this we will prove the following: if β ∈ R and βxn = 0 in In/JIn−1,

then β ∈ (J : I). Indeed, if βxn ∈ JIn−1, then βIn ⊆ JIn−1, so βI ⊆ (JIn−1 : In−1) =

J (I) = J , and hence β ∈ (J : I).

We now consider the homogeneous ideal

Qm = ((J : I), Jt)mR[It] = ((J : I)m, (J : I)m−1Jt, . . . , Jmtm)R[It].

Then, for n ≥ m, the homogeneous component of degree n of Qm is [Qm]n = In−mJmtn,

hence [R[It]/Qm]n = In/In−mJm. We now consider a filtration with graded submodules Mi

of the R[It]-module R[It]/Qm:

(3.10.2) R[It]/Qm = M0 ⊇M1 ⊇ . . . ⊇Mk = (0)
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where each Mi/Mi+1 is isomorphic to (R[It]/γi)(−ti) for some γi ∈ Ass(R[It]/Qm). Since γi

is a graded prime ideal with γi ⊇ Q and R[It]/Q ∼= R/(J : I)[X], it follows that each γi is

of one of the following two types:

(a) γ = pR[It] +Q or

(b) γ = (p + It)R[It]

where p is a prime ideal of R with p ⊇ (J : I).

Then, for n ≥ m, we have

e(In/In−mJm) = e([R[It]/Qm]n) =
∑
i∈∆

e([Mi/Mi+1]n)

where the last sum is taken over all i such that the dimension of the factor [Mi/Mi+1]n

is equal to dim(In/In−mJm) which, as already shown in the proof of Proposition 3.6 (b),

is equal to dimR/(J : I). Also note that in the above sum, if n is sufficiently large, we

only need to consider factors Mi/Mi+1 that are isomorphic to R[It]/γ where γ is a prime

of type (a). Indeed, if γ is of type (b), then [(R[It]/γ)(−ti)]n = 0 for n � 0 (in fact, for

n ≥ ti + 1). Moreover, if γ is of type (a), then [(R[It]/γ)(−ti)]n ∼= R/p for n � 0. Also, if

γ = pR[It] +Q with p minimal over (J : I) such that dimR/p = dimR/(J : I), the number

of factors Mi/Mi+1 in (3.10.2) that are isomorphic to R[It]/γ (with various shifting degrees)

is given by λ(R[It]γ/Q
mR[It]γ). From these observations it follows that for n� 0 we have

e(In/In−mJm) =
∑
p∈Γ

e(R/p)λ
( R[It]γp
QmR[It]γp

)
where the sum is taken over all prime ideals p in Γ = {p ∈ Spec(R) | (J : I) ⊆ p, dim(R/p) =

dimR/(J : I)}. Since, by definition, ϕ(m) = e(In/In−mJm) for n� 0, the conclusion of the

theorem follows. �

Corollary 3.11. Let (R,m) be a formally equidimensional local ring and J ⊆ I proper

ideals of R with ht I > 0 such that I/J is cyclic and J is not a reduction of I. Assume that

J (I) = J . Then

(a) For m� 0 the function ϕ(m) is a polynomial function of degree dimR− t(J, I);
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(b) For m � 0 the function f(m) = e(Im/Jm) is a polynomial function of degree dimR −

t(J, I).

Proof. For part (a), note that from (3.10.1) it follows that for m � 0 the function ϕ(m)

is a polynomial function of degree max{dimR[It]γp | p ∈ Γ, γp = pR[It] + Q}. However,

for any p ∈ Γ we have R[It]/γp ∼= (R/p)[X], hence ht γp = dimR[It] − dimR[It]/γp =

dimR− dimR/(J : I) and, as noted in Remark 3.5, t(J, I) = dimR/(J : I).

For part (b), by Proposition 2.4 we already know that for m � 0 the function f(m) =

e(Im/Jm) is polynomial of degree at most dimR − t(J, I). On the other hand, under our

assumptions, by Corollary 3.8 (b) we also know that f(m) ≥ ϕ(m) for all m, hence f(m) is

of degree dimR− t(J, I). �

Remark 3.12. If J ⊆ I are ideals in a noetherian ring R, then the ascending chain of ideals

(JIn : In+1) stabilizes, hence there exists c such that K :=
⋃
n≥0(JIn : In+1) = (JIc : Ic+1).

Also note that
√
K =

√
(J : I). Indeed, if p ∈ Spec(R) with p ⊇ (J : I), then Ip * Jp,

i.e. Jp is not a reduction of Ip. This means that JpI
n
p 6= In+1

p for every n, hence p ⊇ K.

Similarly, if p ∈ Spec(R) with p ⊇ K, then Jp is not a reduction of Ip, hence Ip * Jp, which

implies that p ⊇ (J : I).

Without the assumption J (I) = J we are also able to conclude the following.

