A NUMERICAL CHARACTERIZATION OF THE  $-IFICATION OF A
REES ALGEBRA

CATALIN CIUPERCA

ABSTRACT. LetA be alocal ring with maximal ideah. For an arbitrary idedl
of A, we define the generalized Hilbert coefficieitd ) € Z**1 (0 < k < dimA).
When the ideal is m-primary, j(1) = (0,...,0,(—1)ke(l)), wheree(1) is the
classicalk™ Hilbert coefficient ofl. Using these coefficients we give a numer-
ical characterization of the homogeneous components ofgtiication of S=
Allt,t~1], extending to not necessarity-primary ideals the results obtained in

[7].

INTRODUCTION

Let (A,m) be a formally equidimensional local ring and let J be two ideals
of A. Whenl is m-primary, Rees proved thdtis contained in the integral closure
I of I if and only if I andJ have the same multiplicity. ®er [5] extended this
result as followsiet | € J C v/1 be ideals in a formally equidimensional local ring
A such that/() = htl, where/(l) denotes the analytic spread of I. Then | is a
reduction of J (equivalently & 1) if and only if the A-ideals |, and J, have the
same multiplicity for every minimal prime divisprof I.

Using thej-multiplicity defined by Achilles and Manaresi [3] (a generalization
of the classical Samuel multiplicity), Flenner and Manaresi [10] gave a numerical
characterization of reduction ideals which generalizégds’s result to arbitrary
ideals.

Theorem (Flenner-Manaresi [10])Let | C J be ideals in a formally equidimen-
sional local ring A. Then | is a reduction of J if and only ifl,j) = j(J,) for all
p € SpecA).

Itis well known that for an integrally closed domahkthe integral closure of the
extended Rees algeb®&= A[lt,t~1] in its quotient field isS= @, ™" (I" = A
for n < 0), so one could interpret the above results as numerical characterizations
of the homogeneous componentsSof

Our motivation comes from the study of ti$s-ification of the same extended
Rees algebr& = Allt,t~1]. Under some assumptions on the riAgS has anS-
ification of the formS = @Dnez Int", wherel, = Afor n< 0. In [7, Theorem 2.4]
we proved that ifl is primary to the maximal ideah, thenl, is the largest ideal
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containingl" such thag (1) = g(I") for i = 0,1, whereey ande; are the first two
Hilbert coefficients.

In this paper we use thgmultiplicity of Achilles and Manaresi and a new in-
variantj; to obtain a characterization 8fsimilar to the one o8given by the result
of Flenner and Manaresi.

The paper is organized as follows. In the introductory section we establish the
notation and recall the main concepts used in the paper.

In the second section we define a generalization of the classical Hilbert coeffi-
cients. Achilles and Manaresi [3] defined the so-caljedultiplicity of an ideall
in a local ringA which generalizes to ideals of maximal analytic spread the clas-
sical Samuel multiplicity. In a subsequent paper, Achilles and Manaresi [4] also
observed that this new invariant can be recovered from the Hilbert polynomial of
the bigraded rin@s, (G, (A)).

This is the point of view we adopt in order to define the coefficigitl) € Z+1
(0 <k < dimA), a generalization of the classical Hilbert coefficiegtd ). When
the ideall is m-primary, jk(I) = (0,...,0,(—1)e(1)). We show that these coef-
ficients behave well with respect to general hyperplane sections, one of the main
properties one might expect from any generalization of the Hilbert coefficients.

The concept of first coefficient ideals has been introduced by Shah in [19]. He
proved that for am-primary ideall in a formally equidimensional rin@A, m) there
exists a unique ided}y,, the first coefficient ideal of, that is maximal among the
ideals containing for which the first two Hilbert coefficients are equal to those
of I. In Section 3 we extend the definition bf, to not necessarilyn-primary
ideals. Our definition is a slight reinterpretation (but necessary for our purpose) of
a description of the first coefficient ideals given by Shah.

We then observe that using the new definitior gf for an arbitrary ideal, we

also haveén = (1") 1, (S= Dnez Int" is theSy-ification of the extended Rees algebra
S). This follows from the proof of [7, Theorem 2.4] as a direct consequence of an
argument due to Heinzer and Lantz [15, 2].

The last section contains the main result of this paper. We give a numerical
characterization of the homogeneous componené loy proving the following
theorem.

Theorem. Let (A;m) be a formally equidimensional local ring and letd J be
ideals of positive height. Then the following are equivalent.

1) JC |{1}.
(2) Jjo(lp) = jo(Jp) @and ja(lp) = j1(Jp) for all p € SpecA).

Herejo(l) = j(1) is the above mentionegmultiplicity.

In fact, we prove a more general version for modules (but technically simpler for
our inductive argument). The proof of the theorem in the 2-dimensional case is a
crucial part of the argument (see 4.1, 4.2, and 4.5).
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1. PRELIMINARIES

Throughout this paper a local ririd\, m) will be a commutative Noetherian ring
with identity, and unique maximal ideal.

1.1. Notation. Let (A,m) be a local ring, let be an ideal ofA, and letM be a
finitely generatedd-module of dimensiord. We consider the associated graded

ring
Gi(A) =PI1m/1m,
n>0
and the associated graded module
Gi(M) =P I1"M/1" M.
n>0
Giveng € M\ {0}, letn be the largest number such tlggt "M, and define the

initial form of g, denotedy*, by

g :=g modulo I"M e I"™M/I"IM C G(M).
If g= 0, we defingg* = 0. For anA-submoduleN of M,
Gi(N,M) :=EP((INNI"M) + ™M) /1M M

n>0
will denote theG, (A)-submodule ofG, (M) generated by the initial forms of all
elements oN.
If the lengthA (M /IM) is finite, then for sufficiently large values ofA(M /1"M)
isa ponnomiaPl'V'(n) in n of degreed, the Hilbert polynomial ofl,M). We write
this polynomial in terms of binomial coefficients:

R —eot.M) (") et (M) et )

The coefficients (1,M) are integers and we call them the Hilbert coefficients of
(1,M).

1.2. The(S) property of Serre. If Ais a Noetherian ring, we say that a finitely
generatedd-moduleM satisfies Serre’sS;) property if for every prime idegl of
A,

depthM, > inf{2,dimM,}.
We say that the ring\ satisfieq ) if it satisfies(S) as anA-module, i.e. A has no
embedded prime ideals andpht 1 for all p € Asg(A/xA) for any regular element
xeA.

