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Abstract. Let (A,m) be an unmixed local ring containing a field. If J is an m-primary

ideal with Hilbert-Samuel multiplicity eA(J), a recent result of Hickel shows that every

element in the integral closure J satisfies an equation of integral dependence over J of

degree at most eA(J). We extend this result to equimultiple ideals J by showing that the

degree of such an equation of integral dependence is at most cq(J), where cq(J) is one of

the elements of the so-called multiplicity sequence introduced by Achilles and Manaresi. As

a consequence, if the characteristic of the field contained in A is zero, it follows that the

reduction number of an equimultiple ideal J with respect to any minimal reduction is at

most cq(J)− 1.

1. Introduction

Let (A,m) be local noetherian ring and J a proper ideal of A. An element x ∈ A is said

to be integral over J if it satisfies an equation of integral dependence

xn + a1x
n−1 + · · ·+ an = 0

with coefficients ai ∈ J i. Equivalently, (J + xA)n = J(J + xA)n−1 for some positive integer

n. The elements that are integral over J form an ideal which we denote J .

If J is an m-primary ideal in an unmixed local ring A that contains a field, a recent

result of Hickel [12, Theorem 1.1] shows that every element of J satisfies an equation of

integral dependence over J of degree at most eA(J), the Hilbert-Samuel multiplicity of J .

The technique used by Hickel was introduced by Scheja in [20] and reduces the problem to

the hypersurface case by using the fact that a complete local ring containing a field is a finite

extension of a formal power series over a coefficient field. The technique was previously used

to provide much simplified proofs for the theorem of Rees that states that two m-primary

ideals J ⊆ I form a reduction (equivalently, I ⊆ J) if and only if I and J have the same
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Hilbert-Samuel multiplicity (see [20] and [13, Discussion 11.3.3]). It was also used in [16]

to give a simplified proof in the case when the ring contains a field for the fact that an

unmixed local ring of multiplicity one must be regular. It should be noted that the last two

results that we just mentioned were already known to be true without assuming that the

ring contains a field, but the proofs were much more involved. In contrast to this, as far as

this author knows, Hickel’s result is new and there are no known proofs for the case when

the ring does not contain a field.

In this paper we consider the more general case when the ideal J is equimultiple, i.e. J

satisfies the condition `(J) = ht J , where `(J) is the analytic spread of J and ht J is the

height of J . Because of their geometric interpretations, these ideals have been extensively

studied. We refer the reader to the book [11] by Herrmann, Ikeda, and Orbanz for a detailed

account of equimultiple ideals from an algebraic perspective.

If A is a local unmixed ring that contains a field, we show in Theorem 3.2 that an element

in the integral closure of an equimultiple ideal J satisfies an equation of integral dependence

of degree at most cq(J), which is one of the numerical invariants in the multiplicity sequence

introduced by Achilles and Manaresi (see 2.5). We note here that cq(J) agrees with the

Hilbert-Samuel multiplicity eA(J) when J is m-primary. The proof relies again on Scheja’s

technique and, up to a point, follows Hickel’s argument in the m-primary case. The core and

technical part of the proof, which is an argument needed only in the case when the ideal J is

not m-primary, is extracted conveniently in Lemma 3.1. As an immediate consequence, if the

characteristic of the field contained in A is zero, Corollary 3.4 shows that rK(J) ≤ cq(J)−1,

where rK(J) is the reduction number of J with respect to any minimal reduction K.

Bounds on the reduction number of an ideal J play an important role in the study of the

Cohen-Macaulay property of the Rees algebra and the associated graded ring of J . Results

that give an upper bound on the reduction number of an ideal were previously known in

the case of m-primary ideals in Cohen-Macaulay rings. If d = dimA, Sally [19, 2.2.] first

proved that r(m) ≤ d! eA(m)−1. This was later improved by Vasconcelos [21, 6.12, 6.16] who

showed that r(J) ≤ d eA(J) − 2d + 1 for every m-primary ideal J . Sharper bounds for the

reduction number were also known under stronger assumptions that involved various graded

algebras associated with the ideal. Among those, we note the bound r(J) ≤ d− 1 obtained
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by Goto and Shimoda ([9]) in the case when the Rees algebra of J is Cohen-Macaulay.

