DEGREES OF MULTIPLICITY FUNCTIONS FOR EQUIMULTIPLE
IDEALS

CATALIN CIUPERCA

ABSTRACT. Let J be an equimultiple ideal of height a in a formally equidimensional local
ring (R, m). If I is a proper ideal that contains J, we show that the degree of the multiplicity
function fjr(n) = e(I™/J™) is at most a with equality if and only if J is not a reduction
of I. As a consequence, we are able to define a unique filtration J C J[a] c...C J[l} cJ
between the ideal .J and its integral closure .J with Jk) being the largest ideal containing J
such that deg f;7(n) < a —k — 1. Further results consider the ideal Jj;; and its relation to
the Se-ification of the Rees algebra R[Jt].

1. INTRODUCTION

Let (R,m) be a local noetherian ring and J an m-primary ideal of R. For n sufficiently

large, the length A(R/J™) becomes a polynomial function

Prt) =) (") —an (" H T e 0 e

of degree d = dim R whose normalized top degree coefficient e(.J) is the so-called Hilbert-
Samuel multiplicity of J. The fundamental importance of the multiplicity eg(.J) in the study
of integral closures of ideals was firmly established by Rees [11] who showed that if (R, m)
is formally equidimensional and J C I are m-primary ideals, then J and I have the same
integral closure (or equivalently, J C [ is a reduction) if and only if I and J have the same
Hilbert-Samuel multiplicity. In view of this result, the integral closure J of an ideal J is the
largest ideal containing J with the same multiplicity. Based on this interpretation, Shah [13]
proved that for each k € {1,...,dim R} there exists a unique ideal J; containing J maximal

with the property of having the same first (k + 1) Hilbert coefficients ey, ..., e.

If J C I are not necessarily m-primary but A(/J) is finite, Amao and Rees [1I, 12] showed
that the length A\(1™/.J") is eventually a polynomial function Pj(n) of degree at most dim R.
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Moreover, J C [ is a reduction if and only if the degree of P;;(n) is at most dim R—1. Based
on this result, Herzog, Puthenpurakal and Verma showed in [5] that Shah’s original argument
can be used to prove that there exists a largest ideal Jj containing .J with A(J;/J) < oo
such that the degree of Pj, (n) is at most ¢(J) — k — 1, where ¢(J) is the analytic spread
of J. However, it is worth noting that the finiteness constraint on the length makes the
construction non-trivial (i.e. Jx # J) only in the case when (J : m*) # J, or equivalently,
m € Ass(R/J).

In the case when J C I are arbitrary, in [4] we considered the asymptotic behavior of the
multiplicity e(I"/J") of the R-module I"/J". For n large enough, e(1™/J") is a polynomial
function Pj(n) of degree at most dim R —t, where ¢ is the stabilizing value of the dimension
dim R/(J™ : I"™). Moreover, if J C I is a reduction, then the degree of P;(n) is at most
dim R —t — 1. In some particular cases (e.g. J integrally closed on the punctured spectrum
[4, 2.6]), we were also able to show that the converse holds, i.e., the maximal degree dim R—t

of the polynomial P;(n) is attained if and only if J C I is not a reduction.

In this paper we start by considering the asymptotic behavior of e(1™/J™) in the case when
J is an equimultiple ideal of height a = ht J = ¢(J). In this situation, we prove in Theorem
that the degree of P;(n) is at most ¢(J), with equality if and only if J C I is not a
reduction. This result is essential for showing later in Theorem that for an equimultiple
ideal J, for each k € {0,...,a} there exists a largest ideal Jy) containing J such that the
degree of Py y,, is at most a —k —1, extending Shah’s construction to the case of equimultiple

ideals.

