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Abstract. Let J be an equimultiple ideal of height a in a formally equidimensional local

ring (R,m). If I is a proper ideal that contains J , we show that the degree of the multiplicity

function fJ,I(n) = e(In/Jn) is at most a with equality if and only if J is not a reduction

of I. As a consequence, we are able to define a unique filtration J ⊆ J[a] ⊆ . . . ⊆ J[1] ⊆ J

between the ideal J and its integral closure J with J[k] being the largest ideal containing J

such that deg fJ,I(n) ≤ a− k − 1. Further results consider the ideal J[1] and its relation to

the S2-ification of the Rees algebra R[Jt].

1. Introduction

Let (R,m) be a local noetherian ring and J an m-primary ideal of R. For n sufficiently

large, the length λ(R/Jn) becomes a polynomial function

PJ(n) = e0(J)

(
n+ d− 1

d

)
− e1(J)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)d ed(J)

of degree d = dimR whose normalized top degree coefficient e0(J) is the so-called Hilbert-

Samuel multiplicity of J . The fundamental importance of the multiplicity e0(J) in the study

of integral closures of ideals was firmly established by Rees [11] who showed that if (R,m)

is formally equidimensional and J ⊆ I are m-primary ideals, then J and I have the same

integral closure (or equivalently, J ⊆ I is a reduction) if and only if I and J have the same

Hilbert-Samuel multiplicity. In view of this result, the integral closure J of an ideal J is the

largest ideal containing J with the same multiplicity. Based on this interpretation, Shah [13]

proved that for each k ∈ {1, . . . , dimR} there exists a unique ideal Jk containing J maximal

with the property of having the same first (k + 1) Hilbert coefficients e0, . . . , ek.

If J ⊆ I are not necessarily m-primary but λ(I/J) is finite, Amao and Rees [1, 12] showed

that the length λ(In/Jn) is eventually a polynomial function PJ,I(n) of degree at most dimR.
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Moreover, J ⊆ I is a reduction if and only if the degree of PJ,I(n) is at most dimR−1. Based

on this result, Herzog, Puthenpurakal and Verma showed in [5] that Shah’s original argument

can be used to prove that there exists a largest ideal Jk containing J with λ(Jk/J) < ∞

such that the degree of PJ,Jk(n) is at most `(J) − k − 1, where `(J) is the analytic spread

of J . However, it is worth noting that the finiteness constraint on the length makes the

construction non-trivial (i.e. Jk 6= J) only in the case when (J : m∞) 6= J , or equivalently,

m ∈ Ass(R/J).

In the case when J ⊆ I are arbitrary, in [4] we considered the asymptotic behavior of the

multiplicity e(In/Jn) of the R-module In/Jn. For n large enough, e(In/Jn) is a polynomial

function PJ,I(n) of degree at most dimR− t, where t is the stabilizing value of the dimension

dimR/(Jn : In). Moreover, if J ⊆ I is a reduction, then the degree of PJ,I(n) is at most

dimR− t− 1. In some particular cases (e.g. J integrally closed on the punctured spectrum

[4, 2.6]), we were also able to show that the converse holds, i.e., the maximal degree dimR−t

of the polynomial PJ,I(n) is attained if and only if J ⊆ I is not a reduction.

In this paper we start by considering the asymptotic behavior of e(In/Jn) in the case when

J is an equimultiple ideal of height a = ht J = `(J). In this situation, we prove in Theorem

2.6 that the degree of PJ,I(n) is at most `(J), with equality if and only if J ⊆ I is not a

reduction. This result is essential for showing later in Theorem 3.1 that for an equimultiple

ideal J , for each k ∈ {0, . . . , a} there exists a largest ideal J[k] containing J such that the

degree of PJ,J[k] is at most a−k−1, extending Shah’s construction to the case of equimultiple

ideals.

In the last part of the paper we concentrate on the properties of the ideal J[1] and its

relation with the homogeneous component of degree one of the S2-ification of the Rees algebra

R[Jt] (Theorem 3.12). Recall that the S2 property of Serre is one of the two conditions

required for the normality of the Rees algebra R[Jt], the other one being the R1 condition

(regularity in codimension one). Detecting the S2 property is also important when one is

looking at the Cohen-Macaulayness of the Rees algebra. Whenever the S2 property of the

Rees algebra is missing, under some mild conditions on the ring R, one is able to realize

it in a finite birational extension of R, the so-called S2-ification (or S2-closure) of R[Jt].