We refer the reader to [8, 18, 23] for other bounds of this type. For equimultiple ideals J ,

Grothe, Herrmann and Orbanz [10] generalized the Goto-Shimoda bound and showed that if

the Rees algebra of J is Cohen-Macaulay, then r(J) ≤ ht J − 1. However, without assuming

the Cohen-Macaulayness of the Rees algebra, it should be noted that for d > 1 there are

examples that show that one cannot obtain bounds for r(J) that only depend on the ring A

even when A is a regular local ring.

2. Background

Throughout this paper all rings are commutative, noetherian, and have an identity. If

(A,m) is a local noetherian ring with maximal ideal m, we say that A is formally equidimen-

sional if all the minimal prime ideals of the completion Â have the same dimension. We also

say that A is unmixed if all the associated prime ideals of the completion Â have the same

dimension. Hence A is unmixed if and only if A is formally equidimensional and Â has no

embedded prime ideals.

In this section we present several definitions and results that will be needed in the paper.

For terminology not otherwise explained, we refer the reader to [13].

2.1 (Reductions, analytic spread, and equimultiple ideals). If I is a proper ideal in the local

ring A and F =
⊕

n≥0 I
n/mIn is the fiber cone of I, the analytic spread of I is defined by

`(I) = dimF . One has the inequalities

(2.1.1) ht I ≤ alt I ≤ `(I) ≤ dimA,

where ht I is the height of the ideal I and alt I = max{ht p | p ∈ Min(A/I)}. An ideal with

`(I) = ht I is called an equimultiple ideal.

If J ⊆ I, we say that J is a reduction of I if JIn = In+1 for some non-negative integer

n. The smallest n with this property, denoted rJ(I), is called the reduction number of

I with respect to J . The reductions of I that are minimal with respect to inclusion are

called minimal reductions and, if the residue field A/m is infinite, it is known that all the

minimal reductions of I are minimally generated by `(I) elements. The reduction number
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r(I) is defined to be the smallest reduction number of I with respect to a minimal reduction.

Similarly, the big reduction number br(I) is the largest reduction number of I with respect

to a minimal reduction. We note that br(I) is always finite; see for example [22, Section 2].

2.2 (The Hilbert-Samuel multiplicity). If (A,m) is a local noetherian ring, I is an m-primary

ideal, and M is a finitely generated A-module of dimension d = dimM , the multiplicity

eA(I,M) is defined to be the normalized leading coefficient of the Hilbert function

λA(M/InM) =
eA(I,M)

d!
nd + lower degree terms (n� 0).

We note that some texts (e.g. [13]) define eA(I,M) by using d = dimA, in which case

the multiplicity of M is non-zero if and only if M and A have the same dimension. When

M = A we simply write eA(I) instead of eA(I, A). If I = m, we also write eA(M) when we

mean eA(m,M).

2.3 (The associativity formula; (24.7) in [15]). Let (A,m) be a local noetherian ring and

x1, . . . , xd a system of parameters (d = dimA). Let t be a positive integer with 1 ≤ t ≤ d.

If we set

Λ = {p | p ∈ SpecA, p ⊇ (x1, . . . , xt), ht p = t, dimA/p = d− t},

then

eA(x1, . . . , xd) =
∑
p∈Λ

eA((xt+1, . . . , xd), A/p) eAp((x1, . . . , xt)Ap).

2.4 (Multiplicity and rank). If (A,m) ↪→ (B, n) is a finite local extension of integral domains

and I is an m-primary ideal, then

rankAB · eA(I, A) = eA(I, B) = eB(IB,B) · [B/n : A/m].

This is a particular case of [13, 11.2.6 and 11.2.7].

2.5 (The multiplicity sequence). Let (A,m) be a local noetherian ring of dimension d and I

an ideal in A. If I is not necessarily m-primary, many papers in the literature deal with the

problem of generalizing the classical multiplicity eA(I). Most relevant to our discussion is

the introduction of the so-called generalized multiplicity sequence c0(I), . . . , cd(I) by Achilles

and Manaresi [2]. In brief, if k = A/m consider the k-algebra Gm(GI(A)) =
⊕

i,j≥0(miIj +
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Ij+1)/(mi+1Ij +Ij+1), let h(i, j) = dimk(m
iIj +Ij+1)/(mi+1Ij +Ij+1) be its bigraded Hilbert

function, and let H(i, j) :=
∑i

u=0

∑j
v=0 h(u, v) be the double sum transform of h(i, j). For

i, j � 0 the function H(i, j) becomes a polynomial function of degree d

p(i, j) =
∑
k,l≥0
k+l≤d

ak,l

(
i

k

)(
j

l

)
.