In the last part of the paper we concentrate on the properties of the ideal Jp; and its
relation with the homogeneous component of degree one of the Ss-ification of the Rees algebra
R[Jt] (Theorem [3.12)). Recall that the S property of Serre is one of the two conditions
required for the normality of the Rees algebra R[Jt], the other one being the R; condition
(regularity in codimension one). Detecting the S, property is also important when one is
looking at the Cohen-Macaulayness of the Rees algebra. Whenever the Sy property of the
Rees algebra is missing, under some mild conditions on the ring R, one is able to realize
it in a finite birational extension of R, the so-called Sy-ification (or Se-closure) of R[.Jt].

The process of obtaining it, including some computational approaches, has been studied for
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example in [§]. If the ideal J is m-primary, in [2] the author showed that the homogeneous
component of degree one of the Sp-ification of R[Jt] is the largest ideal J; containing J such
that the degree of the length function \(J}*/J™) is at most dim R — 2, which is exactly the
first coefficient ideal of J defined by Shah. In the more general case of equimultiple ideals J,
in this paper we are able to show that if J C I, J # I, and R[J{] satisfies Serre’s property
Sy, then the degree of the multiplicity function e(1™/J") is either ¢(J) — 1 (when J C I
is a reduction) or ¢(J) (Corollary [3.13). We conclude with several results regarding the
homogeneous component of degree one of the Ss-ification of the Rees algebra R[Jt| of an

arbitrary ideal J.

2. DEGREES OF MULTIPLICITY FUNCTIONS

We begin by establishing some of the notations and conventions of this paper. If (R, m)
is a local noetherian ring with maximal ideal m and M is a finitely generated R-module of
dimension d = dim M, the multiplicity e(M) = e;(M) is the normalized leading coefficient
of the Hilbert function

M
AM/m"M) = e(dl )nd + lower degree terms (n > 0).

For ¢ > dim M, we also set e;(M) = 0. We caution that in the literature (e.g. [7]) a different
definition is sometimes used by setting e(M) = eqim (M), in which case the multiplicity of
M is non-zero if and only if M and R have the same dimension. The possible conflict is

easily avoided by considering M as a module over R/ Ann M.

If J is an ideal in the local ring (R, m), the analytic spread of J is defined by ¢(J) =
dim R[Jt]/mR[Jt]. If the residue field R/m is infinite, ¢(J) gives the minimal number of
generators of every minimal reduction of J. It is also known that ht J < alt J < {(J) <
dim R, where alt J = max{ht p | p minimal prime over J} and ht J is the height of the ideal
J. The ideals that satisfy the condition ¢(.JJ) = ht J are called equimultiple ideals.

Throughout this paper, if A(n) is a numerical function that is eventually a polynomial
function P(n), we write deg f(n) to refer to the degree of P(n). For all the other unexplained

or undefined terminology we refer the reader to [7].



4 C. CIUPERCA

2.1. The asymptotic behavior of A(["/J"). If J C I are ideals in the local ring R
and A(I/J) < oo, Amao [I] showed that A(I"/J") is eventually a polynomial function
Pjr(n). Rees [12] later proved that the degree of this polynomial is at most dim R and
if J is a reduction of I, then the degree is at most dim R — 1. Moreover, if (R, m) is
formally equidimensional (i.e. all the minimal prime ideals of the completion R have the
same dimension), Rees showed that J is a reduction of I if and only if the degree of P;(n)
is at most dim R —1. Let us observe that if J is a reduction of 7, then the degree of P;(n) is
in fact at most £(J)—1. For this, note that if .J is a reduction of I, then M = @,,>1({"/J") is
a finitely generated module over R(J) = @,,>0J". Moreover, since A(I/.J) < oo, there exists
k such that m* M = 0, so M is a finitely generated R(J)/m*R(J)-module. This implies that
A(I™/J™) is eventually a polynomial function of degree at most dim R(J)/m*R(J) — 1 =
¢(J) — 1. In conclusion, if (R, m) is formally equidimensional, J C I and A(I/J) < oo, then
the degree of Pj(n) is either at most ¢(J) — 1 (in the case when J C [ is a reduction) or

exactly dim R (in the case when J C [ is not a reduction).