Theorem 3.13. Let (R,m) be a formally equidimensional local ring and J ⊆ I proper ideals

of R such that I/J is cyclic and depthI R > 0. Assume that J is not a reduction of I. Then

there exists c such that for all m we have

(3.13.1) ϕ(m) =
∑
p∈∆

e(R/p)λ
( R[Ic+1t]γp
QmR[Ic+1t]γp

)
where Q = ((JIc : Ic+1), JIct)R[Ic+1t], γp = pR[Ic+1t] + Q and the sum is taken over all

prime ideals in ∆ = {p ∈ Spec(R) | (J : I) ⊆ p, dim(R/p) = dimR/(J : I)}.

In particular, ϕ(m) is eventually a polynomial function of degree dimR− dimR/(J : I).

Proof. By Lemma 3.4, if c is large enough we have (JIc)(I) = JIc, and by Remark 3.12, we

may also assume that
⋃
n(JIn : In+1) = (JIc : Ic+1). Let J ′ = JIc and I ′ = Ic+1. Note
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that J ′ ⊆ I ′ and I ′/J ′ is still cyclic, for if I = J + xR, then Ic+1 = JIc + xc+1R. Moreover,

since (JIc)(I) = JIc it follows that J ′(I
′) =

⋃
n≥0(J ′I ′n : I ′n) =

⋃
n≥0(JIc+nc+n : Inc+n) =

(JIc)(I) = JIc = J ′, so we are in a situation where we can apply Theorem 3.10 for the pair

of ideals J ′ ⊆ I ′. Then, for n� 0, we have

e(I(c+1)n/I(c+1)n−mJm) =
∑
p∈∆

e(R/p)λ
( R[Ic+1t]γp
QmR[Ic+1t]γp

)
where Q = ((JIc : Ic+1), JIct)R[Ic+1t], γp = pR[Ic+1t] + Q and the sum is taken over all

prime ideals in ∆ = {p ∈ Spec(R) | (JIc : Ic+1) ⊆ p, dim(R/p) = dimR/(JIc : Ic+1)}.

Moreover, by the choice of c, from Remark 3.12 we have
√

(J : I) =
√

(JIc : Ic+1). Since

ϕ(m) = e(In/In−mJm) for n� 0, the first conclusion of the theorem follows. In addition, by

an argument similar to the one used in Corollary 3.11, it follows that for m� 0 the function

ϕ(m) becomes a polynomial of degree dimR − dimR/(JIc : Ic+1) = dimR − dimR/(J :

I). �

We next look at the the asymptotic behavior of another multiplicity function associated

with an ideal J and an element x ∈ R. Unlike ϕ, this function is not always identically zero

when x is integral over J .

Proposition 3.14. Let J ⊆ I be proper ideals in a local noetherian ring R. Then, for each

c ≥ 0, the function

h(m) = hJ,I,c(m) := e(Im+c/IcJm)

is eventually a polynomial function of degree at most dimR− dimR/(J : I). Moreover, if J

is a reduction of I, then the degree of h(m) is at most dimR− dimR/(J : I)− 1.

Proof. First we show that for m� 0 all the R-modules Im/IcJm have the same dimension.

Let x ∈ (JmIc : Im+c). Then

x2Im+c+1 ⊆ xJmIc+1 ⊆ xJIm+c ⊆ JJmIc = Jm+1Ic,

i.e x2 ∈ (Jm+1Ic : Im+c+1), so we have an ascending chain of ideals {
√

(JmIc : Im+c)}m,

which eventually stabilizes to an ideal L. In addition, note that√
(JmIc : Im+c) ⊆

√
(JIc+m−1 : Ic+m) ⊆

√
(J : I),
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so L ⊆
√

(J : I).

From the associativity formula, for m� 0 we have

e(Im+c/IcJm) =
∑

p⊇L, dimR/p=dimR/L

e(R/p)λ(Im+c
p /IcpJ

m
p ).

For each p that appears in the sum above, if we consider the Rp-module Icp , we know

from [4, Section 1] that λ(Im+c
p /Jmp I

c
p) is eventually a polynomial function of dimension

at most dimRp, and hence h(m) is eventually a polynomial function of degree at most

dimR−dimR/L. Since L ⊆
√

(J : I), the first conclusion of the proposition follows. In the

case when J is a reduction of I, by [4, 2.3] each of the lengths λ(Im+c
p /Jmp I

c
p) is eventually

a polynomial function of dimension at most dimRp − 1, and hence the degree of h(m) is at

most dimR− dimR/(J : I)− 1. �

Proposition 3.15. Let R be a formally equidimensional local ring and let J ⊆ I be proper

ideals of R such that depthI R > 0. Assume that I/J is cyclic and J is not a reduction

of I. Then there exists c ∈ N such that the degree of h(m) = e(Im+c/IcJm) is exactly

dimR− dimR/(J : I).

Proof. By Corollary 3.8 (c), there exists c ∈ N such that h(m) ≥ ϕ(m) for m ≥ 1. By the

previous proposition and Theorem 3.13, it then follows that h(m) is eventually a polynomial

function whose degree is exactly dimR− dimR/(J : I) if and only if J is not a reduction of

I. �

Remark 3.16. We conclude by noting that when λ(I/J) < ∞, the original result of Rees

shows that in the above proposition we can always take c = 0.
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