The process of obtaining it, including some computational approaches, has been studied for
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example in [8]. If the ideal J is m-primary, in [2] the author showed that the homogeneous

component of degree one of the S2-ification of R[Jt] is the largest ideal J1 containing J such

that the degree of the length function λ(Jn
1 /J

n) is at most dimR − 2, which is exactly the

first coefficient ideal of J defined by Shah. In the more general case of equimultiple ideals J ,

in this paper we are able to show that if J ⊆ I, J 6= I, and R[Jt] satisfies Serre’s property

S2, then the degree of the multiplicity function e(In/Jn) is either `(J) − 1 (when J ⊆ I

is a reduction) or `(J) (Corollary 3.13). We conclude with several results regarding the

homogeneous component of degree one of the S2-ification of the Rees algebra R[Jt] of an

arbitrary ideal J .

2. Degrees of multiplicity functions

We begin by establishing some of the notations and conventions of this paper. If (R,m)

is a local noetherian ring with maximal ideal m and M is a finitely generated R-module of

dimension d = dimM , the multiplicity e(M) = ed(M) is the normalized leading coefficient

of the Hilbert function

λ(M/mnM) =
e(M)

d!
nd + lower degree terms (n� 0).

For t > dimM , we also set et(M) = 0. We caution that in the literature (e.g. [7]) a different

definition is sometimes used by setting e(M) = edimR(M), in which case the multiplicity of

M is non-zero if and only if M and R have the same dimension. The possible conflict is

easily avoided by considering M as a module over R/AnnM .

If J is an ideal in the local ring (R,m), the analytic spread of J is defined by `(J) =

dimR[Jt]/mR[Jt]. If the residue field R/m is infinite, `(J) gives the minimal number of

generators of every minimal reduction of J . It is also known that ht J ≤ alt J ≤ `(J) ≤

dimR, where alt J = max{ht p | p minimal prime over J} and ht J is the height of the ideal

J . The ideals that satisfy the condition `(J) = ht J are called equimultiple ideals.

Throughout this paper, if h(n) is a numerical function that is eventually a polynomial

function P (n), we write deg f(n) to refer to the degree of P (n). For all the other unexplained

or undefined terminology we refer the reader to [7].



4 C. CIUPERCĂ

2.1. The asymptotic behavior of λ(In/Jn). If J ⊆ I are ideals in the local ring R

and λ(I/J) < ∞, Amao [1] showed that λ(In/Jn) is eventually a polynomial function

PJ,I(n). Rees [12] later proved that the degree of this polynomial is at most dimR and

if J is a reduction of I, then the degree is at most dimR − 1. Moreover, if (R,m) is

formally equidimensional (i.e. all the minimal prime ideals of the completion R̂ have the

same dimension), Rees showed that J is a reduction of I if and only if the degree of PJ,I(n)

is at most dimR−1. Let us observe that if J is a reduction of I, then the degree of PJ,I(n) is

in fact at most `(J)−1. For this, note that if J is a reduction of I, thenM = ⊕n≥1(I
n/Jn) is

a finitely generated module over R(J) = ⊕n≥0J
n. Moreover, since λ(I/J) <∞, there exists

k such that mkM = 0, soM is a finitely generated R(J)/mkR(J)-module. This implies that

λ(In/Jn) is eventually a polynomial function of degree at most dimR(J)/mkR(J) − 1 =

`(J)− 1. In conclusion, if (R,m) is formally equidimensional, J ⊆ I and λ(I/J) <∞, then

the degree of PJ,I(n) is either at most `(J) − 1 (in the case when J ⊆ I is a reduction) or

exactly dimR (in the case when J ⊆ I is not a reduction).

2.2. The asymptotic behavior of e(In/Jn). If J ⊆ I are ideals in the local ring R but the

length λ(I/J) is not necessarily finite, in [4] we considered the asymptotic behavior of the

numerical function given by the multiplicity of the R-module In/Jn in order to characterize

whether or not J is a reduction of I. We first observed that for n� 0 we have
√

(Jn : In) =√
(Jn+1 : In+1) ([4, 2.2]) and if t denotes the stabilizing value of the dimension dimR/(Jn :

In), then e(In/Jn) is eventually a polynomial function PJ,I(n) of degree at most dimR− t.

