
INTEGRAL CLOSURE AND GENERIC ELEMENTS

CĂTĂLIN CIUPERCĂ

Abstract. Let (R,m) be a formally equidimensional local ring with depthR ≥ 2 and

I = (a1, . . . , an) an m-primary ideal in R. The main result of this paper shows that

if I is integrally closed, then so is its image modulo a generic element, that is, if T =

R[X1, . . . , Xn]/(a1X1 + · · ·+ anXn), then IT = IT .

1. Introduction

Let R be a commutative noetherian ring and I an ideal in R. An element x ∈ R is said to

be integral over I if it satisfies an equation xn + b1x
n−1 + · · ·+ bn−1x+ bn = 0 with bi ∈ I i for

all i. The set of all the elements that are integral over I is an ideal I, the integral closure of

I. If ϕ : R→ S is a ring homomorphism, then IS ⊆ IS, a property referred to as persistence

(see [7, 1.1.3]). The equality does not necessarily hold; however, note that IS = IS if and

only if IS is integrally closed.

For a formally equidimensional local ring (R,m) with depthR ≥ 2 and an m-primary ideal

I, we prove that the integral closure of I is preserved under specialization modulo generic

elements. In the language of first general grade reductions (2.2) introduced by Hochster [4],

this means that the extension of an integrally closed ideal I to a first general grade reduction

of (R, I) is integrally closed, too. More precisely, we prove the following theorem.

Theorem 1. Let (R,m) be a local ring with depthR ≥ 2 and I = (a1, a2, . . . , an) an m-

primary ideal in R. Let S = R[X1, X2, . . . , Xn], α = a1X1 + a2X2 + · · · + anXn ∈ S and

T = S/αS. The following hold:

(a) If R is formally equidimensional, then IT = IT ;

(b) If R is analytically unramified and Cohen-Macaulay, then ImT = ImT for m� 0.
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This implies the following local version.

Corollary 2. Let (R,m) be a local ring with depthR ≥ 2 and I = (a1, a2, . . . , an) an m-

primary ideal in R. Let U = R[X1, X2, . . . , Xn]m[X1,...,Xn], α = a1X1 +a2X2 + · · ·+anXn ∈ U

and V = U/αU . The following hold:

(a) If R is formally equidimensional, then IV = IV ;

(b) If R is analytically unramified and Cohen-Macaulay, then ImV = ImV for m� 0.

Under the assumption that R is an equidimensional, universally catenary ring such that

R/
√

0 is analytically unramified, part (a) of Theorem 1 also appears in a 2006 preprint

of Hong and Ulrich [5, Theorem 2.1]. Both parts of Corollary 2 were also proved by Itoh

[10, Theorem 1] for ideals generated by a system of parameters in analytically unramified

Cohen-Macaulay local rings of dimension at least two.

One application of these theorems is their use in proofs based on induction. We exemplify

this in the final section of this paper by extending some results regarding integrally closed

almost complete intersection ideals in regular local rings obtained by the author in [2].

2. Preliminary Results

All the rings considered in this paper are commutative with identity. If the ring R is

noetherian and I is an ideal in R, we denote by grade I the common length of all the maximal

regular sequences contained in I. If the ring R is local with maximal ideal m, then gradem

will be denoted depthR. We also say that the local ring R is formally equidimensional if

its completion is an equidimensional ring, that is, dim R̂/P = dimR for all the minimal

prime ideals P ∈ Spec R̂. In the literature, the local rings with this property are also called

quasi-unmixed.

In this section we prove several lemmas which will be used in the proof of the main result.

Remark 2.1. With the notation used in Theorem 1 and Corollary 2, both S and U are

faithfully flat extensions of R and dimU = dimR. In particular, if I is an ideal in R, then

IS = IS and IU = IU [7, 8.4.2(9)].
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The next discussion shows that if Theorem 1 is true for some set of generators of I, then

the theorem holds for every set of generators of I.

2.2. (General grade reductions) Let I = (a1, . . . , an) be an ideal in a noetherian ring

R with grade I > 0. The element α = a1X1 + a2X2 + · · · + anXn is a non-zero-divisor on

S = R[X1, . . . , Xn] (it follows inductively from [12, (6.13)]), which implies that the grade

of IS/αS in S/αS is one less than the grade of I in R. Introduced by Hochster in [4],

(S/αS, IS/αS) is called a first general grade reduction of (R, I). While a first general

grade reduction does depend on the choice of generators of I, it can be shown that any

two first general grade reductions (T1, IT1) and (T2, IT2) of (R, I) are equivalent in the

following sense: there exist indeterminates Y1, . . . , Yr over T1 and Z1, . . . , Zs over T2, and

an R-algebra isomorphism φ : T1[Y1, . . . , Yr]
∼=−−→ T2[Z1, . . . , Zs]. Note that this implies that