We recall the definition of th&-ification of a Noetherian domain.

1.3. Definition. Let A be a Noetherian domain. We say that a dontis anSp-
ification of A if

(1) ACBC Q(A) andB is module-finite oveA,

(2) Bis (&) as anA-module, and



4 CATALIN CIUPERCA
(3) forallbin B\ A, htD(b) > 2, whereD(b) = {ac A|abe A}.

1.4 Remark.([17, 2.4]) SetC := {b € Q(A) | htD(b) > 2}. ThenA has anS,-
ification if and only ifC is a finite extension oA, in which caseA = C. It is also
easy to observe that is a finite extension oA inside the quotient field, minimal
with the property that it has th&,) property as a\-module.

1.5 Remark.The S-ification does exist for a large class of Noetherian domains.
For instance, ifA is a universally catenary, analytically unramified domain, then
has arS-ification ([12, EGA,5.11.2]). Also, for any local domafA, m) that has a
canonical moduley, A— Homa(w, w) is anS-ification of A ([17, 2.7]).

We refer to [12], [1], [2], and [17] for more results abdgtification.

1.6. First coefficient ideals.Shah ([19, Theorem 1]) has proved thdti$ an ideal
primary to the maximal ideal of a formally equidimensional local rjAgm), then
the set

{J|Jideal ofAJJ D 1,g(l,A) =&(J,A) fori =0,1}
has a unique maximal elemdnt,, thefirst coefficient ideadf I. For more about the
structure and properties of first coefficient ideals we refer the reader to the original
paper of Shah [19] and the series of papers of Heinzer, Lantz, Johnston, and Shah
([13], [14], [15]).

In [7] we have proved the following result:

1.7. Theorem([7] Theorem 2.5 and Lemma 2.4) et (A,m) be a formally equidi-
mensional, analytically unramified local domain with infinite residue field and pos-
itive dimension, and let | be am-primary ideal of A. LetS= @Dz Int" be the
Sy-ification of S= A[lt,t~1]. Then

InNA=(I")¢y foralln>1
If A has the(S;) property, then is an ideal of A, hence = (I“){l} foralln > 1.

1.8. Hilbert functions of bigraded modules.We first introduce some known facts
about Hilbert functions of bigraded modules. For a detailed description of their
properties and complete proofs we refer the reader to [8], [20], and [21] (in these
papers the theory is developed for bigraded rings but it can be easily extended to
bigraded modules).

Let R= EB,J oRj be a bigraded ring and I8t = &} i—oTij be a bigradedr-
module. Assume thaRyp is Artinian and thatR is flnltely generated as aRyo-
algebra by elements &1 andRyo. The Hilbert function ofT is defined to be

hr (i, 1) = AReo(Ti j)-
Fori, j sufficiently large, the functiohr (i, j) becomes a polynomiair (i, j). If d
denotes the dimension of the modilewe can write this polynomial in the form

3 ().

k+|<d 2
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with ay | (T) integers and@y q—x—2(T) > 0.
We also consider the sum transformhgfwith respect to the first variable defined
by

i
2600 =S hr(wj),
T 2

and the sum transform dnfrl’o) with respect to the second variable,

j i
hY(,5) = 5 i,y = h(u,v).
T D= =2 2,

Fori, j sufficiently largeh39 (i, j) andh®1) (i, j) become polynomials with ratio-
nal coefficients of degrees at makt 1 andd respectively. As usual, we can write
these polynomials in terms of binomial coefficients

(1,0) i o\ (1,0) i+K\ ]+
i 5 al'm( ) ()
k+1<d—1
with al(j’o) (T) integers an@%ﬁk_l(T) >0, and

i - 3 ' m( ) ()

k-+l<d

with afj’l) (T) integers an@ﬁ}alfk(T) > 0.

Since
he (i, i) = h0, 1) — A0 - 1, ),
we get
(1.8.1) 8 (T) =aq(T) fork! >0k+1<d-2

Similarly we have
W0, ) = R G, 1) — Y, - 1),
which implies that

(1.8.2) a i (T) =ag?(T) forkl>0k+I<d-1.

2. GENERALIZED HILBERT COEFFICIENTS

In this section we define Hilbert coefficients for an arbitrary ideala local ring
(A,m). Thek™" generalized Hilbert coefficierji(l) is an element oZ*! whose
firstk components are 0 when the idé#t primary to the maximal ideat. We also
show that sufficiently general hyperplane sections behave well with respect to the
generalized Hilbert coefficients. This is one of the main properties that one would
expect from a “good” definition of these coefficients.



6 CATALIN CIUPERCA

Let (A,m) be alocal ring, let be an ideal ofA, and letM be a finitely generated
A-module of dimensiord. Consider the bigraded rinB = G, (G, (A)) and the
bigradedR-moduleT = G,,(G(M)), where the graded components are

Rj = (m'l +1*1) /(m! 1) 41741y and
Tij = (m'IM 4+ M) /(m!TH M 4 11FIM), respectively
Observe thaRyp = A/m and diml = dimM =d.
. . . - (1.0) . . (11) . - (1,0) /. -
Asdescrlbed in 1.8, we define the polynomlaﬁs (i,5), P77 (1, 1), py (1, §),
ande ( j). Note that fori,j >0
pr % (i, §) = A (1/(m" 1 41771)) - and
o030, 1) = A (HM/ (m 1M 4 1)),

2.1. Definition. Let (A,m) be a local ring, let be an ideal ofA, and letM be a
finitely generated\-module. Using the notation introduced in 1.8, we define

i(1,M) = (8 (1), 8 g (T, aba y(T) € 2541 foro<k<d,

and call them th@eneralized Hilbert coefficients (1,M).
Our main concern will be with the first two coefficients

jo(I,M) = agll)(T) and
j1(1.M) = (@™ (T).253”1(T)).
To simplify the notation, we denotg(l,M) = (ji(I,M), j2(1,M)).
2.2 Remark.We also have
jo(1,M) = 85”4 (T),
i1(1.M) = (@5 (T). a5 2(T)).

ja—1(1,M) = (@ T o(T),ato(T),-.. .ags  (T)).

This follows from the equalities (1.8.1) and (1.8.2). Note that we need to assume

d =dimM > 2 in order to refer tg1(1,M) as(a(lld0 5(T), aOol 2( )). For technical

reasons (see Proposition 2.11), we will prefer this interpretation of the generalized

Hilbert coefficients (We only need = dimM > 1 in order to seej;1(I,M) as

(@, (T),a554(T)).)