2.2. The asymptotic behavior of e(/"/J"). If J C [ are ideals in the local ring R but the
length \(1/J) is not necessarily finite, in [4] we considered the asymptotic behavior of the
numerical function given by the multiplicity of the R-module I"™/J™ in order to characterize
whether or not J is a reduction of /. We first observed that for n > 0 we have y/(J" : I") =

(Jntt: [nt1) ([, 2.2]) and if ¢ denotes the stabilizing value of the dimension dim R/(J" :
I™), then e(I™/J") is eventually a polynomial function Pj;(n) of degree at most dim R — ¢.
If J is a reduction of I, we also noted that the degree of this polynomial function is at most
dim R —t — 1. In fact, similarly to what we noted above, if J C [ is a reduction we can

improve the upper bound of the degree of this polynomial by showing that
(2.2.1) deg P;jr(n) < min{dim R —t — 1,¢(J) — 1}.

To see this, set K := /(J": I") for n > 0. From the associativity formula, for n > 0 we

have

eo(I"/ ") = > e(B/p)ML/I).

pOK,dim R/p=t
By the observation made at the end of ({2.1]), each numerical function A(Z;'/J;') from the

right-hand side of the above equality has degree at most ¢(.J,) — 1, and hence the degree
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of e(I"/J") is bounded above by ¢(J) — 1. It is worth noting that this upper bound is
independent of I, unlike dim R — ¢ — 1.

Remark 2.3. With the same set-up as in , assume in addition that J is equimultiple.
Since J" C K for n > 0, we have ¢(J) = htJ < ht K < dim R — ¢, and therefore the
inequality dege(I"™/J") < ¢(J) — 1 is the only relevant part of for reductions J C I
with J equimultiple. On the other hand, if .J is not a reduction of I, then, as we show below
in Lemma [2.4] we have ht J = ht K. Moreover, under the additional assumption that R is
formally equidimensional, in Theorem we prove that if J is not a reduction of I and J is
equimultiple, then the degree of e(1"/J") is exactly dim R — ¢ = ht K = ht J.

Lemma 2.4. Let (R, m) be a local ring and J C I proper ideals of R with J equimultiple.

Assume that J is not a reduction of I. Then
ht J =ht(J : I) = ht(J" : I") for allmn > 1.

Proof. Let p be a minimal prime over (J : I). If I = (z1,..., 1), then p is minimal over
(J : ;) for some 4, and hence p € Ass(R/J). Since J is equimultiple, a result of Ratliff
[9) Theorem 2.12] shows that every prime in Ass(R/J) is minimal, so p is minimal over J.
On the other hand, we also have ht J = ¢(J) > alt J > htp, so ht J = htp and therefore
htp = ht(J : I) = ht(J : I) = htJ. Similarly, for any positive integer n, the ideal J" is
equimultiple and J" is not a reduction of I, and hence, for every minimal prime ideal p

over (Jm: I"), we have htp = ht(J" : I") = ht(J" : I") = ht J. O

Remark 2.5. Note that if J is equimultiple with ¢(J) < dim R and J C I with A(I/J) < o0,
then J C I is a reduction. Indeed, by the previous lemma, if .J is not a reduction of I, then

ht J =ht(J : I) = dim R.
Theorem 2.6. Let (R, m) be a formally equidimensional local ring and J C I proper ideals
of R with J equimultiple. Let f(n) =e(I"/J"). The following are true.

(a) If J C I is a reduction, then deg f(n) < ¢(J) — 1.
(b) If J C I is not a reduction, then deg f(n) = £(J).
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Proof. Let t denote the stabilizing value of dim R/(J" : I"™). If J C I is a reduction, as we
already explained in [2.2] the degree of f(n) is at most ¢(J) — 1. Assume that J C I is not
a reduction. In this case we will show that the degree of f(n) is exactly dim R — ¢ = ht J,
where the last equality follows from Lemma . Choose N such that K := \/W =
\/W for n > N. From the associativity formula, for n > N we have:

(2.6.1) e(I"/ T = > e(Rlq)NI}/TY).
QDK dim R/q=t

As in the proof of Lemma , let p be a minimal prime over (JV : IV). Then dim R/p =
dim R — htp = dim R — ht(JY : I") = ¢, so p is one of the prime ideals that contributes
with the term e(R/p) A(1;'/Ji") on the right-hand side of (2.6.1). On the other hand, since
po (J_N : IV, the ideal .J, cannot be a reduction of I,, in which case, by the result of Rees
[12, 2.1] which we explained in , the degree of the function A(I'/J;') is exactly dim R —t.
Since all the other terms in have degree at most dim R — ¢, this shows that the degree
of e(I™/J") is exactly dim R — t. O

3. COEFFICIENT IDEALS FOR EQUIMULTIPLE IDEALS

If J is an m-primary ideal in local ring (R, m) of dimension d, for n > 0 the length

A(R/J™) becomes a polynomial function

P;(n) = eo(J) (”*Z‘ 1> —ey(J) (";f;ﬂ bt (—1)ea( ).

If R is formally equidimensional and dim R > 0, Shah [13] proved that for each k € {1,...,d}
there exists a unique ideal Jj containing J maximal with the property that e;(Jx) = e;(J)
for 0 < i <k, or equivalently, deg A(J}*/J") < d — k — 1. The ideal J; was called the k-th

coefficient ideal of J.

In this section we define the concept of coefficient ideals for an equimultiple ideal J of
height a in a formally equidimensional local ring (R, m). Using the numerical information of
the degree functions studied in Section 2, we construct a family of ideals J C J, C J,_1 C
... C J; C J that generalizes the above mentioned construction of the coefficient ideals of

an m-primary ideal.
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Theorem 3.1. Let (R, m) be a formally equidimensional local ring of positive dimension and

let J be an equimultiple ideal of R of height a. For each k € {0,...,a} let
Ly =Lyp(J)={L| L ideal of R,L DO J,and dege(L"/J") <a—k—1}.

Then, for each k, there exists a unique mazimal element Jyy of Ly. We call Jy the k-th

coefficient ideal of J.

Proof. The proof we present is based, in essence, on the same idea used by Shah [13] in the
case of m-primary ideals. We begin by making the crucial observation that if L € L, then
dege(L"/I") < a—1 and therefore, by Theorem J is a reduction of L. In fact, Theorem
2.6 shows that L € Ly if and only if J C L is a reduction, so the unique maximal element of

Ly is the integral closure J of J.

To prove that each £ has a unique maximal element we will show that if K, L € Ly, then
K+ L e L. Since J C K C K+ L it follows that K C K + L is a reduction, so there exists
r such that (K + L)" = (K + L)"K"" for every n > r. Let t be the stabilizing value of the
dimension dim R/(J" : (K 4 L)"™). Then, for n > 0 we have:

e((K +L)"/J") =e((K + L)"/J") = e((L"K™ ™" + L' K" oo - LR+ K™) [ J7)

r

<er (@(Liz{"—i/ﬁ))

1=0

Z e(L'K™"/J")  (some terms may be equal to 0)
0

%

s

= [et(LiK"_i/LiJn_i) +et(Li<]n_i/Jn)]'

i=0
For each i € {0,...,r} we have
e (L") < e(L™)J™)
and
e(L'K" /L") < (L) ep(K™' /"),

where (L) denotes the minimal number of generators of L. Note that ¢ is an upper bound

for the dimensions of all the quotient modules involved here. Since e, (L"/J™) < e(L™/J"),
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e(K"t/J ") < e(K""/J"") for each i = 0,...,r, and both e(L™/J") and e(K""/J""")
are polynomial functions of degree at most a—k—1 for n > 0, it follows that e((K +L)"/J")
is bounded above by a polynomial function of degree at most a — k — 1 for n > 0, and hence

K + L € Ly, finishing the proof. 0

Remark 3.2. As already mentioned in the proof of the previous theorem, the ideal Jjy is

simply the integral closure J of the ideal .J.