φ(IT1[Y1, . . . , Yr]) = IT2[Z1, . . . , Zs], since φ is an R-algebra isomorphism. The existence of

this R-algebra isomorphism follows from the proof of [4, Proposition 1]; for the convenience

of the reader, we repeat the argument here. Assume that (T1, IT1) is obtained with respect

to the sequence of generators b1, . . . , bm of I and (T2, IT2) with respect to c1, . . . , cp. Let

(T3, IT3) be the first general grade reduction of (R, I) obtained by using b1, . . . , bm, c1, . . . , cp

as generators of I. Since it is enough to show that (T1, IT1) is equivalent to (T3, IT3) and

(T2, IT2) is equivalent to (T3, IT3), we can assume from the beginning that m < p and bk = ck

for k = 1, . . . ,m. By induction, we can also assume that p = m+1, in which case we can take

T1 = R[X1, . . . , Xm]/(b1X1 + · · ·+ bmXm) and T2 = R[X1, . . . , Xm, Z]/(b1X1 + · · ·+ bmXm +

cm+1Z), where X1, . . . , Xm, Z are indeterminates over R. Write cm+1 = r1b1 + · · · + rmbm

(ri ∈ R) and let X ′k = Xk + rkZ for k = 1, . . . ,m. Then X ′1, . . . X
′
m, Z are algebraically

independent over R and we have the following R-algebra isomorphisms

T2 ∼= (R[X ′1, . . . , X
′
m]/(b1X

′
1 + · · ·+ bmX

′
m))[Z] ∼= T1[Z]

Now let us observe that if (T1, IT1) and (T2, IT2) are two first general grade reductions

of (R, I) and m ≥ 1, then ImT1 = ImT1 if and only if ImT2 = ImT2, or equivalently, ImT1

is integrally closed if and only if ImT2 is integrally closed. Indeed, if φ : T1[Y1, . . . , Yr]
∼=−−→

T2[Z1, . . . , Zs] is an R-algebra isomorphism, then φ(ImT1[Y1, . . . , Yr]) = ImT2[Z1, . . . , Zs]
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and, by Remark 2.1, it follows that ImT1 is integrally closed if and only if ImT2 is integrally

closed.

This shows that if Theorem 1 holds for some set of generators of I, then the theorem holds

for every set of generators of I. When proving the main result, this observation allows us to

choose the set of generators of I with some extra properties enabled by the assumption that

I is an m-primary ideal in a local ring with depthR ≥ 2.

Lemma 2.3. Let R be a noetherian ring and I = (a1, a2, . . . , an) an ideal in R with grade I >

0. Let a ∈ R be a non-zero-divisor such that grade(I + aR) ≥ 2 and let α = a1X1 + · · · +

anXn ∈ S = R[X1, . . . , Xn]. Then a, α is a permutable regular sequence on S. In particular,

if the elements a1, . . . , an are non-zero-divisors and grade I ≥ 2, then aj, α is a permutable

regular sequence on S for all j.

Proof. Both a and α are non-zero-divisors on S (2.2), so it is enough to prove that α is a

non-zero-divisor on S/aS. Since grade(I + aR) ≥ 2, there exists c = r1a1 + · · · + rnan ∈ I

(ri ∈ R) such that a, c is a regular sequence on R. By applying the R-algebra automorphism

of S that maps Xi to Xi + ri (i = 1, . . . , n), it follows that it is enough to prove that a, α+ c

is a regular sequence on S.

Let f ∈ S such that

(2.3.1) (a1X1 + · · ·+ anXn + c)f ∈ aS.

We want to prove that f ∈ aS. Considering a monomial order on S, let bXα1
1 . . . Xαn

n be the

smallest term of f . The coefficient of the smallest term in the left-hand side of (2.3.1) is bc,

so bc ∈ aR, and since a, c is a regular sequence on R, we obtain b ∈ aR. Now

(f − bXα1
1 . . . Xαn

n )(a1X1 + · · ·+ anXn + c) ∈ aS,

and repeating the argument with f−bXα1
1 . . . Xαn

n instead of f we eventually get that all the

coefficients of f belong to aR, and hence f ∈ aS. This proves that α+c is a non-zero-divisor

on S/aS. �

Keeping the notation introduced in 2.2 we have the following lemma.
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Lemma 2.4. Let R be a noetherian ring and I = (a1, a2, . . . , an) an ideal in R with

a1, a2, . . . , an non-zero-divisors (n ≥ 2) and grade I ≥ 2. Let α = a1X1 + · · · + anXn ∈

S = R[X1, . . . , Xn]. Then for each i we have the following isomorphisms of R-algebras

T = S/αS ∼= R[X1, . . . , Xi−1, Xi+1, . . . , Xn]
[a1
ai
X1 + · · ·+ ai−1

ai
Xi−1 +

ai+1

ai
Xi+1 + · · ·+ an

ai
Xn

]
and

Ti := T
[a1
ai
, . . . ,

an
ai

]
∼= R[X1, . . . , Xi−1, Xi+1, . . . , Xn]

[a1
ai
, . . . ,

an
ai

]
Proof. We begin by recalling a well known result: if R is a commutative ring and b, c is a

regular sequence on R, then the R-algebra homomorphism τ : R[X]→ R[c/b] with τ(X) =

−c/b induces an R-algebra isomorphism R[X]/(bX + c) ∼= R[c/b] (see, for example, [14,

(7.1)]).