2.3. Remark.The coefficients we defined are a generalization of the classical Hilbert
coefficients. Indeed, whdnis m-primary,

j(,M) = (0,0,...,0,(=1)*e(1,M)) € Z*** foro<k<d,
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where the firstkk components are 0 argk(1,M) is the K" Hilbert coefficient of
(1,M). To see this, note that Ifis m-primary, there exists such thatm! C I, and
then, fori, j large enough,

11, - -
PV (i, ) = A(M/1THM).
An elementary identification of the coefficients gives the above equalities.

2.4. j-multiplicities. Achilles and Manaresi [3] defined a multiplicity for ideals of
maximal analytic spread that generalizes the classical Samuel multiplicity. For a
detailed presentation of this multiplicity we refer the reader to [9, Chap. 6].

Let (A,m) be a local ring, let be an ideal, and lel be a finitely generated
A-module. TherH?(G|(M)) is a gradedG, (A)-submodule ofG| (M) and is an-
nihilated bymK for k large enough, so it may be considered as a module over
Gi(A) := G| (A) @aA/mK. Thene(H (G| (M))) := (G| (A)*,HO (G (M))) is well
defined, wherés, (A)™ denotes the ideal d (A) of elements of positive degree.
Thus we can define

i) __{ e(HO(G|(M)) if dimM = dimH2(G|(M))
10 if dimM > dimH2 (G, (M))

Note thatj(I,M) # 0 if and only if /(1) = dimM [9, 6.1.6(1)], where/y (1) =
dimG; (M)/mG; (M) (the analytic spread dfin M).

2.5. Generalized Samuel multiplicity. In [4] Achilles and Manaresi defined an-
other generalization of the Samuel multiplicity. Our presentation will be given in
the slightly more general context of modules.

Let| be an arbitrary ideal in a local ring\,m), and letM be a finitely generated
A-module. Using the notation introduced in 1.8, denote

6(1,M) ==a5%(T) (0<i<d),

whereT = G, (G (M)). The sequencéci(l,M))o<i<q is called the multiplicity
sequence ofl,M). In the caseM = A we simply denote; = ¢;(1,A).

Note that this sequence consists of the leading coefficients of the generalized
Hilbert coefficients that we defined in 1.8.

We state the following proposition proved in [4] (we present a version for mod-
ules).

2.6. Proposition([4, Proposition 2.3]) Let (A, m) be a local ring, let | be a proper
ideal of A, and let M be a finitely generated A-module. SetimG; (M)/mG (M)
and g=dim(M/IM). Then
() ck(I,M)=0fork<d—1lork>q;
(i) cg1(I,M) =3 pe(mGg, G (M)g)e(G/B), whereB runs through the all highest
dimensional associated primes of(®1)/mG; (M) such that
dim(G/B) +dimGg = dimG;
(iii) cq(l,M) =3, €e(lA,,M,)e(A/p), wherep runs through the all highest dimen-
sional associated primes of MM such thatdimA/p +dimA, = dimA.
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Achilles and Manaresi [4, Proposition 2.4] also proved that jmeultiplicity
j(1,M) is equal to the coefficiertp(l,M). For more details we refer the reader
to the original paper of Achilles and Manaresi [4] (the proofs can be immediately
extended to the version for modules we present here).

We will prove that the multiplicity sequence defined above is an invariant of the
ideal up to its integral closure. JfC |, we say thad is a reduction ofl,M) if there
existsn such thatl|"M = |"+1M.

2.7. Proposition. Let (A,m) be a local ring, let JC | be proper ideals of A, and let
M be a finitely generated A-module. If J is a reductior(loM), then ¢(J,M) =
c¢i(l,M) fori=0,...,d.

Since the proof requires technical results that will be made clear later, we post-
pone it until the end of this paper.

Before proceeding further, we need to introduce more notation.
If x is an element ofA, denote byx the initial form of x* € G;(A) in R=
G (Gi(A)). Similarly, if J is an ideal inA, let

Y =Gn(G(J,A),G(A) CR

be the ideal generated by allwhenx € J, and if N is anA-submodule oM, we
denote

N'=Gn(GI(N,A),GiI(M)) C T =Gn(GI(M)).

2.8. Definition ([8]). LetR= G, (G, (A)) and let(0) = Ny N2 N ...ANr ANy N
...NN; be an irredundant primary decomposition (@) in the R-module T =
Gn(Gi(M)). DenoteP, = /(N; :rT),i =1,...,t. Assume that

(2.8.1) I"CP1,...,R and

(2.8.2) "¢ Py,... P

We say thak € | is a superficial element fait,M) if X € Py,... ,P.
Note that we can always choose | \ ml superficial element fofl,M).

2.9, Remark.Letx € | be a superficial element f¢r,M). By (2.8.1), there existe
such tha(1")*T € Nr;1N...NAN;. Then

t
(07 x)=N(NiiTX) SN NNy,
i=1

hence
(2.9.1) (IN*T N0 :7X) CNLNAN2 ML AN ANk 1N NINg = (0).

The following lemma, in its version for ideals, is due to Dade [8, 3.1](unpub-
lished thesis). For convenience, we present here a proof.
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2.10. Lemma.Let A be a Noetherian ring, let | be an ideal of A, let M be a finitely
generated A-module, and letd K be two submodules of M such that the length
A(K/L) is finite. Then
A(K/L) = A(Gi (K,M)/Gy (L,M)).
Proof. Consider the descending chain of modules
2
KNIM +L 5 KNI“M+L 5
L - L -
The moduleK /L has finite length, so there exidtssuch that
KNI"™M+L  KNI"™M+L
L B L

forn> N

which implies that
KNI"™M +L=KnI"™M+L forn>N.

So, forn > N,
KNI"™M+LC () (KNI*"M+L) C ("M +L) =L,
k>1 k>1
i.e., KNI"M =LNI"M.
Finally,
K+IM KNIM
)\<K/L)_)\<L+IM)+)\(LHIM)
_)\<K+IM) )\<Km||v|+|2|v|) <|<m2|v|>
“\L+1IM LNIM +12M LNI2M

K+I1M K+INM
) ()
L+ INM

0l

The following proposition shows that sufficiently general hyperplane sections
behave well with respect to the generalized Hilbert coefficients.