The multiplicity sequence of Achilles and Manaresi is defined by ck(I) := ak,d−k for k =

0, . . . , d. It is known that the first element c0(I) coincides with the j-multiplicity j(I)

introduced earlier by the same authors in [1]. Moreover, if I is m-primary, then c0(I) = eA(I)

and ck(I) = 0 for all k > 0. We refer the reader to [2] and the expository paper [3] for a

detailed account of these coefficients and their properties. We also note that many results

in the literature deal with the problem of using these invariants to describe numerically

an arbitrary ideal I the same way the Hilbert-Samuel multiplicity characterizes or gives

information about an m-primary ideal.

If the ideal I is equimultiple, which is the case of interest in our paper, and q := dimA/I,

then ci(I) = 0 for i 6= q and

(2.5.1) cq(I) =
∑
p∈Λ

eA(A/p) · eAp(IAp),

where Λ = {p ∈ SpecA | p ⊇ I, dimA/p = dimA/I, dimA/p + ht p = dimA} (see [2,

Proposition 2.3]). Note that Λ is always non-void (and hence cq(I) > 0) if A is formally

equidimensional.

The coefficient cq(I) also satisfies the so-called linearity formula:

(2.5.2) cq(I) =
∑
p

cq(I(A/p))λ(Ap),

where the sum runs over all the prime ideals p with dimA/p = dimA. If I is m-primary,

this is the linearity formula for the Hilbert-Samuel multiplicity. The general case can be

obtained by applying (2.5.1) in conjunction with the linearity formula for m-primary ideals.

2.6 (Multiplicities and reductions). Let (A,m) be a formally equidimensional local ring and

I ⊆ J proper ideals. If I is m-primary, a well known result of Rees shows that I ⊆ J is a

reduction (equivalently, J ⊆ I) if and only if eA(I) = eA(J). If I and J are not necessarily
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m-primary, but I is equimultiple and
√
I =
√
J , a criterion proved by Böger [4] shows that

I ⊆ J is a reduction if and only if eAp(IAp) = eAp(JAp) for all the prime ideals p minimal

over I. In view of (2.5.1), this criterion can be restated as follows: if I equimultiple and

I ⊆ J ⊆
√
I, then I ⊆ J is a reduction if and only if cq(I) = cq(J). In many ways, the

coefficient cq(I) of an equimultiple ideal I plays the same role as the classical Hilbert-Samuel

multiplicity of an m-primary ideal. See also Proposition 2.7 below.

For arbitrary ideals I ⊆ J ⊆
√
I, it is also known that if I ⊆ J is a reduction, then

ci(I) = ci(J) for all i = 0, . . . , d [6, 2.7]. As far as this author knows, there is no proof in the

literature for the converse of this result in an arbitrary formally equidimensional local ring.

If I is an m-primary ideal in an unmixed local ring (A,m), a classical result of Nagata ([15,

40.6]) shows that eA(I) = 1 if and only if I = m and A is a regular local ring. More generally,

if I is an equimultiple ideal, the following result shows that a similar characterization of

regular local rings can be given by using the invariant cq(I).

Proposition 2.7. Let (A,m) be an unmixed local ring and I an equimultiple ideal of A of

dimension q = dimA/I. Then cq(I) = 1 if and only if A is a regular local ring and I is (a

prime ideal) generated by a part of a regular system of parameters.

Proof. If A is a regular local ring, x1, . . . , xd is a regular system of parameters, and p =

(x1, . . . , xl), then A/p and Ap are regular local rings and from (2.5.1) we obtain

cq(p) = eA(A/p) eAp(pAp) = 1.