Since αS ∩ R = (0), we may regard R as embedded in S/αS. We may also assume that

i = n. By Lemma 2.3, a1X1 + · · · + an−1Xn−1, an is a permutable regular sequence on

R[X1, . . . , Xn−1] and hence we obtain the R-algebra isomorphism

φ : S/αS
∼=−−→ R[X1, . . . , Xn−1]

[a1
an
X1 + · · ·+ an−1

an
Xn−1

]
which maps Xi + αS to Xi, for 1 ≤ i ≤ n − 1, and Xn + αS to −a1

an
X1 − · · · −

an−1
an

Xn−1.

Since φ(ai) = ai for all i, this induces the isomorphism

(S/αS)
[a1
an
, . . . ,

an−1
an

]
∼= R[X1, . . . , Xn−1]

[a1
an
X1 + · · ·+ an−1

an
Xn−1

][a1
an
, . . . ,

an−1
an

]
,

that is,

(S/αS)
[a1
an
, . . . ,

an−1
an

]
∼= R[X1, . . . , Xn−1]

[a1
an
, . . . ,

an−1
an

]
.

�

2.5. (Superficial elements) Let R be a noetherian ring and I an ideal in R. An element

x ∈ I is said to be a superficial element of I if there exists c ∈ N such that (In+1 : x)∩Ic = In

for all n ≥ c. Such elements exist, for instance, when the ring R has infinite residue fields

[7, 8.5.7]. Furthermore, superficial elements of I exist even when we require some extra

properties: if R is a local ring with infinite residue field and K1, . . . Km are ideals in R not
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containing I, then there exists a superficial element of I that is not contained in K1∪. . .∪Km

[7, 8.5.9].

In particular, if R is a local ring with infinite residue field and I is an ideal in R with

grade I > 0, then there exists x ∈ I a non-zero-divisor superficial element of I. Moreover,

there exist elements a1, . . . , an generating I that are non-zero-divisors and superficial ele-

ments. Indeed, we can choose a1 ∈ I a non-zero-divisor superficial element of I and then

successively take ai ∈ I a superficial element outside of (a1, . . . , ai−1) that avoids all the

associated primes of R. Since the ring is noetherian, we eventually have I = (a1, . . . , an) for

some n.

In the same vein, if R is a local ring with infinite residue field and I is an ideal in R

with grade I ≥ 2, then we can choose a1, . . . , an generators for I such that ai, aj is a regular

sequence for all i 6= j and all the elements ai are superficial. As shown above, start by

choosing a1 ∈ I a non-zero-divisor superficial element of I and then take ai ∈ I a superficial

element outside of (a1, . . . , ai−1) that avoids all the associated prime ideals of the ideals (a1),

. . . , (ai−1). (Since grade I ≥ 2, the ideal I is not contained in any of those prime ideals.)

Eventually we obtain I = (a1, . . . , an) for some n. Note that since R is local, a permutation

of a regular sequence is a regular sequence, too.

We mention here that a non-zero-divisor x ∈ I is a superficial element of I if and only if,

for all n sufficiently large, (In+1 : x) = In [7, 8.5.3]. This also implies that for a non-zero-

divisor superficial element x of I we have (In+1 : x) = In for all n. Indeed, let N be such

that (Ik+1 : x) = Ik for k ≥ N and let y ∈ (In+1 : x). By [7, 6.8.12], there exists c that

avoids all the minimal prime ideals of R and a positive M such that cytxt ∈ I(n+1)t for all

t ≥ M . If t ≥ max{M,N/n}, we have cyt ∈ (I(n+1)t : xt) = Int, and by using again the

characterization of the integral closure from [7, 6.8.12] we obtain y ∈ In.

If I = (a1, . . . , an), by passing to S = R[X1, . . . , Xn], the element α = a1X1 + · · ·+anXn ∈

IS is sufficiently general in the above sense. More exactly we have the following proposition.