2.11. Proposition. Let (A,m) be a local ring and let M be a finitely generated A-
module. Suppose thatxl is a superficial element fofl ,M) and a nonzerodivisor
on M with X € Ry;. DenoteT = Gg(G(M)), whereA = A/xA, 1 =1 @A, and
M =M ®aA. Then, for jj large,

90, 5) = 26 - 2) = R ).

In particular, JO(I ) M) = jo(l_,M), Jl(l ) M) = jl(l_am)a R jd71<| ) M) = jd,]_('_,M),
where d denotes the dimension of the module M.
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Proof. The proof relies on Lemma 2.10, a technique also used by Dade in [8].
We have the following exact sequence

1iMm 1IM 4 xM

O=K= MM~ M - M M 2

where

K HM A (M HHM 4-xM)
- mit M = 11+1IM
(T HM 4 HFIM) + M XM
mit M 4 11+1IM
1IM N xM
(MM 4+ 1+HIM) N xM

From this exact sequence we get

1IM +xM )

(170) T 1) —
hr <I’J)_)\(mi+1IJM+IJ+1M+xM

_)\( LiM )_ ( I IM NxM )
SRS TV N ERTY (MM 4+ 11+IM) N xM/

Therefore we need to prove that figf > 0

( 1IMNxM )_)\< 1-1m )
(MM + MY NxM/ 7 \md I =IM 1M
We have

A

( 1IM N xM )_
(m+1IM +1+HIM)NxM/

IM
<x((mi+1rl:(ll\/ll\4/l—lix+)1M) :x))
A (( (M : x) )

mit1M +1+IM) 1 x

B (1M = x)’
- (((mi+1|i|v|+|i+1|v|):x)/>’

where the last equality follows by a successive application of Lemma 2.10.
By Remark 2.9, there existssuch thatl")°T N (0’ :1 X') = (0). We claim that

forj>c

(2.11.1) (UM :x)'N(1")°T = (117IM)’  and

(2.11.2) (MM 4+ UMY ) N (1T = (I 1My,
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We first prove (2.11.1). Lete (1M : x) such that G2y € (1")°T. Since(I")°T N
(0 :1 X) = (0), it follows thaty’ ¢ (0’ : X'), hence G# (yx)' € (I'M)’. But(I!M)’ is

S D

0O 0 & --- & 0 ® Toj ® Tojr1 @
S S S S D

0O 0@ --- & 0 & Tj & Tyjy1 @
S S S S )

0O 0@ --- & 0 @ Tj ©@ Tj1 @
b S S

Sincex’ € Ry, we must have/ € (11-IMY’.

To see (2.11.2), considgre ((m' 1M + 11+1M) : x) such that G4y € (I')°T.
By the choice ofc, we havey ¢ (0 : X), hence(yx)’ € (m T IM +11+IM)" and
(yx) # 0. The homogeneous components of the graded subméuaititél 1M +
11+IM)’ C T are represented below:

0O @ - @ 0 @ 0 @& Tojya & Toji2 &
S% @ S% SY S%

O ® - ® 0@ 0 @ Tjr1 @ Tojp2 @
S¥) s> S¥) S¥) S%

S¥ @ S¥) S%) S%)
0@ - & 0@ 0 @& Tj1 @ Tje &
S¥) N> S¥) S¥ S%

0 @ © 0 @ Ty @ Tyrjrr @ Tipgjez @
s> ©® S¥) ® ©®

0 & --- @ 0 @ Ty2j @ Tyzjrr @ Tiyzji2 @
s> s>

D D D

Sincex’ € Ry we gety’ € (m*HI=IM +-11M)".
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Then we have

( 1IM N xM )
(MM + 1+HIM) N xM

x(11M : x)

m'+1IlM+IJ+1M) x))
(1M : x)

m'+1|1|v|+|1+1|v|) ))

(s
(

M)
(

A

(mi ] JM + J+l|v|)

A

(M %) N (1))°T (1M x) + ()T
m'|1|v|+|1+1|v|) X)' 1 (|f)<>T>+ (((mi+1|1'|v|+|i+1|v|):x)'+(|')CT>

B 1=1m (1M x)' + (1)°T
=A ((mi+1|i—1|v| +IJM)> +A <((mi+1IjM +11+1Mm) :x)’-i—(l’)CT)’

By the Artin-Rees lemma, there exigisuch that forj > p

HMNxM = =P(IPM NxM),

X(HM :p X) = xH=P(IPM 1y x),
or
(1'M :m %) = 7P(IPM 2y X).

Then, forj > p+c, (IIM : x)’ C I"°T.
On the other hand, we also have

(MM +1UFIM) 1 x) € (1M x)!
C (T forj>n+c andall.

We can now conclude that

( 1IM N xM )_)\< 1171M )
(MM + M) AxM/ 7 \m =M - 1IM )
which finishes the proof. O

3. FIRST COEFFICIENT IDEALSTHE GENERAL CASE

In this section we define the first coefficient idégl, of a not necessarilyn-
primary ideall. We then observe that using the new definitiom@f, Theorem 1.7
is true in general, without assuming thas m-primary.

For reasons that will become obvious later, we need again to introduce the notion
in the more general context of modules.
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3.1. Definition. Let M be a finitely generateA module and let be an ideal oA
with dimM/IM < dimM. We definel?"l}, the first coefficient ideal ofl,M), to be
the ideal ofA

1My, =™ M aam),

where the union ranges over ali> 1 and alla € 1"\ 1™+ such thai* is part of a
system of parameters & (M). If M = A, we simply denotda{"’i} =y

3.2 Remark.Let us observe that our definition coincides with the one given by
Shah in them-primary case. Indeed, by the structure theorem for the coefficient
ideals proved by Shah ([19, Theorem 2]), we have

(3.2.1) Iy =" aa),

where the union ranges over al>> 1 and alla extendable to some minimal reduc-
tion of I".

On the other handj is extendable to some minimal reductionl Bif and only if
the image o&* in G| (A)/mG; (A) is part of a system of parameters. But if the ideal
| is m-primary this is equivalent to the fact thait is part of a system of parameters
of G (A), for the idealmG; (A) is nilpotent.

Heinzer, Johnston, Lantz, and Shah [14, Theorem 3.17] gave a description of the
coefficient ideals involving the blow-up df We present here their result for the
case of the first coefficient ideals.

The blow-upB(l) of an ideall in a local domairA is defined to be the model

B(l) = {All /x|, | 0# x| andp € SpecA[l /X])}.