If J is a reduction of I, we also noted that the degree of this polynomial function is at most

dimR − t − 1. In fact, similarly to what we noted above, if J ⊆ I is a reduction we can

improve the upper bound of the degree of this polynomial by showing that

(2.2.1) degPJ,I(n) ≤ min{dimR− t− 1, `(J)− 1}.

To see this, set K :=
√

(Jn : In) for n � 0. From the associativity formula, for n � 0 we

have

e(In/Jn) =
∑

p⊇K,dimR/p=t

e(R/p)λ(Inp /J
n
p ).

By the observation made at the end of (2.1), each numerical function λ(Inp /J
n
p ) from the

right-hand side of the above equality has degree at most `(Jp) − 1, and hence the degree
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of e(In/Jn) is bounded above by `(J) − 1. It is worth noting that this upper bound is

independent of I, unlike dimR− t− 1.

Remark 2.3. With the same set-up as in (2.2), assume in addition that J is equimultiple.

Since Jn ⊆ K for n � 0, we have `(J) = ht J ≤ htK ≤ dimR − t, and therefore the

inequality deg e(In/Jn) ≤ `(J) − 1 is the only relevant part of (2.2.1) for reductions J ⊆ I

with J equimultiple. On the other hand, if J is not a reduction of I, then, as we show below

in Lemma 2.4, we have ht J = htK. Moreover, under the additional assumption that R is

formally equidimensional, in Theorem 2.6 we prove that if J is not a reduction of I and J is

equimultiple, then the degree of e(In/Jn) is exactly dimR− t = htK = ht J .

Lemma 2.4. Let (R,m) be a local ring and J ⊆ I proper ideals of R with J equimultiple.

Assume that J is not a reduction of I. Then

ht J = ht(J : I) = ht(Jn : In) for all n ≥ 1.

Proof. Let p be a minimal prime over (J : I). If I = (x1, . . . , xk), then p is minimal over

(J : xi) for some i, and hence p ∈ Ass(R/J). Since J is equimultiple, a result of Ratliff

[9, Theorem 2.12] shows that every prime in Ass(R/J) is minimal, so p is minimal over J .

On the other hand, we also have ht J = `(J) ≥ alt J ≥ ht p, so ht J = ht p and therefore

ht p = ht(J : I) = ht(J : I) = ht J . Similarly, for any positive integer n, the ideal Jn is

equimultiple and Jn is not a reduction of In, and hence, for every minimal prime ideal p

over (Jn : In), we have ht p = ht(Jn : In) = ht(Jn : In) = ht J . �

Remark 2.5. Note that if J is equimultiple with `(J) < dimR and J ⊆ I with λ(I/J) <∞,

then J ⊆ I is a reduction. Indeed, by the previous lemma, if J is not a reduction of I, then

ht J = ht(J : I) = dimR.

Theorem 2.6. Let (R,m) be a formally equidimensional local ring and J ⊆ I proper ideals

of R with J equimultiple. Let f(n) = e(In/Jn). The following are true.

(a) If J ⊆ I is a reduction, then deg f(n) ≤ `(J)− 1.

(b) If J ⊆ I is not a reduction, then deg f(n) = `(J).



6 C. CIUPERCĂ

Proof. Let t denote the stabilizing value of dimR/(Jn : In). If J ⊆ I is a reduction, as we

already explained in 2.2, the degree of f(n) is at most `(J) − 1. Assume that J ⊆ I is not

a reduction. In this case we will show that the degree of f(n) is exactly dimR − t = ht J ,

where the last equality follows from Lemma 2.4. Choose N such that K :=
√

(Jn : In) =√
(Jn+1 : In+1) for n ≥ N . From the associativity formula, for n ≥ N we have:

(2.6.1) e(In/Jn) =
∑

q⊇K,dimR/q=t

e(R/q)λ(Inq /J
n
q ).

As in the proof of Lemma 2.4, let p be a minimal prime over (JN : IN). Then dimR/p =

dimR − ht p = dimR − ht(JN : IN) = t, so p is one of the prime ideals that contributes

with the term e(R/p)λ(Inp /J
n
p ) on the right-hand side of (2.6.1). On the other hand, since

p ⊇ (JN : IN), the ideal Jp cannot be a reduction of Ip, in which case, by the result of Rees

[12, 2.1] which we explained in 2.1, the degree of the function λ(Inp /J
n
p ) is exactly dimR− t.