Proposition 2.6. Let R be a noetherian ring, I = (a1, . . . , an) an ideal with grade I > 0

and α = a1X1 + · · · + anXn ∈ S = R[X1, . . . , Xn]. Then (ImS : α) = Im−1S for all m and

(ImS : α) = Im−1S for m� 0.
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Proof. By localizing at the prime ideals that contain I we may assume that R is a local

ring with maximal ideal m. Moreover, by replacing R with the faithfully flat extension

R(Z) := R[Z]mR[Z], we may also assume that R has infinite residue field. Now let us observe

that we may assume that a1 is a non-zero-divisor and a superficial element of I. Indeed,

since grade I > 0, by a refinement of a prime avoidance argument, it follows that there exist

r2, . . . , rn ∈ R such that a′1 := a1 + r2a2 + · · · + rnan is a non-zero-divisor and a superficial

element of I. Note that I = (a′1, a2, . . . , an). If we consider the R-algebra automorphism

φ : S → S that maps X1 to X1 and Xi to Xi+riX1 for i ≥ 2, we have φ(α) = a′1X1 +a2X2 +

· · ·+anXn, and therefore we may assume that the first generator a1 of I is a non-zero-divisor

superficial element of I. (By repeating the process we can actually make all the generators

of I satisfy this property.)

Let f ∈ (ImS : α). If we consider a monomial order on S with X1 < . . . < Xn and

bXα1
1 . . . Xαn

n is the smallest term that appears in f , from fα ∈ ImS we obtain ba1 ∈ Im,

and hence b ∈ (Im : a1) = Im−1, where the last equality holds because a1 is a non-zero-divisor

superficial element of I (2.5). Replacing f by f − bXα1
1 . . . Xαn

n and repeating the argument

we eventually obtain that all the coefficients of f are in Im−1. Similarly, if f ∈ (ImS : α),

all the coefficients of f are in (Im : a1) = Im−1 for m� 0. �

Remark 2.7. If I is an ideal generated by a regular sequence a1, . . . , an, then (Ik : ali) = Ik−l

for all i and all k ≥ l. This follows, for instance, from the R-algebra isomorphism between

the polynomial ring (R/I)[X1, . . . , Xn] and the associated graded ring G = ⊕n≥0In/In+1 that

sends Xj to aj + I2 ∈ I/I2 (see [1, (1.1.8, 1.1.15)]). Moreover, under the same assumptions,

(Ik : ali) = Ik−l. Indeed, if yali ∈ Ik, then there exists c ∈ R that avoids all the minimal prime

ideals such that cymalmi ∈ Ikm for m� 0 (cf. [7, 6.8.12]). Then cym ∈ (Ikm : almi ) = I(k−l)m

for m� 0, thus y ∈ Ik−l.

In the next lemma we use the notation established in Lemma 2.4.

Lemma 2.8. Let R be a noetherian ring and I = (a1, a2, . . . , an) an ideal in R with a1, . . . , an

non-zero-divisors and superficial elements of I and grade I ≥ 2. Let α = a1X1+· · ·+anXn ∈

S = R[X1, . . . , Xn], T = S/αS and Ti := T [a1/ai, . . . , an/ai]. Then Xj, ai is a permutable

regular sequence on Ti for all i, j.



8 C. CIUPERCĂ

Proof. Clearly ai is a non-zero-divisor on Ti, so it is enough to prove that Xj, ai is a regular

sequence on Ti. If j 6= i, by the second isomorphism from Lemma 2.4, it follows that Xj is

a non-zero-divisor on Ti, and clearly ai is a non-zero-divisor on

Ti/XjTi ∼= R[X1, . . . , Xj−1, Xj+1, . . . , Xi−1, Xi+1, . . . , Xn]
[a1
ai
, . . . ,

an
ai

]
.

In the case i = j, without loss of generality we may assume that i = j = n. The second

isomorphism from Lemma 2.4 maps Xn to −a1
an
X1 − · · · −

an−1
an

Xn−1, which, as shown in

(2.2), is a non-zero-divisor on R
[a1
an
, . . . ,

an−1
an

]
[X1, . . . , Xn−1]. To prove that

a1
an
X1 + · · · +

an−1
an

Xn−1, an is a regular sequence on R
[a1
an
, . . . ,

an−1
an

]
[X1, . . . , Xn−1] we apply Lemma 2.3

in the ring R
[a1
an
, . . . ,

an−1
an

]
with a = an and the ideal J =

(a1
an
, . . . ,

an−1
an

)
. To be able

to do this we will show that an, a1/an is a regular sequence on R
[a1
an
, . . . ,

an−1
an

]
and hence

grade(J, an) ≥ 2. Since a1 is superficial element of I and a non-zero-divisor on R, there

exists n0 such that In0+k : a1 = In0+k−1 for all k ≥ 0. Assume that (a1/an)f = ang with

f, g ∈ R
[a1
an
, . . . ,

an−1
an

]
. There exists N0 such that for N ≥ N0 we have f ′ = faNn ∈ IN ⊆ R

and g′ = gaNn ∈ IN ⊆ R. Then a1f
′ = a2ng

′ and hence, for N ≥ max{n0 − 2, N0}, we have

f ′ ∈ (IN+2 : a1) = IN+1. Finally, f = f ′/aN1 ∈ IR
[a1
an
, . . . ,

an−1
an

]
= anR

[a1
an
, . . . ,

an−1
an

]
. �

The following lemma will play a crucial role in the proof of the main result.