B(l) is the set of all local rings betweeh and the quotient fiel@(A) minimal

with respect to domination among those in which the extensidni®a principal
ideal. LetD; denote the intersection of the local domains on the blovB(l) of
dimension at most 1 in which the maximal ideal is minimal over the extension of
| (see [13, Definition 3.2]). The main result of [14](Theorem 3.17) says that if

is a formally equidimensional, analytically unramified local domain with infinite
residue field and dirA > 0, andl is anm-primary ideal, then

(3.2.2) |{1} =1DiNA.

In a subsequent paper, Heinzer and Lantz [15, 2] prove directly the equivalence
of the description of the first coefficient ideals given initially by Shah (see 3.2.1) and
the description given by 3.2.2. The argument assumes that thd ideatprimary,
but a careful examination of their proof actually shows the following:

3.3. Proposition. Let (A,m) be a formally equidimensional local ring of positive
dimension, and let | be an arbitrary ideal of A. Then

IDNA={ (" pa),

where the union ranges over alla1 and all ac 1"\ 1™ such that & is part of a
system of parameters of ).
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Note that the right hand side of this equality is exactly the definition of the first
coefficient ideals in the general case (see Definition 3.1).

In [7] we have proved Theorem 1.7. The statement of the theorem assumies that
is anm-primary ideal, but all is used in the proof is that, = 1 D1 NA. Therefore,
by the above discussion, we have the following theorem.

3.4. Theorem. Let (A,m) be a formally equidimensional, analytically unramified
local domain with infinite residue field and positive dimension, and let | be an

arbitrary ideal of A. IfS= @7 Int" is the S-ification of S= Allt,t~1], then
InNA=(1")y foralln>1,

where for an ideal J,{q} denotes the first coefficient ideal of J as defined in 3.1.
In particular, if A has thg(S,) property, thend = (1")4, foralln > 1.

In this way, the problem of giving a numerical characterization oB8h#ication
of the extended Rees algebBa= Allt,t~1] reduces to the problem of finding a
numerical characterization of the generalized first coefficient ideals (Definition 3.1).

The following proposition shows that the union involved in Definition 3.1 can be
replaced by a single colon ideal. It is the analogue of Theorem 3 of [19].

Recall that a finitely generated modMeover a local ringA is called equidimen-
sional if for every minimal prime idegl of M the moduleM /pM has dimension
dimM. We also say thaM is formally equidimensional if1 (the completion of
M in the m-adic topology) is equidimensional as AAmodule. If the rngA is
complete andM is equidimensional, the@, (M) is also equidimensional (see [16,
18.24] and [6, 4.5.6]).

3.5. Proposition. Let M be a finitely generated formally equidimensional A-module
and let | be an ideal of A such thaimM/IM < dimM. Then there exist a fixed
integer m and a fixed element x 8F\ 1™ with x* part of system of parameters of
G (M) such that

1My = (1™M A XM).

Proof. We can assume th#t is complete and tha¥l is equidimensional. LeN

be theG, (A)-submodule ofG, (M) generated by{'\’{}M/IM. By definition, each
generator oN is annihilated by a homogeneous elemenGpfA) which is part of

a system of parameters Gf (M). By prime avoidance, we can find a homogeneous
elemenix* € I™/I™1 (x € I™M) that annihilates the entire submodiNeand which
avoids all the minimal primes in the support®f(M). The observation thad (M)

is equidimensional (implied by the hypothesis) concludes the proof. O

3.6. Proposition. Let M be a formally equidimensional A-module, and IetJ be
ideals of A such thadimM/IM < dimM. Then JC I?"l} if and only if

dim@P JI"M/I™ M < dimG; (M) = dimM.

n>0



A NUMERICAL CHARACTERIZATION 15

Proof. Indeed, if we denoté = @,-¢JI"M/I1""IM, then, by Proposition 3.5, it
follows thatL is annihilated by an element which is part of a system of parameters
of G| (M) OJ

3.7. Remark.If M is faithful (i.,e. AnnM = 0) andJ is a (minimal) reduction of
(1,M), thenJ is a (minimal) reduction of. Indeed, ifl"**M = JI"M for somen,
then, by the determinant tricld, and| have the same integral closure, i.2is a
reduction ofl.

In the m-primary case it is obvious that the iddails a reduction of its first co-
efficient ideal (by definition). This is still true in the general case, as the following
proposition shows.

3.8. Proposition. Let (A, m) be a local ring, let M be a finitely generated formally
equidimensional A-module, and let | be an ideal of A suchdimat /IM < dimM.

Ifl CJC I?"l}, then | is a reduction ofJ, M).

Proof. As usual, we may assume thatis a complete local ring. First we prove
the proposition in the case whéhis faithful. Note that in this case bothandM
will be equidimensional, therefore bo@ (A) andG, (M) are equidimensional of
dimension equal to dith = dimM (this is implicitly proved in Theorem 4.5.6 of
[6]).

Let us observe that for a faithfél-moduleM, AnnG; (M) is a nilpotent ideal of
Gi(A). Indeed, ifX € 1"/1"1 is an element o6 (A) that annihilatess| (M), then
XM C 1"*1M, which by the determinant trick implies that I"+1 (hereJ denotes
the integral closure of the ided) . If we write the equation of integral dependence
we get

XK+ad 4+ . +a =0,
with g € 1M1 Thusxk = —(apd*1 + ... + &) € 1X™1, which implies thaix €
G (A) is nilpotent.
By Proposition 3.5, there exist a fixed integeand a fixed elemergtec |™\ | ™1

with a* € G, (A) part of a system of parameters@{f(M) such thatm} = (I™1IM :p

aM). Lety € (™M :p aM). ThenyaM C I™1M, and using the determinant trick
we get

(3.8.1) yac M+l

Since Anr{G; (M)) is nilpotent and5; (A) is equidimensionak* is part of a system
of parameters o6 (A), i.e. at™ € S= Allt,t~1] is not contained in any minimal
prime divisor oft 1S,

We claim that from the above assertion and (3.8.1) it followsytwt. To prove
this, note that we may also assume tAds a reduced ring. LeT = @nzolnﬂt“
be the integral closure &f in its total quotient ring. Since the ringis equidimen-
sional (it is a local catenary ring satisfying tt®) property; see [12, 5.10.9]), the
ring T/t~1T is also equidimensional (implicitly proved in Theorem 4.5.6 of [6];
note that(I™)n>o is a Noetherian filtration) and is a finite extensionToft ~1T. In



16 CATALIN CIUPERCA

particular, any minimal prime df 1T contracts back to a minimal prime of1T.
Thus the image oit™ does not belong to any associate primedfT, hencea* is

a nonzerodivisor off /t1T. By (3.8.1) we gey € IANA =T, O

4. THE MAIN RESULT

We now prove two propositions that will be the main tools for proving Theo-
rem 4.5 in dimension 2.