Since all the other terms in (2.6.1) have degree at most dimR− t, this shows that the degree

of e(In/Jn) is exactly dimR− t. �

3. Coefficient ideals for equimultiple ideals

If J is an m-primary ideal in local ring (R,m) of dimension d, for n � 0 the length

λ(R/Jn) becomes a polynomial function

PJ(n) = e0(J)

(
n+ d− 1

d

)
− e1(J)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)d ed(J).

If R is formally equidimensional and dimR > 0, Shah [13] proved that for each k ∈ {1, . . . , d}

there exists a unique ideal Jk containing J maximal with the property that ei(Jk) = ei(J)

for 0 ≤ i ≤ k, or equivalently, deg λ(Jn
k /J

n) ≤ d − k − 1. The ideal Jk was called the k-th

coefficient ideal of J .

In this section we define the concept of coefficient ideals for an equimultiple ideal J of

height a in a formally equidimensional local ring (R,m). Using the numerical information of

the degree functions studied in Section 2, we construct a family of ideals J ⊆ Ja ⊆ Ja−1 ⊆

. . . ⊆ J1 ⊆ J that generalizes the above mentioned construction of the coefficient ideals of

an m-primary ideal.
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Theorem 3.1. Let (R,m) be a formally equidimensional local ring of positive dimension and

let J be an equimultiple ideal of R of height a. For each k ∈ {0, . . . , a} let

Lk = Lk(J) = {L | L ideal of R,L ⊇ J, and deg e(Ln/Jn) ≤ a− k − 1}.

Then, for each k, there exists a unique maximal element J[k] of Lk. We call J[k] the k-th

coefficient ideal of J .

Proof. The proof we present is based, in essence, on the same idea used by Shah [13] in the

case of m-primary ideals. We begin by making the crucial observation that if L ∈ Lk, then

deg e(Ln/In) ≤ a−1 and therefore, by Theorem 2.6, J is a reduction of L. In fact, Theorem

2.6 shows that L ∈ L0 if and only if J ⊆ L is a reduction, so the unique maximal element of

L0 is the integral closure J of J .

To prove that each Lk has a unique maximal element we will show that if K,L ∈ Lk, then

K +L ∈ Lk. Since J ⊆ K ⊆ K +L it follows that K ⊆ K +L is a reduction, so there exists

r such that (K + L)n = (K + L)rKn−r for every n ≥ r. Let t be the stabilizing value of the

dimension dimR/(Jn : (K + L)n). Then, for n� 0 we have:

e((K + L)n/Jn) = et((K + L)n/Jn) = et((L
rKn−r + Lr−1Kn−r+1 + · · ·+ LKn−1 +Kn)/Jn)

≤ et

( r⊕
i=0

(LiKn−i/Jn)
)

=
r∑

i=0

et(L
iKn−i/Jn) (some terms may be equal to 0)

=
r∑

i=0

[et(L
iKn−i/LiJn−i) + et(L

iJn−i/Jn)].

For each i ∈ {0, . . . , r} we have

et(L
iJn−i/Jn) ≤ et(L

n/Jn)

and

et(L
iKn−i/LiJn−i) ≤ µ(Li) et(K

n−i/Jn−i),

where µ(Li) denotes the minimal number of generators of Li. Note that t is an upper bound

for the dimensions of all the quotient modules involved here. Since et(L
n/Jn) ≤ e(Ln/Jn),



8 C. CIUPERCĂ

et(K
n−i/Jn−i) ≤ e(Kn−i/Jn−i) for each i = 0, . . . , r, and both e(Ln/Jn) and e(Kn−i/Jn−i)

are polynomial functions of degree at most a−k−1 for n� 0, it follows that e((K+L)n/Jn)

is bounded above by a polynomial function of degree at most a− k− 1 for n� 0, and hence

K + L ∈ Lk, finishing the proof. �

Remark 3.2. As already mentioned in the proof of the previous theorem, the ideal J[0] is

simply the integral closure J of the ideal J .

Remark 3.3. In [5], a different construction for coefficient ideals of arbitrary ideals was

introduced. The authors obtained a chain of ideals J ⊆ Ja ⊆ Ja−1 ⊆ . . . ⊆ J1 ⊆ J ∩ (J :

m∞) = q(J) where Jk is the largest ideal containing J with λ(Jk/J) <∞ and deg λ(Jn
k /J

n) ≤

a − k − 1. While this construction applies to an arbitrary ideal, only the case when m ∈

Ass(R/J) is of interest, for otherwise q(J) = J .