Lemma 2.9. Let R be a noetherian ring and I = (a1, a2, . . . , an) an ideal in R with a1, . . . , an

non-zero-divisors and superficial elements of I. Let S = R[X1, X2, . . . , Xn], α = a1X1 +

a2X2 + · · · + anXn ∈ S and T = S/αS. If grade I ≥ 2, then Xj is a non-zero-divisor on

T/ImT for all j and all m ≥ 1.

Proof. We may assume j = 1 and let f ∈ T such that fX1 ∈ ImT . Then there exists c ∈ T

that avoids all the minimal prime ideals of T such that cfkXk
1 ∈ ImkT for k � 0. Let Ti =

T
[a1
ai
, . . . ,

an
ai

]
(i = 1, . . . , n). Then cfkXk

1 ∈ ImkTi = amki Ti for all i and k � 0. By Lemma

2.8, X1, ai is a permutable regular sequence on Ti, and hence cfk ∈ amki Ti = ImkTi for k � 0.

We note here that for an arbitrary ideal J in T we have ∩ni=1JTi ∩ T = ∪∞r=1(JI
rT : IrT ).

Therefore, for k � 0, we obtain

cfk ∈ ∩ni=1I
mkTi ∩ T = ∪∞r=1(I

mk+rT : IrT ) = ĨmkT ,
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the Ratliff-Rush closure of ImkT [15, 2.3.1]. Since ĨmkT = ImkT for k � 0 [15, 2.3.2], we

have cfk ∈ ImkT for k � 0, or equivalently, f ∈ ImT . This finishes the proof that X1 is a

non-zero-divisor on T/ImT . �

3. The Proof of the Main Result

With the preliminaries in place we are now prepared to prove the main result. The next

proposition, a particular case of Theorem 1 (a), is essentially due to Itoh. It is proved by

Itoh in [10] only for ideals generated by regular sequences. However, by using a result also

due to Itoh [9, Lemma 3], it can be proved in the generality stated below.

Proposition 3.1. Let R be a locally formally equidimensional ring and I = (a1, a2, . . . , an)

a parameter ideal in R of height n with grade I ≥ 2. Let S = R[X1, . . . , Xn], α = a1X1 +

· · ·+ anXn ∈ S and T = S/αS. Then IT = IT .

Proof. By localizing at the prime ideals that contain I, we may assume that the ring R is

local. Let A = R[X1, . . . , Xn−1]m[X1,...,Xn−1], where m is the maximal ideal of R, J = IA,

β = a1X1 + · · · + an−1Xn−1 and B = A[β/an]. Note that by the discussion (2.2) it is

enough to prove the proposition for a special set of generators for I. Since grade I > 0,

by a refinement of a prime avoidance argument, there exist r1, . . . , rn−1 ∈ R such that

a′n := an + r1a1 + . . . + rn−1an−1 is a non-zero-divisor. Since I = (a1, . . . , an−1, a
′
n), by

replacing an with a′n we may assume that an is a non-zero-divisor. Moreover, by Lemma 2.3,

β, an is a permutable regular sequence on A, and hence, by the result mentioned at the

beginning of the proof of Lemma 2.4, we have B ∼= A[Xn]/αA[Xn]. First we claim that

JkB ∩ A = Jk for every k. Note that J is a parameter ideal in A and an, β are part of a

minimal set of generators for J . For w ∈ JkB ∩ A we have waNn ∈ Jk+N for N � 0, hence

w ∈ (Jk+N : aNn ) = Jk (cf. [7, Corollary 6.8.13]).

Next we claim that JB = JB. For y ∈ JB, write y = z/atn with z ∈ (β, an)t ⊆ A, so that

z ∈ (β, an)t ∩ (J t+1B ∩A) = (β, an)t ∩ J t+1. Since R is locally formally equidimensional, by

[9, Lemma 3] it follows that (β, an)t ∩ J t+1 = (β, an)tJ , and therefore y ∈ JB.
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Now let f ∈ S with f̄ = f+αS ∈ IS/αS. If φ denotes the isomorphism between S/αS and

R[X1, . . . , Xn−1][β/an] ⊆ A[β/an] = B we have φ(f̄) ∈ JB = JB = IB. Then f ∈ IA[Xn]

and hence f ∈ IR[X1, . . . , Xn]m[X1,...,Xn] ∩R[X1, . . . , Xn] = IR[X1, . . . , Xn]. �

Remark 3.2. If the ideal I is generated by a regular sequence, then so is J , and from [8,

Proposition 6] it follows that the equality (β, an)t ∩ J t+1 = (β, an)tJ holds in an arbitrary

ring. Therefore in this case the conclusion of Proposition 3.1 is true without assuming that

R is locally formally equidimensional.

We now prove the main result of the paper.