We now assume that cq(I) = 1. By passing to the completion Â, we may assume that

A is a complete equidimensional local ring with Ass(A) = Min(A). Since I is equimultiple,

all the minimal prime ideals over I have the same height (see 2.1.1). Then we have 1 =

cq(I) =
∑

p e(A/p) eAp(Ip), where the sum runs over all the minimal primes p over I such

that dimA/p = dimA/I, so there is a unique minimal prime ideal p over I and eA(A/p) =

eAp(Ip) = 1. This implies that A/p is a regular ring, IAp = pAp, and Ap is a regular

local ring. On the other hand, since I is equimultiple, I has no embedded prime ideals [17,

2.12], so Ass(A/I) = {p}. But IAp = pAp, so we must have I = p. From this we obtain

`(p) = `(I) = ht I = ht p, so p is also an equimultiple ideal. Now let x1, . . . , xl be a minimal
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reduction of I (hence a minimal reduction of p, too) and let xl+1, . . . , xd be a regular system

of parameters of A/p. Then

eA(m, A) = eA(p + (xl+1, . . . , xd), A) = eA((x1, . . . , xl, xl+1, . . . , xd), A)

= eA((xl+1, . . . , xd), A/p) eAp((x1, . . . , xl)Ap) (cf. 2.3)

= 1 · eAp(IAp) = 1,

so A is a regular local ring. As A/p is also a regular local ring, it follows that p is generated

by elements that are part of a regular system of parameters of A. Finally, since I is a

reduction of p, we must have I = p, finishing the proof. �

3. The degree of an equation of integral dependence

Some technical aspects in the proof of the main result (Theorem 3.2), which only occur

for ideals that are not m-primary, are collected in the following Lemma.

Lemma 3.1. Let k be a field, T = k[[X1, . . . , Xl, Xl+1, . . . , Xd, Y ]] and let

B = T/(f) = k[[x1, . . . , xl, xl+1, . . . , xd, y]],

where

f = Y r + a1(X1, . . . , Xd)Y
r−1 + · · ·+ ar(X1, . . . , Xd)

with r ≥ 1 and ai(X1, . . . , Xd) ∈ k[[X1, . . . , Xd]] for all i ∈ {1, . . . , r}. Let P = (X1, . . . , Xl, Y )T

and p = PB = (x1, . . . , xl, y)B. Assume that d ≥ l + 1 and ht p = `(p) = l ≥ 1. Then the

following hold:

(a) p is a prime ideal;

(b) ar(0, . . . , 0, Xl+1, . . . , Xd) = 0 and f ∈ (X1, . . . , Xl, Y )T ;

(c) B/p ∼= k[[Xl+1, . . . , Xd]];

(d) Ass(B/pn) = {p} for all n ≥ 1;

(e) xl+1, . . . , xd is a regular sequence on B/pn for all n ≥ 1;

(f) (xl+1, . . . , xd) ∩ pn = (xl+1, . . . , xd)p
n for all n ≥ 1.
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Proof. We have

B/p ∼= k[[X1, . . . , Xd, Y ]]/(X1, . . . , Xl, Y, f)

∼= k[[X1, . . . , Xd, Y ]]/(X1, . . . , Xl, Y, ar(0, . . . , 0, Xl+1, . . . , Xd))

∼= k[[Xl+1, . . . , Xd]]/(ar(0, . . . , 0, Xl+1, . . . , Xd)).

On the other hand, since B is formally equidimensional, we have dimB/p = dimB −

ht p = d − l, and hence, by the above isomorphism and a dimension comparison, we have

ar(0, . . . , 0, Xl+1, . . . , Xd) = 0. This also shows that f ∈ (X1, . . . , Xl, Y )T , proving (a), (b)

and (c).

For part (d), if p(n) = pnBp ∩ B denotes the n-th symbolic power of p, for each n ≥ 1

we need to prove that p(n) = pn. By using the S2-ification of a Rees algebra, this can be

obtained as a consequence of [7, Lemma 3.10]. For the sake of completeness and of avoiding

the introduction of the concepts needed to state and prove [7, Lemma 3.10], we present here

a self-contained argument. Assume that p(n) * pn and let q ∈ Spec(B) with q ⊇ p such

that p(n)Bq * pnBq. Moreover, choose q minimal with this property. Note that we must

have q 6= p. To simplify the notation, set C = Bq, which is a local ring with maximal ideal

m := qC. Since p is equimultiple, pC is also an equimultiple prime ideal of C. Moreover

l = ht p = `(pC) < ht q = dimC. By the minimality of q, the C-module p(n)C/pnC has

finite length, so there exists s ≥ 1 such that msp(n)C ⊆ pnC. Now let z ∈ p(n)C \ pnC

and consider R =
⊕

k∈Z(pkC)tk ⊆ C[t, t−1], the (extended) Rees algebra of pC. With this

notation we have ztn ∈ C[t, t−1] and (ms, t−n)ztn ⊆ R .