3.4. The S2-ification of a noetherian domain. We recall a few properties of the S2-

ification of a noetherian domain. We refer the reader to [6, 2, 3] for more detailed accounts.

If R is a noetherian domain, we say that S is an S2-ification of R if the following properties

are satisfied: (a) S is a finite birational extension of R; (b) S satisfies the S2 property of

Serre; and (c) S is minimal among the extensions of R satisfying (a) and (b). The S2-ification

of a noetherian domain does not always exist, but if it does, it is unique. More precisely,

the noetherian domain R has an S2-ification if and only if
⋂

ht p=1Rp is a finite extension of

R, in which case R̃ =
⋂

ht p=1Rp is the S2-ification of R. The S2-ification exists for a large

class of noetherian domains. For example, if R is a formally equidimensional analytically

unramified local domain, then R has an S2-ification. Other examples of noetherian domains

that have an S2-ification include the local domains that have a canonical module ω, in which

case HomR(ω, ω) is the S2-ification of R.

In Theorem 3.1 we defined the first coefficient ideal of an equimultiple ideal J to be the

largest ideal I containing J such that deg e(In/Jn) ≤ `(J) − 2. In the course of the study

of the S2-ification of the Rees algebra of an ideal J , in [3] we introduced the following con-

struction associated with an ideal (see Definition 3.5), which we also called “first coefficient

ideal”. As we will see later, the two concepts are identical in the case of m-primary ideals.



DEGREES OF MULTIPLICITY FUNCTIONS FOR EQUIMULTIPLE IDEALS 9

In the more general case of equimultiple ideals, we will explore the connection between them

in Theorem 3.12.

Definition 3.5 (First coefficient ideals as in [3]). Let A be a noetherian ring and J an ideal

of A. Define

J{1} =
⋃

(Jn+1 : a),

where the union is taken over all n ≥ 1 and all a ∈ Jn \ Jn+1 such that the image a∗

of a in Jn/Jn+1 is part of a system of parameters of the associated graded ring G(J) =⊕
n≥0 J

n/Jn+1.

Remark 3.6. As proved in [3, Proposition 3.5], for each ideal J there exists a fixed integer

m and a fixed element a ∈ Jm \ Jm+1 with a∗ part of a system of parameters on G(J) such

that

J{1} = (Jm+1 : a).

Remark 3.7. If J is an m-primary ideal in a local ring R, the ideal mG(J) is nilpotent.

Therefore, in Definition 3.5, the union is taken over all n and all a such that a∗ ∈ Jn/Jn+1 is

part of a system of parameters on G(J)/mG(J), or equivalently, a is extendable to a minimal

reduction of Jn. By [13, Theorem 2], this means that in the case of an m-primary ideal J ,

the ideal J{1} coincides with the concept of first coefficient ideal defined by Shah, i.e. J{1} is

the largest ideal I containing J such that the degree of λ(In/Jn) is at most dimR− 2.

3.8. The S2-ification of a Rees algebra. The concept introduced in Definition 3.5

was motivated by the following result (see [3, Theorem 3.4] and the discussion preceding

it). Let (R,m) be a formally equidimensional, analytically unramified local domain with

infinite residue field and positive dimension and let J be an arbitrary ideal of R. Let

R̃ =
⊕

n∈Z Jnt
n ⊆ Q(R)[t, t−1] be the S2-ification of R[Jt, t−1]. Then Jn ∩ R = Jn

{1} for

every n ≥ 1 . We conclude by mentioning that if ht J ≥ 2, the S2-ifications of the algebras

R[Jt, t−1] and R[Jt] have the same homogeneous components in positive degree [2, 2.6].

3.9. Properties of J{1}. Let J be an ideal in a formally equidimensional local ring (R,m)

We collect here several properties of J{1} that will be needed later. With the exception of

(c), they all follow immediately from the interpretation of J{1} given by the S2-ification of
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Rees algebra, under the additional assumption that R is analytically unramified local domain

with infinite residue field and positive dimension.

(a) If J ⊆ I ⊆ J{1}, then J ⊆ I is a reduction.

(b) (J{1})p = (Jp){1} for every prime ideal p.