Theorem 3.3. Let (R,m) be a formally equidimensional local ring with depthR ≥ 2 and

I = (a1, a2, . . . , an) an m-primary ideal in R. Let S = R[X1, X2, . . . , Xn], α = a1X1+a2X2+

· · ·+ anXn ∈ S and T = S/αS. Then IT = IT .

Proof. By replacing R with the faithfully flat extension R(Z) := R[Z]mR[Z] we may assume

that R is a local ring with infinite residue field.

We have noted in (2.2) that it is enough to prove the theorem for a special set of generators

for I. For a local ring with infinite residue field, one can successively find sufficiently general

elements x1, . . . , xd ∈ I that form a minimal reduction of I (d = dimR). Therefore we can

choose generators a1, . . . , an for I such that a1, . . . , ad is a minimal reduction of I and all

the elements a1, . . . , an are non-zero-divisors and superficial elements of I (see discussion in

(2.5)).

Let f ∈ S with f + αS ∈ IT . To prove that f ∈ IS = IS, without loss of generality we

may assume that f is a homogeneous polynomial. Since f + αS ∈ IT , there exist a positive

integer k and polynomials gi = gi(X1, . . . , Xn) ∈ I iS, h = h(X1, . . . , Xn) ∈ S such that

(3.3.1) f s + g1f
s−1 + · · ·+ gs = (a1X1 + · · ·+ anXn)h.

We will proceed by induction on the degree of f . If the degree of f is zero, i.e., f ∈ R,

by evaluating (3.3.1) at X1 = . . . = Xn = 0 we obtain an equation of integral depen-

dence of f over I, so f ∈ I ⊆ IS. Now assume that (3.3.1) implies f ∈ IS for any
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homogeneous polynomial f ∈ S of degree at most k − 1 (k ≥ 1) and let f be a homo-

geneous polynomial of degree k that satisfies (3.3.1). We will show that f ∈ IS using

again induction, but on e := n − d. If n = d, then I is a parameter ideal and the con-

clusion follows from Proposition 3.1. Now assume that e ≥ 1. By evaluating (3.3.1) at

Xn = 0 we obtain an equality that shows that the coset of f(X1, . . . , Xn−1, 0) belongs to

IT ′ where T ′ = R[X1, . . . , Xn−1]/(a1X1 + · · ·+ an−1Xn−1). Since IT ′ = (a1, . . . , an−1)T ′ and

f(X1, . . . , Xn−1, 0) is either zero or a homogeneous polynomial of degree k, by the induction

hypothesis we have f(X1, . . . , Xn−1, 0) ∈ IR[X1, . . . , Xn−1] ⊆ IS. On the other hand,

(3.3.2) f(X1, . . . , Xn) = f(X1, X2, . . . , Xn−1, 0) +Xnf1(X1, . . . , Xn)

for some homogeneous polynomial f1 = f1(X1, . . . , Xn) ∈ S of degree k − 1. Since both

f + αS and f(X1, X2, . . . , Xn−1, 0) + αS belong to IT , we have Xnf1 + αS ∈ IT , and by

Lemma 2.9 we obtain f1 + αS ∈ IT . Since the degree of f1 is k − 1, by the induction

hypothesis we have f1 ∈ IS, and (3.3.2) implies that f ∈ IS. �

By localizing at the maximal ideal m[X1, . . . , Xn] of S we also obtain the following local

version.

Corollary 3.4. Let (R,m) be a formally equidimensional local ring with depthR ≥ 2 and

I = (a1, a2, . . . , an) an m-primary ideal in R. Let U = R[X1, X2, . . . , Xn]m[X1,...,Xn], α =

a1X1 + a2X2 + · · ·+ anXn ∈ U and V = U/αU . Then IV = IV .

Remark 3.5. Assume that I is an ideal generated by a regular sequence a1, . . . , an. Itoh [8]

and Huneke [6] (in the case of rings containing a field) proved that Im+1 ∩ Im = IIm for all

m. Based on this, in a subsequent paper [10], Itoh proved that IT = IT . Let us observe the

statement IT = IT can be used to recover the equality Im+1 ∩ Im = IIm for all m.

We will use induction on m + n. For m = 0 there is nothing to prove. For n = 1, let

I = (a). If ram ∈ (am+1)∩(am), then there exists c ∈ R avoiding all the minimal prime ideals

of R such that crsams ∈ (ams+s) for s � 0. Then crs ∈ (as) for s � 0, and hence r ∈ (a).