4.1. Proposition. Let M be a finitely generated formally equidimensional A-module
of dimensior2, and let IC J be two ideals of A such thadimM/IM < dimM. If
JC I{'V{}, then there exist positive integers k and | such that

mKlIM CJIM for j > 1.

In particular, _ _
AIM/I!M) <o for j>>0.

Proof. Denote byN the G = G (A)-submodule of5, (M) generated in degree 0 by
IM/IM, i.e.
N=PI"mM/I" M.
n>0
By Proposition 3.6, we have digiN) < dimG(M) — 1 = 1, which implies that
dimg,, () Gm(N) < 1. Since

mJIUM + 1+1M

i,j=0

It follows that fori, j > 0

m JUM + 11+1M
<mi+1JIiM +1 i+1M>
is a polynomial of degree. dimG,,(N) — 2 < —1, so there exigb, jo such that
m JUM +11+1M
<mi+1JIiM +1i+IM
By Nakayama’s lemma we then obtain
(4.1.1) m'JUM C IFIM fori > g, ] > jo.
Sincel is a reduction ofJ,M) (3.8) there exist® such that /J"M = J"*IM for
j > 1. By (4.1.1) it follows that
mMI"IM CI™IM fori > o, j > Jo,
which in conjunction with the previous equality implies that
mMIIM CI™IM fori >, j > jo.

Takek = ig andl = n+ jo. O

>=0 fori >io, j > jo.
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4.2. Proposition. Let (A,m) be a local ring and let M be a finitely generated for-
mally equidimensional A-module of dimensior2. Consider IC J two ideals in A

with dimM/IM < dimM such that IC J C I{'Vi}. Then, for j j large enough,

1) A(J'M/11M) is a constant; _
2) A(m'"1IIM + 3 FIM/m T HIM + 11FIM) is a constant;
3) A(HIM/m*FHIM + M) = A(IIM/m! T1IIM 4- 31+ M),

Proof. By Proposition 4.1\ (JIM/11M) is finite for j large enough, so for the first
part of the proposition we can use an argument similar (but in module version) to
the one used by Shah in the proof of Theorem 2 of [19].

Sincel CJ C IM}, | is a reduction ofJ,M) (see Proposition 3.8), hence there

exists an integes such that "JSM = J"*SM for all n. Then we have
A (ISFIM/I1SEOM) = A (381"M/15FTM)
S
_ A (Ji|n+s—iM/Ji—1| n+s—i+1M)
2
S . . . .
— Z)\ (Jl_lls_lJlnM/Jl_lls_lln+1M)
i=
S
< Zlci)\(JI”M/I““M)
i=

whereg; is the number of generators HFLSTM. Setc = S Ci. Then
A (IFTM/ISTTM) < eA (JI"M/IMHEIM).

On the other hand, by Proposition 3.6, fotarge enoughA(JI"M /1" M) is
a polynomial of degreec dimM — 2, so it must be a constant (dvh< 2). Thus
A(J'M/IIM) is a constant fof >> 0.

For the second part, let us observe that

JIM miT1JiM 4 Ji+Im
A(W) B <mi+1|1|v|+|i+1|v|>

JiM 1iM
=A <mi+lJJ|v| +Ji+1|v|> - (mi+1|1|v| +1 J+1|v|>
= [j1(3,M) = iz (1, M)]i + [jo(3, M) — jo(I,M)]j + jZ(I,M) — jE(I,M).
By 2.6, it follows that
jo(3,M) = jo(1,M) and j3(J,M) = j1(I,M),

and therefore the last expression is a constant. Using the first part we can now
conclude the second part.
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By Lemma 4.1 and Lemma 2.10, we have
AFIM/1HIM) = A (Gm(JHlM)/Gm(l i“M))

\ < (JIFIMNmkM) +m'<+1|v|)
(1+IM N mkM) + mk+1M
)

k>0
_A< N (JFIMNmkm +m'<+1|v|>
B IFIM N mkM) ++ mk+1Mm

o (!

for some fixed integerindependent of (by part (1) we can do this). Similarly,
<mi_+1J§M +J_J'+1|v|> _ <Gm(mi_+1JjM +J_J'+1M)>
mtHIM 4 114H1Mm G (mtHIM 4 11+1M)
<é ((mi_“JJ:M +J_i+1|v|)mmk|v|) +m'<+1|v|>
o ((m|+1|1|\/| +1 J+1M) ﬂmkM) +mk+ip /7

for some fixed integes independent of and | (we use here the second part of the
statement). We may assurse- t. On the other hand, far> t,

(M FLIM +IIM) nmkM = m13IM + (m*M N 3T+Em)

e MM+ 1FIM) M = m™ M 4 (mkM N 1+,
This implies that
(MM + IHIM) N m*M) + m M = (kM N JIHIM) - m<TIm
and
(mTHIM A+ 1HIM) N m*M) + m M = (m*M A 1M 4 m* M,
We then get
<mi+lai|v| +Jj+1M> N (EtB (JIFIM N mkM) +m'<+1|v|>
mitI M + 11+1IM r (1 I+1IM ﬂmkM) + mk+1Mm
=AJ M/ M)
=NIM/1IMm),
where the last equality follows from part (1). O

4.3. Lemma. Let (A,m) be a local ring, let IC J be two ideals in A, and let M be
a finitely generated A-module. Let k be a positive integer.
1) If 1 is a reduction of(J,M), then p(I,M) = jo(J,1*M).
2) If I is a reduction of(J,M), then | is a reduction ofJ, 1M).
3) Assume thatimM/IM < dimM and that M is equidimensional. If | is a
reduction of(J,1XM), then | is a reduction ofJ,M) .
4) If 1 is areduction of(J,M), then j(1,1¥M) = j1(J,1¥M) implies that j (I,M) =
jl(‘J7 M)
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M i Y

5)JC '{1} if and only if JC '{1} .