(c) If J ⊆ I, then I ⊆ J{1} if and only if dimG(J)
⊕

n≥0(IJ
n/Jn+1) < dimR. ([3, Proposition

3.6])

(d) If J ⊆ I is a reduction, then J{1} ⊆ I{1}.

(e) (J{1}){1} = J{1}.

(f) If J∗ =
⋃

i≥1(J
i+1 : J i) is the Ratliff-Rush closure of J , then J∗ ⊆ J{1}. (See, for

example, the proof of [8, 2.10].)

A direct proof of (a) using only the definition of J{1} is given in [3, Proposition 3.8] for any

ideal in a formally equidimensional local ring. Similarly, (b) can also be obtained directly

from the definition.

We denote by Junm the intersection of the primary components of J corresponding to its

minimal primes. A slightly weaker version of the following result was proved by the author

in [2, Proposition 2.10]. The original proof is modified by using the extended Rees algebra

R[Jt, t−1].

Lemma 3.10. Let (R,m) be a formally equidimensional, analytically unramified local domain

with infinite residue field and of positive dimension, and let J be an equimultiple ideal of R.

Then

Junm ⊆ J{1}.

In particular,

Ass(R/J{1}) = Min(R/J).

Proof. Let R̃ = ⊕n∈ZJnt
n ⊆ Q(R)[t, t−1] be the S2-ification of the extended Rees algebraR =

R[Jt, t−1]. As explained in 3.8, we have Jn∩R = (Jn){1} for all n ≥ 1. Since Junm = J when J

is m-primary, we may assume that ht J ≤ dimR−1. Let J = (q1∩. . .∩qk)∩(qk+1∩. . .∩qs) be

an irredundant primary decomposition of J where p1 =
√
q1, . . . , pk =

√
qk are the minimal

prime ideals of J , so that Junm = q1 ∩ . . . ∩ qk. Suppose Junm * J{1} so that there exists p
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prime ideal such that (Junm)p * (J{1})p. Choose p minimal with this property. By localizing

at p we reduce to the case when Supp((Junm+J{1})/J{1}) = {m}. Note that after localization

the ideal J is still equimultiple and ht J < dimR. Indeed, since (Junm)pi = Jpi for all i ≤ k,

the prime ideal p is not minimal over J . Since (Junm + J{1})/J{1} has finite length, we can

choose r such that mrJunm ⊆ J{1}, so that for every x ∈ Junm we have xt ∈ Q(R)[t, t−1] and

mrxt ⊆ R̃. Note that this also means that (mr, t−1)R̃xt ⊆ R̃. On the other hand, we have

dimR > `(J) = dimR/(mr, t−1)R ≥ dimR/(mr, t−1)R̃ ∩ R = dim R̃/(mr, t−1)R̃,

so ht(mr, t−1)R̃ ≥ 2. This implies that xt ∈ (̃R̃) = R̃, and therefore x ∈ J1 ∩ R = J{1}.

Finally, we also obtain (J{1})
unm ⊆ (J{1}){1} = J{1}, and therefore J{1} is unmixed. �

Lemma 3.11. Let R be a noetherian ring, J ⊆ I proper ideals of R, and let r ∈ N. Then

√
(Jn : In) =

√
(Jn : IrJn−r) for n� 0.

Proof. For an ideal L, let L∗ =
⋃

i≥1(L
i+1 : Li) denote the Ratliff-Rush closure of L [10]. As

mentioned in 2.2, we can set K :=
√

(Jn : In) for n � 0. For α ∈ (Jn : IrJn−r) we have

αIr ⊆ (Jn : Jn−r) ⊆ (Jr)∗ ([10, 2.3.1]) and therefore αnIrn ⊆ ((Jr)∗)n = Jrn for n� 0 [10,

2.1]. This implies that α ∈ K, finishing the proof. �

The next theorem relates the two concepts of first coefficient ideals in the case of equimul-

tiple ideals.

Theorem 3.12. Let (R,m) be a formally equidimensional, analytically unramified local do-

main with infinite residue field and of positive dimension, and let J be an equimultiple ideal

of R. Then

J[1] ⊆ J{1}.