For n ≥ 2, as in Corollary 3.4, let V = U/αU where U = R[X1, X2, . . . , Xn]m[X1,...,Xn] and

α = a1X1 + a2X2 + · · · + anXn ∈ U . Since α is a non-zero-divisor on U (2.2), grade(IV ) =

grade I − 1 = n− 1. Also, IV can be generated by n− 1 elements (α /∈ ImU), and therefore
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IV is a complete intersection ideal. Let y ∈ Im+1 ∩ Im . Then y + αU ∈ Im+1V ∩ ImV and

by the induction hypothesis we obtain y + αU ∈ ImIV . Applying Corollary 3.4 we obtain

y ∈ ImIU + αU , so that we can write y = z + uα where z ∈ ImIU and u ∈ U . Then

uα = y− z ∈ ImU ∩ Im+1U and using Remark 2.7 we obtain u ∈ (ImU : α)∩ (Im+1U : α) =

Im−1U ∩ ImU = (Im−1 ∩ Im)U . By the induction hypothesis we then obtain u ∈ Im−1IU , so

y ∈ ImIU ∩R = ImI.

For an analytically unramified Cohen-Macaulay local ring (R,m) of dimension d ≥ 2 and

an ideal I generated by a maximal regular sequence, Itoh [10, Theorem 1(3)] also proved

that ImV = ImV for m � 0. Note that this implies that ImT = ImT for m � 0. Indeed,

all the zero-divisors of the S-module S/(Im, α) are contained in m[X1, . . . , Xn], and hence

ImV ∩ T = ImT , which implies that ImT ⊆ ImV ∩ T = ImT .

We will extend this result to arbitrary m-primary ideals.

Theorem 3.6. Let (R,m) be an analytically unramified Cohen-Macaulay local ring of di-

mension d ≥ 2 and I = (a1, a2, . . . , an) an m-primary ideal in R. Let S = R[X1, X2, . . . , Xn],

α = a1X1 + a2X2 + · · ·+ anXn ∈ S and T = S/αS. Then ImT = ImT for m� 0.

Proof. We begin the proof as in Theorem 3.3. We may assume that R has infinite residue

field and since it is enough to prove the theorem for some set of generators for I (2.2),

choose a1, . . . , an generators for I such that (a1, . . . , ad) is a minimal reduction of I and all

the elements ai are non-zero-divisors and superficial elements of I (see discussion in (2.5)).

Given an element f ∈ S with f + αS ∈ ImT , we obtain an equation

(3.6.1) f s + g1f
s−1 + · · ·+ gs = (a1X1 + · · ·+ anXn)h

where gi = gi(X1, . . . , Xn) ∈ ImiS and h = h(X1, . . . , Xn) ∈ S. We want to prove that for

m � 0 this implies that f ∈ ImS + αS. Note that we may assume that f is homogeneous.

We will use induction on the degree of f . If deg f = 0, by setting X1 = . . . = Xn = 0

in (3.6.1) we obtain f ∈ Im. Now assume that the claim is true for every homogeneous

polynomial of degree at most k− 1 and let f be a homogeneous polynomial of degree k that

satisfies (3.6.1). We use again induction on e := n− d. If n = d, the conclusion follows from

the result of Itoh that we mentioned in the discussion preceding this theorem. Assume that
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e ≥ 1. By setting Xn = 0 in (3.6.1), the coset of f(X1, . . . , Xn−1, 0) is an element of ImT ′

where T ′ = R[X1, . . . , Xn−1]/(a1X1 + · · · + an−1Xn−1). Since ImT ′ = (a1, . . . , an−1)mT ′ and

f(X1, . . . , Xn−1, 0) is either zero or a homogeneous polynomial of degree k in n−1 variables,

by the induction hypothesis we have f(X1, . . . , Xn−1, 0) ∈ ImR[X1, . . . , Xn−1]+(a1X1+ · · ·+

an−1Xn−1)R[X1, . . . , Xn−1] so that we can write

f(X1, . . . , Xn−1, 0) = p+ (a1X1 + · · ·+ an−1Xn−1)q

where p ∈ ImS is a homogeneous polynomial of degree k and q ∈ S is a homogeneous

polynomial of degree k − 1. On the other hand,

f(X1, . . . , Xn) = f(X1, . . . , Xn−1, 0) +Xnf1(X1, . . . , Xn)

where f1 ∈ S is a homogeneous polynomial of degree k − 1, and therefore we have

(3.6.2) f(X1, . . . , Xn) = p+ (a1X1 + · · ·+ an−1Xn−1 + anXn)q +Xn(f1 − anq).

Since f +αS ∈ ImT and p ∈ ImS we have Xn(f1− anq) +αS ∈ ImT , and by Lemma 2.9 we

obtain (f1− anq) +αS ∈ ImT . Since the polynomial (f1− anq) is homogeneous of degree at

most k − 1, by the induction hypothesis we have (f1 − anq) ∈ ImS + αS, and by (3.6.2) we

obtain f ∈ ImS + αS, which finishes the proof. �

Corollary 3.7. Let (R,m) be an analytically unramified Cohen-Macaulay local ring of di-

mension d ≥ 2 and let I = (a1, a2, . . . , an) be an m-primary ideal in R. Denote U =

R[X1, X2, . . . , Xn]m[X1,...,Xn], α = a1X1 + a2X2 + · · · + anXn ∈ U and V = U/αU . Then

ImV = ImV for m� 0.