Remark 3.3. In [5], a different construction for coefficient ideals of arbitrary ideals was
introduced. The authors obtained a chain of ideals J C J, C J, 1 € ... C J; C JN (J :
m*) = ¢(J) where Jj, is the largest ideal containing J with A(J;/J) < oo and deg A(J}}/J™) <
a — k — 1. While this construction applies to an arbitrary ideal, only the case when m €

Ass(R/J) is of interest, for otherwise q(J) = J.

3.4. The S,-ification of a noetherian domain. We recall a few properties of the So-
ification of a noetherian domain. We refer the reader to [0, 2 3] for more detailed accounts.
If R is a noetherian domain, we say that S is an Ss-ification of R if the following properties
are satisfied: (a) S is a finite birational extension of R; (b) S satisfies the Sy property of
Serre; and (c) S is minimal among the extensions of R satisfying (a) and (b). The Sy-ification
of a noetherian domain does not always exist, but if it does, it is unique. More precisely,
the noetherian domain R has an Sp-ification if and only if [, p=1 Bty 1s a finite extension of
R, in which case R = mhtp:l R, is the Ss-ification of R. The Sy-ification exists for a large
class of noetherian domains. For example, if R is a formally equidimensional analytically
unramified local domain, then R has an Ss-ification. Other examples of noetherian domains
that have an Ss-ification include the local domains that have a canonical module w, in which

case Homp(w,w) is the Sy-ification of R.

In Theorem we defined the first coefficient ideal of an equimultiple ideal J to be the
largest ideal I containing J such that dege(I™/J") < ¢(J) — 2. In the course of the study
of the Sy-ification of the Rees algebra of an ideal J, in [3] we introduced the following con-
struction associated with an ideal (see Definition [3.5)), which we also called “first coefficient

ideal”. As we will see later, the two concepts are identical in the case of m-primary ideals.
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In the more general case of equimultiple ideals, we will explore the connection between them

in Theorem [3.12]

Definition 3.5 (First coefficient ideals as in [3]). Let A be a noetherian ring and J an ideal
of A. Define

Ty =" 1 a),
where the union is taken over all n > 1 and all @ € J" \ J""! such that the image a*

of a in J"/J"! is part of a system of parameters of the associated graded ring G(J) =

@nzﬂ Jn/Jn+1 .

Remark 3.6. As proved in [3 Proposition 3.5], for each ideal J there exists a fixed integer
m and a fixed element a € J™\ J™"! with a* part of a system of parameters on G(.J) such
that

Joy = (J™ s a).

Remark 3.7. If J is an m-primary ideal in a local ring R, the ideal mG(J) is nilpotent.
Therefore, in Definition , the union is taken over all n and all a such that a* € J"/J""! is
part of a system of parameters on G(J)/mG(.J), or equivalently, a is extendable to a minimal
reduction of J". By [I3, Theorem 2], this means that in the case of an m-primary ideal J,
the ideal J;;, coincides with the concept of first coefficient ideal defined by Shah, i.e. Jyy is
the largest ideal I containing J such that the degree of A\(I"/J") is at most dim R — 2.

3.8. The Ss-ification of a Rees algebra. The concept introduced in Definition
was motivated by the following result (see [3, Theorem 3.4] and the discussion preceding
it). Let (R,m) be a formally equidimensional, analytically unramified local domain with
infinite residue field and positive dimension and let J be an arbitrary ideal of R. Let
R = @,z Jut" € Q(R)[t,t7Y] be the Sp-ification of R[Jt,t7']. Then J, N R = Jp,, for
every n > 1 . We conclude by mentioning that if ht J > 2, the Ss-ifications of the algebras

R[Jt,t7'] and R[Jt] have the same homogeneous components in positive degree [2, 2.6].

3.9. Properties of Jg3. Let J be an ideal in a formally equidimensional local ring (R, m)
We collect here several properties of Jy;y that will be needed later. With the exception of
, they all follow immediately from the interpretation of Jyy given by the Sy-ification of
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Rees algebra, under the additional assumption that R is analytically unramified local domain

with infinite residue field and positive dimension.