Proof. (1) | is a reduction of J,M), so there exists a positive integeisuch that
1J"M = J"1IM. So forj > 0,

JI1km Jitkm

(4.3.1) A (mi+1Jj|kM +Jj+l|kM> =A (mi+13j+k|\/| +Jj+1+k|v|)’
which implies thatjg(J,M) = jo(J,1¥M).

(4) also follows from (4.3.1).

(2) is obvious. _ _
_ (3)LetA=A/AnnM, | =1A, andJ =JA. ThenAis an equidimensional ring and
| is not contained in any minimal prime ideal&f Sincel is a reduction ofJ, kM),
there exists a positive integarsuch that J"KM = J"11*XM. By the determinant
trick, it follows that1J"I% = I¥+1J" is a reduction of™1I¥, so there exists such
that

|—R+1J_rl(J_rl+1|—R)| _ (J_n+1|—k)|+l.

Sets=kl+k,t = nl+n-+1 so that the above equality can be written

1(153%) = J(150).

We claim that this implies thdtis a reduction of]. It is enough to show this
after we mod out an arbitrary minimal prime ideal&fand since is not contained
in any minimal prime ideal oA, we may therefore assume thats a domain and
|, J are nonzero ideals. Using again the determinant trick, we iged reduction of
J (153! # 0), which implies that is a reduction ofJ,M).

(5) DenoteK = @0 dI"M/I™IM andL = @)= JIMKM /1M 1HKM . It is clear

that dimK = dimL. On the other hand] C 'M} if and only if dimK < dimG; (M),

andJ C I if and only if dimL < dimG (M). 0

The following proposition shows that the first two generalized Hilbert coeffi-
cients are the same up to the first coefficient ideal.

4.4. Proposition. Let (A,m) be a local ring, let M be a formally equidimensional
A-module, and let | be an ideal of A withmM /IM < dimM. If| CJ C I?"l}, then

ji(1,M) = ji(3,M) fori=0,1.

Proof. We may assume th#tis complete and tha¥l is equidimensional.

If dimM = 1, then the conclusion follows from Shah’s result (in its version for
modules). Indeed, we can replagdy A/ AnnM, and then the ideallsandJ are
primary to the maximal ideal oh/ AnnM.

If dimM = 2, from Proposition 4.2 part (3) it follows that forj > 0 we have
following equality of polynomial functions of degree one:

AIM /m 1M 4 HFIM) = MM /mi FL3IM 4+ 31+ IM).
By Remark 2.2, it follows thaji(I,M) = ji(J,M) fori=0,1.
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Assume dinM > 3. If depth M = O, replacingM by IKM for k big enough, we
may assume deptM > O (the previous proposition shows that the hypotheses are
preserved).

By Proposition 3.5, there exists an integer 1 and an elemerte 1"\ 1", with
a* part of a system of parameters®f(M), such thatm} = (I™1:aM). Sincel is

a reduction of] (see Proposition 3.8), we can choose| \ mJ superficial element
for (J,M) (I’ andJ’ have the same radical &, (G;(A)) ). By taking a sufficiently
general element, we may also assumextat superficial element fgt, M), a*, x*
are part of a system of parameters@f (G (A)), andx is a nonzerodivisor oM
(depth M > 0).

DenoteM = M/xM. By the choice ofx it follows that! C J C I{'V{}. Indeed,
if y e J, thenyaM C I"IM. Butx* anda* are part of a system of parameters of
Gi(M), soa* is part of a system of parameters@f(M) = G, (M) /x*G;(M). Then
ye I?"l} and the induction hypothesis givggl,M) = ji(J,M) for i = 0,1. Using
Proposition 2.11 we now obtaip(l,M) = j;(J,M) fori =0,1.

Note that we cannot prove the 2-dimensional case by reducing the problem to
the 1-dimensional case. The polynomial that gixéis M)(I'M/m'lIM 4 1 1+1M)
for j > 0 has the fornji(1,M)i + jo(I,M)j + j2(I,M). By reducing the dimension
one more time we would loose the coefficieptsl,M) and j3(1,M). O

We can now prove the theorem stated in the introduction.

4.5. Theorem.Let (A,m) be a local ring, let M be a formally equidimensional A-
module, and let IC J be two ideals of A witdimM/IM < dimM. The following
are equivalent:

1)JC |{M1}.
2) ji(lp;Myp) = ji(Jp,Mp) fori = 0,1 and every € SpecA).

Proof. The proof of the case diM = 2 is the crucial part of the argument. Then
we can use an induction argument similar to the one used by Flenner and Manaresi
in the proof of their theorem (see the introduction).

If dimM = 1, using the same argument used in the proof of the previous theorem,
we can reduce the problem to theprimary case and Shah’s result proves both
implications.

As usual, we may assume th{&t m) is a complete local ring and is equidimen-
sional. We will prove that for every prime ideg|J, C (Ip)?ﬂf} and the implication

(1) = (2) will follow from Proposition 4.4.

Let N = @1 JI"/I"L. Sinced C I{'Vl'}, by Remark 3.6, we have dil <
dimG; (M) = dimM. LetN' = @13, (1,)"/(1,)""t =U~IN, whereU = G)(A) \
(p/1) is a multiplicatively closed subset & (A). SinceG, (M) is equidimensional,
we get dim\’ < dimU Gy (M) = dimG, (My), i.e. 3, C (Ip);7).

We prove the converse by induction dn= dimM. First assume dirl = 2.
We can also assume thilt is faithful, so dimA = 2. Sinceji(I,M) = ji(J,M) for
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i = 0,1 there existp, jo such that foi > igandj > jo
(4.5.1) AIM/mPHIM 4+ 1HFIM) = A (OIM/m T L3IM 4 31,

Let p € SpecA) \ {m}, so by hypothesigi(l,,M,) = ji(J,,M;) for i = 0,1. But
dimA, =1, sol, andJ, are primary to the maximal ideal. Applying the the-
ory of first coefficient ideals fom-primary ideals (in a version for modules) we
get)\(JgMp/IgMp) =0 for j > 0 (it is bounded above by a polynomial of degree
dimA, —2 = —1). There are only finitely many elements in Sp&c\ {m} that
containl, so there exists > jo such that for alp € Spe¢A) \ {m} andj >r we
have)\(JJMp/IJM ) =0, and this implies thaX(J/M/11M) < o for j > r. Choose
c > ig such tham'J'M C I"M fori > c.

We are now using an argument similar to the one given in the proof of Proposition
4.2.