Proof. For an ideal I, we will prove that J ⊆ I ⊆ J[1] implies J ⊆ I ⊆ J{1}. Assume that

J ⊆ I ⊆ J[1] but I * J{1}. Then J ⊆ I is a reduction. As before, set K :=
√

(Jn : In) for

n � 0 and t = dimR/K. Note that K =
√

(Jn+1 : IJn) for n � 0 by Lemma 3.11. Then,

for n � 0, we have dim(In/Jn) = dim(IJn/Jn+1), hence e(In+1/Jn+1) ≥ e(IJn/Jn+1),
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which implies that deg e(IJn/Jn+1) ≤ `(J)− 2. Since

(3.12.1) e(IJn/Jn+1) =
∑

p⊇K,dimR/p=t

e(R/p)λ(IpJ
n
p /J

n+1
p ) for n� 0,

we obtain that deg λ(IpJ
n
p /J

n+1
p ) ≤ ht J − 2 for all the prime ideals p ⊇ K with dimR/p =

dimR/K.

Since I * J{1} we can take q a minimal prime over (J{1} : I). Then q is minimal over

(J{1} : x) for some x ∈ I, hence q ∈ Ass(R/J{1}). Since J{1} has no embedded primes by

Lemma 3.10, q is a minimal prime over J . Then ht J = `(J) ≥ alt J ≥ ht q, so ht q = ht J .

From J ⊆ (Jn+1 : IJn) ⊆ (J∗ : I) ⊆ (J{1} : I) (see 3.9 (f)) we also get ht q = htK.

As R is formally equidimensional, q is therefore one of the prime ideals that appear in the

summation of (3.12.1), and hence deg λ(IqJ
n
q /J

n+1
q ) ≤ ht J − 2 = ht q − 2. On the other

hand, since Iq * (J{1})q = (Jq){1} we have dimG(Jq)(
⊕

n≥0 IqJ
n
q /J

n+1
q ) = dimRq (by 3.9 (c)),

which implies that λ(IqJ
n
q /J

n+1
q ) is eventually a polynomial function of degree dimRq − 1,

reaching a contradiction.

We conclude the proof by noting that the unmixedness of J{1} was essential in the proof.

The lack of a similar property for J[1] prevents one from obtaining the reverse containment

(and thus equality) in the statement of the theorem. �

From Theorem 2.6 we know that if J ⊆ I, J 6= I and J is equimultiple and integrally closed,

then deg e(In/Jn) = `(J). If J is not necessarily integrally closed but R[Jt] satisfies the S2

property, as a consequence of the previous theorem, we are still able to obtain information

about the degree of e(In/Jn).

Corollary 3.13. Let (R,m) be a formally equidimensional, analytically unramified local

domain with infinite residue field and of positive dimension, and let J ⊆ I be proper ideals

of R with J equimultiple and I 6= J . Assume that J = J{1} (which holds, for instance, when

R[Jt] satisfies the S2 property). Then

`(J)− 1 ≤ deg e(In/Jn) ≤ `(J),

with equality on the left-hand side if and only if J ⊆ I is a reduction.
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It is worth comparing the above result with [5, Theorem 4.8] which states the following:

if J ⊆ I is a reduction, J 6= I, R[Jt] is (S2) and λ(I/J) < ∞, then `(J) = dimR and

deg λ(In/Jn) = dimR− 1. As shown in the next two results, one can obtain the conclusion

`(J) = dimR of [5, Theorem 4.8] without assuming that J ⊆ I is a reduction.

Proposition 3.14. Let (R,m) be a formally equidimensional local ring and J ⊆ I proper

ideals such that λ(I/J) <∞. Assume that `(J) < dimR. Then I ⊆ J{1}.

Proof. Consider the finitely generated R[Jt]-module M =
⊕

n≥0 IJ
n/Jn+1. Since λ(I/J) <

∞ we can choose k such that mkM = 0, soM is a finitely generated R[Jt]/mkR[Jt]-module.

But dimR[Jt]/mkR[Jt] = `(J) < dimR, so dimM < dimR, which by 3.9 (c) implies that

I ⊆ J{1}. �

As an immediate consequence we obtain the following.

Corollary 3.15. Let (R,m) be a formally equidimensional local domain and J ⊆ I proper

ideals with J 6= I such that λ(I/J) < ∞. Assume that R[Jt] satisfies Serre’s condition S2.

Then `(J) = dimR.

Proof. Since R[Jt] is (S2), so is R[Jt, t−1] ([2, Proposition 2.6]), and therefore (Jn){1} = Jn

for all n. If `(J) < dimR, by the previous proposition we have I ⊆ J{1} = J . �
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