(a) If J C I C Jgy, then J C I is a reduction.

(b) (Jpy)p = (Jp)q1y for every prime ideal p.

(c) If J C I, then I C Jpyy if and only if dimg(sy @B,,5o(1J"/J"") < dim R. ([3, Proposition
3.6])

(d) If J C I is a reduction, then Jy C Iyyy.

() (Jup)y = Jy-

(f) If J* = Uiz (J7 0 J7) is the Ratliff-Rush closure of J, then J* C Jgy. (See, for
example, the proof of |8, 2.10].)

A direct proof of (a) using only the definition of Jgy is given in [3, Proposition 3.8] for any
ideal in a formally equidimensional local ring. Similarly, (b) can also be obtained directly

from the definition.

We denote by J"™™" the intersection of the primary components of J corresponding to its
minimal primes. A slightly weaker version of the following result was proved by the author
in [2 Proposition 2.10]. The original proof is modified by using the extended Rees algebra
R[Jt, t71].

Lemma 3.10. Let (R, m) be a formally equidimensional, analytically unramified local domain
with infinite residue field and of positive dimension, and let J be an equimultiple ideal of R.
Then

JC Ty

In particular,

ASS(R/J{l}) = Min(R/J).

Proof. Let R = Bnezdnt™ € Q(R)[t,t71] be the Sy-ification of the extended Rees algebra R =
R[Jt,t71]. As explained in[3.8 we have J,NR = (J"){y; foralln > 1. Since J"™ = J when .J
is m-primary, we may assume that ht J < dim R—1. Let J = (q:N...Nqx)N(qrr1N...Ngs) be
an irredundant primary decomposition of J where p; = /q1,...,pr = 1/qx are the minimal
prime ideals of J, so that J"™ = q; N ... N gg. Suppose J"™™ ¢ Jiy so that there exists p
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prime ideal such that (J""™), € (Jg3)p. Choose p minimal with this property. By localizing
at p we reduce to the case when Supp((J""™+J3)/J1y) = {m}. Note that after localization
the ideal J is still equimultiple and ht J < dim R. Indeed, since (J"™™),, = J,, for all ¢ <k,
the prime ideal p is not minimal over J. Since (J"™™ 4+ Jy13)/Jp) has finite length, we can
choose r such that m”J"™ C Jg3, so that for every z € J"™™ we have 2t € Q(R)[t,¢t™'] and
m”zt C R. Note that this also means that (m”, t‘l)ﬁxt C R. On the other hand, we have

dimR > ¢(J) = dimR/(m",t DR > dimR/(m",t YRNR = dimR/(m",t R,

—

so ht(m”,~1)R > 2. This implies that zt € (R) = R, and therefore z € J; N R = Jgy-

Finally, we also obtain (J3)"™™™ C (Juy)y = J{1y, and therefore Jiy is unmixed. O

Lemma 3.11. Let R be a noetherian ring, J C I proper ideals of R, and let r € N. Then

V(T ) = \/(Jn IT ) for no> 0.

Proof. For an ideal L, let L* = (J;5, (L' : L*) denote the Ratliff-Rush closure of L [10]. As
mentioned in , we can set K := \/W for n > 0. For aw € (J™ : I"J"™") we have
al” C (J":Jm7) C(J)* (10, 2.3.1]) and therefore o™I™ C ((J")*)" = J™ for n > 0 [10],
2.1]. This implies that a € K, finishing the proof. O

The next theorem relates the two concepts of first coefficient ideals in the case of equimul-

tiple ideals.