Fori > c, we have

IM mi+1JrM +JH—1M
(o)A (lrM) N (mi+1lr|v| FITIM )

J'M "M
=A (mi+13r|\/| +Jr+1|\/|> —A (mi+1|r|\/| + |r+1|\/|)
= [J1(3,M) = (1, M)]i + [jo(3, M) = jo(1,M)]j + JT(3,M) — j3(1,M)
=0.

where the last equality follows from hypothesis.
Then, by Lemma 4.1 and Lemma 2.10, we have

)\(Jr+1M/|r+1M) = (G (Jr+1M)/G (|r+1M>>

)\( (I M mmkl\/l)+mk+1|v|>
I™+1M ﬂmkM) mk+1M

)

)+

~o
_ (é (I IMNmkm —|—mk+1M>
o N (|r+1|\/| NmMEM) + mk+1M
for some fixed integetr (r is fixed).
Using () we obtain that for > ¢

i+1qr r+1
() A(J'M/I"M) = A (Z”l‘ljjk/l/l j:\ljwll\'\:)
A(Gm(mifl\]rl\/l —|—Jr+1|\/|))
Gm<m|+1|r|\/|+|r+1|\/|)
< s ((mi+lJrM +Jj+1M)mmkM>+mk+lM>
((mi+1IrM—|—|r+1|\/|)ﬂmkM)—1—mk+1M

A
k=0
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for some fixed integesindependent off (r is fixed). We may assunse=t. But for
i >c+tand 0< k <t we have

(MM + I M) Nm*M = m™ 1M + (mKM N JTIM)
and the similar equality with instead of]. This implies that for > c+t
(mTLIM +I7IM) Nm*M) +m M = (m*M N IFEIM) + m M

and the similar equality for.
Using the above observations afxé) we have that for > c+-t

mi+lJrM +Jr+lM
mi+1| "™ _|_|r+1|\/| )

_ (EtB (I IM N mkM) —|—mk+1M)
O\ (MM N mkM) +mktIM
— )\(Jr+1M/| r+1M>_

A(JfM/lfM):)\(

Repeating the argument we conclude thi@M /11M) is constant forj > r.

But this implies that there existssuch thatn' J/IM C 1IM for all j > r. Indeed,
if L is module of finite length, saly over a local ring, them'L = 0.

Som'JIM C IIMforalli > andj >r, hencem'JI!'M C m'JI+IM C | I+1M for
alli>landj>r. Then

m! JIM + 11+1M
(mi+1JIjM +1+1IM
which implies that ding_ ) G (N) < 1, whereN = @5 JI"M/I "1 This means

that dimN < 1=dimG;(M) — 1, and by Remark 3.6 we g&tC I{'Vl'}.

We now assume that dik > 3. ReplacingV by IXM for a suitablek, we may
assume that deptfiv) > 0.

By the theorem of Flenner and Manaresi ([10, Theorem 3.3]; see also the intro-
duction), | is a reduction of J,M). Then, for a sufficiently general elementn
I, we haveji(ly,My) = ji(ly,My) and ji(3,,My) = ji(Jp,M,) for i = 0,1, where
M = M/xM. By the induction hypothesis, we g&C I{'V‘l}. We still have to prove

M
thatJ C '{1}-

LetK = @0 I"™M/1™IM andL = @ =o(JI"™ +xM) /(1"IM + xM). Since
JC I{'V'l}, we have dink. < dimG; (M /xM) =dimM/xM = dimM — 1 (we can choose
x to be a nonzerodivisor oMl).

For technical reasons (see Proposition 2.11), we will prefer this interpretation of
the Generalized Hilbert coefficients.

Consider the exact sequence

(4.5.2) 0-U—-KSL—0

):o fori>1,j>r,

whereU is the kernel of the canonical epimorphi$¢n5> L.
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We have

CJI'MN (MM xM) 1ML (1M N XM)
T |N+1M - |N+1M

L AI'™MAxM - x(JI"™Mix)  JITM o x
TIMIMAXM - X(IMHIM G x)  IHIM X

Un

On the other hand, fax € | sufficiently general and > 0, (JI"*IM : x) = JI"M
and(1"1M : x) = 1"M.

So, forn large enoughK,,_1 = U, (isomorphism induced by the multiplication
by x), and then the exact sequence 4.5.2 implies thatLdirdimK — 1. Since
dimL < dimM — 1 we have dinK<dimM,i.e.ng{’V1}. O

We now sketch a proof of Proposition 2.7.

Proof of Proposition 2.7 Note that by 2.6 we havey(l,M) = c4(J,M), so all we
need to prove is that (1,M) = ¢;j(J,M) fori =0,... ,d — 1. We use induction on
d =dimM.

If d =0, 1, the conclusion follows immediately from 2.6. Replacidpy | XM for
a suitablek, we may assume that depth!) > 0. Indeed] is a reduction ofJ,M),
so there exists a positive integesuch thatJ"M = J"*IM. Then forj > 0,

Jikm JHM
(4.5.3) A (mi+1Jj|kM JrJj+1|k|\/|> =A (mi+1Jj+kM +Jj+1+k|\/|)’

which implies that; (J,M) = ¢;(J,1*M) fori =0,1,... ,d — 1.

Choosex € | a nonzerodivisor oM which is a superficial element f¢r,M) and
(J,M). By Proposition 2.11, we hawg(l,M) = ¢;(I,M) andc;j(J,M) = ¢;(J,M)
fori=0,...,d—1, where for a’A moduleL we denotd. = L/xL. The induction
hypothesis implies thag;(I,M) = ¢;(J,M) fori =0,...,d —1. O

4.6. Example.Let A =K[x,y, 2z be the ring of polynomials in three variables over
the fieldk, and letm = (x,y, z) be the maximal homogeneous ideal. As in the local
case, one can define the generalized Hilbert coefficients and the first coefficient
ideal associated to an ideal.

Let | = (x°,y3,xyZ) and letd = (x°,y%,xyZ,x*?). Note that both ideals have
height 2 and analytic spread 3. A computation with Macaulay 2 [11] shows that
jo(1) = jo(9) =30, ja(1) = j1(J) = (8,-32), j(1) = (0,—1,5), j»(J) = (0,—1,3).

In fact, using the method described in [7, Proposition 3.2], one can show that
J =11y, hence the equality of the first two generalized Hilbert coefficients.

ACKNOWLEDGEMENT. The author thanks Craig Huneke for valuable discussions
concerning the material of this paper.
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