Remark 3.8. Theorems 3.3 and 3.6 and their corollaries can be extended to equimultiple

ideals. (In general, the analytic spread `(I) of the ideal I is at most the height of I; when

the equality holds, we say that I is equimultiple.) More precisely, if R is a locally formally

equidimensional ring and I is an equimultiple ideal with grade I ≥ 2, then IT = IT and

ImT = ImT for m � 0. Indeed, if I is equimultiple, then the ideals Im (m ≥ 1) have

no embedded components ([11]) and, by localizing at the minimal prime ideals of I, the

conclusions follow.
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4. Applications

As mentioned in the introduction, the results that show that the integral closure is pre-

served modulo a generic element are useful for proving integral closure statements by induc-

tion. As an example of such an application, we extend some results obtained by the author

in [2].

4.1. (Almost complete intersection ideals in regular local rings) Let (A,m) be a

regular local ring of dimension d and I an m-primary almost complete intersection ideal,

that is, minimally generated by d + 1 elements. Under the assumption that A contains

a field, the author [2, 3.3, 3.5, 3.7] proved that if I is integrally closed, then I contains

d− 2 regular parameters x1, . . . , xd−2 such that in the 2-dimensional regular local ring A′ =

A/(x1, . . . , xd−2) the ideal IA′ is integrally closed and generated by three elements. The

structure of such ideals in 2-dimensional regular local rings is then completely characterized

by results of Noh [13]. In addition, we proved that the Rees algebra R = ⊕n≥0Intn is

a Cohen-Macaulay normal domain and the associated graded ring G = ⊕n≥0In/In+1 is a

Cohen-Macaulay ring with a(G) = 1 − d, where a(G), the a-invariant of G, is defined by

a(G) = sup{i | HM
d (G)i 6= 0} with M being the maximal homogeneous ideal of G.

The assumption that A contains a field was needed because the proofs relied upon the

following lemma: if A is a regular local ring containing a field, I is an ideal in A with I * m2

and x ∈ I \m2, then (I/xA) = I/xA [2, 3.4]. Using Corollary 3.4, we will prove this lemma

without assuming that A contains a field, and hence all the results about integrally closed

m-primary almost complete intersection ideals that we mentioned above hold in an arbitrary

regular local ring.

Lemma 4.2. Let A be a regular local ring, I an ideal in A with I * m2and let x ∈ I \ m2.

Then (I/xA) = I/xA.

Proof. It is enough to prove this result for m-primary ideals I. Indeed, for f + xA ∈ (I/xA)

we have f+xA ∈ ((I + mk)/xA) for all k, and hence f ∈ I + mk for all k. Since ∩kI + mk = I

([7, 6.8.5]), we obtain f ∈ I.
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Let I = (a1, . . . , an) and α = a1X1 + · · · + anXn ∈ U = A[X1, . . . , Xn]m[X1,...,Xn]. Set

V = U/αU , denote by M the maximal ideal of V , and let φ : A/xA → V/xV be the

homomorphism induced by the embedding A→ V .

We will use induction on the dimension of A. If dimA = 1, the statement is clear. Assume

that dimA ≥ 2. Since α /∈ m2U , V is a regular local ring of dimension one less than the

dimension of A. Also, note that x ∈ IV \ M2. By the induction hypothesis, if y ∈ A

with ȳ ∈ I/xA, then φ(ȳ) ∈ IV/xV = IV /xV . Furthermore, by Corollary 3.4, we have

φ(ȳ) ∈ IV/xV ∼= IU/(xU +αU), which implies that y ∈ IU , and hence y ∈ IU ∩A = I. �

The following consequence was also noted in [2, 3.5], but now we can drop the assumption

that A contains a field. The same proof from [2] will work.

Corollary 4.3. Let (A,m) be a d-dimensional regular local ring, and let I be an ideal of A

such that the embedding dimension of A/I is at most two. Then In = In−1I for all n ≥ 1.

Remark 4.4. The above corollary also shows that an integrally closed m-primary complete

intersection ideal in a regular local ring is normal. This is a well known result proved by

Goto [3, Theorem 3.1] by using different methods.
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[11] S. McAdam, Asymptotic prime divisors and analytic spreads, Proc. Amer. Math. Soc. 80 (1980), 555–

559.

[12] M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience

Publishers, 1962.

[13] S. Noh, Valuation ideals of order two in 2-dimensional regular local rings, Math. Nachr. 261/262 (2003),

123–140.

[14] L. J. Ratliff, Jr., Conditions for Ker(R[X]→ R[c/b]) to have a linear base, Proc. Amer. Math. Soc. 39

(1973), 509–514.

[15] L. J. Ratliff, Jr., D. E. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J. 27 (1978),

929–934.

Department of Mathematics 2750, North Dakota State University, PO BOX 6050, Fargo,

ND 58108-6050, USA

E-mail address: catalin.ciuperca@ndsu.edu