Theorem 3.12. Let (R,m) be a formally equidimensional, analytically unramified local do-
main with infinite residue field and of positive dimension, and let J be an equimultiple ideal

of R. Then

Ju € gy

Proof. For an ideal I, we will prove that J C I C Jyj implies J C I C Jg;;. Assume that
JCIC Jybutl Q Jay. Then J C I is a reduction. As before, set K := m for
n>> 0 and t = dim R/K. Note that K = /(J"+1: IJ") for n > 0 by Lemma . Then,
for n > 0, we have dim(I"/J") = dim(IJ"/J""!), hence e(I"T!/J"1) > e(IJ"/J"T),



12 C. CIUPERCA

which implies that dege(IJ"/J"™) < ¢(J) — 2. Since

(3.12.1) e(1J"/ ") = > e(R/p) MLy /) for n>> 0,

pOK,dim R/p=t
we obtain that deg A(1,.J;'/ J7*") < ht J — 2 for all the prime ideals p O K with dim R/p =
dim R/K.

Since I ¢ Jgy we can take q a minimal prime over (Jy : I). Then q is minimal over
(Jpy = @) for some x € I, hence q € Ass(R/Jgy). Since Jppy has no embedded primes by
Lemma [3.10, g is a minimal prime over J. Then ht J = ¢(J) > alt J > htq, so htq = ht J.
From J C (J"' . [J") C (J* : I) C (Jguy = I) (see (f)) we also get htq = ht K.
As R is formally equidimensional, q is therefore one of the prime ideals that appear in the

summation of (3.12.1), and hence deg A(1,J;'/J;*') < htJ —2 = htq — 2. On the other
hand, since I; & (Jyy)q = (Jg)q1y we have dimg(s,) (€D, IgJi/Ji ) = dim Ry (by B.9] (c)),
which implies that A(/,J;'/ JO’I‘H) is eventually a polynomial function of degree dim Ry — 1,

reaching a contradiction.

We conclude the proof by noting that the unmixedness of Jy;; was essential in the proof.
The lack of a similar property for Jjj) prevents one from obtaining the reverse containment

(and thus equality) in the statement of the theorem. O

From Theorem [2.6|we know that if J C I, J # I and J is equimultiple and integrally closed,
then dege(I™/J") = £(J). If J is not necessarily integrally closed but R[Jt] satisfies the Sy

property, as a consequence of the previous theorem, we are still able to obtain information

about the degree of e(I™/J").

Corollary 3.13. Let (R,m) be a formally equidimensional, analytically unramified local
domain with infinite residue field and of positive dimension, and let J C I be proper ideals
of R with J equimultiple and I # J. Assume that J = Jgy (which holds, for instance, when
R[Jt] satisfies the Sy property). Then

0J) — 1 < dege(I"/J") < £(J),

with equality on the left-hand side if and only if J C I is a reduction.
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It is worth comparing the above result with [5, Theorem 4.8] which states the following:
if J C I is a reduction, J # I, R[Jt] is (S2) and A(I/J) < oo, then ¢(J) = dim R and
deg A(I"/J") = dim R — 1. As shown in the next two results, one can obtain the conclusion

¢(J) = dim R of [5, Theorem 4.8] without assuming that J C I is a reduction.

Proposition 3.14. Let (R, m) be a formally equidimensional local ring and J C I proper
ideals such that X\(1/J) < co. Assume that £(J) < dim R. Then I C Jp;.

Proof. Consider the finitely generated R[Jt]-module M = @, ., 1J"/J"". Since A(I/J) <
oo we can choose k such that m* M = 0, so M is a finitely generated R[Jt]/m"*R[.Jt]-module.
But dim R[Jt]/mFR[Jt] = £(J) < dim R, so dim M < dim R, which by (c) implies that
IC Jyy. O

As an immediate consequence we obtain the following.

Corollary 3.15. Let (R, m) be a formally equidimensional local domain and J C I proper
ideals with J # I such that N(I/J) < oco. Assume that R[Jt] satisfies Serre’s condition Ss.
Then ¢(J) = dim R.

Proof. Since R[Jt] is (S2), so is R[Jt,t!] ([2, Proposition 2.6]), and therefore (J™)gy = J"
for all n. If ¢(J) < dim R, by the previous proposition we have I C Jy = J. O
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