We also have

dimR− 1 = dimC > `(pC) = dimR/(m, t−1)R,

so ht(m, t−1)R ≥ 2. On the other hand, t−1 is a non-zero-divisor on R and R/t−1R has

no embedded prime ideals. Indeed, R/t−1R ∼=
⊕

k≥0 p
kC/pk+1C is a localization of the

associated graded ring Gp(B) =
⊕

k≥0 p
k/pk+1. Also, as B = T/(f), Gp(B) is isomorphic

to GP (T )/(f ∗), where f ∗ is the initial form of f in GP (T ) =
⊕

k≥0 P
k/P k+1, which is a

polynomial ring over T/P ∼= k[[Xl+1, . . . , Xd]]. Hence R/t−1R has no embedded prime

ideals, which implies that the ideal (m, t−1)R contains a regular sequence in R of length
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two. As (ms, t−n)R and (m, t−1)R have the same radical, the ideal (ms, t−n)R also contains

a regular sequence in R of length two. From this and (ms, t−n)ztn ⊆ R it follows that

ztn ∈ R, contradicting z /∈ pnC. This finishes the proof that pn = p(n) for all n ≥ 1.

To prove part (e) we proceed by induction on d (d ≥ l+1). If d = l+1, by (c) we know that

B/p ∼= k[[Xl+1]], so xl+1 /∈ p. But p is the only associated prime of B/pn (by (d)), so xl+1 is a

non-zero-divisor on B/pn. Suppose that part (e) is true for d variables; we want to prove it for

B = k[[X1, . . . , Xd+1, Y ]]/(f) where f = Y r+a1(X1, . . . , Xd+1)Y r−1 + · · ·+ar(X1, . . . , Xd+1).

As above, B/p ∼= k[[Xl+1, . . . , Xd+1]], so xl+1 is a non-zero-divisor on B/pn.

Let

B′ : = B/xl+1B

∼= k[[X1, . . . , Xl, Xl+2, . . . , Xd+1, Y ]]/(f(X1, . . . , Xl, 0, Xl+2, . . . , Xd+1)).

First we prove that p′ := pB′ = (x1, . . . , xl, y)B′ is an equimultiple ideal of B′ of height l.

Note that since `(p) = l we must have `(p′) ≤ l. We also have

B′/p′ ∼= B/(x1, . . . , xl, xl+1, y) ∼=
(B/p)

xl+1(B/p)
,

which implies that dimB′/p′ = dimB/p − 1 = dimB − ht p − 1 = d − l. Then, since B′ is

formally equidimensional, ht p′ = dimB′ − dimB′/p′ = d − (d − l) = l. Therefore we have

l = ht p′ ≤ `(p′) ≤ l, showing that p′ is an equimultiple ideal of height l. By the induction

hypothesis we obtain that xl+2, . . . , xd+1 is a regular sequence on B′/(p′)n for all n ≥ 1.

However,

B′/(p′)n ∼=
B/pn

xl+1(B/pn)

and xl+1 is a non-zero-divisor on B/pn. Therefore xl+1, xl+2, . . . , xd+1 is a regular sequence

on B/pn for all n.

Part (f) is a direct consequence of (e) and the following well known general statement:

If I is an ideal in a noetherian ring R and a1, . . . , at ∈ R is a regular sequence on R/I,

then (a1, . . . , at) ∩ I = (a1, . . . , at)I. Indeed, if J = (a1, . . . , at), then (I ∩ J)/IJ =

TorR1 (R/I,R/J) = 0 (see [5, 1.1.4]). �
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We are now ready to prove the generalization of Hickel’s result [12, Theorem 1.1] for

equimultiple ideals.

Theorem 3.2. Let (R,m) be an unmixed local ring containing a field and J an equimultiple

ideal of R. Let q = q(J) = dimR/J . If y ∈ R is an element integral over J , then y satisfies

an equation of integral dependence yr + a1y
r−1 + · · ·+ ar = 0 with ai ∈ J i and r ≤ cq(J).

Proof. Note that the conclusion is equivalent to proving that J(J + yR)r−1 = (J + yR)r for

some r ≤ cq(J). By Hickel’s work, the theorem is proved when J is m-primary, therefore we

may assume that J is not m-primary.

By following a procedure that is standard in multiplicity theory (see also [13, Discussion

11.3.3], [12, 1.1]), we reduce the problem to the case when R is a complete domain with

infinite residue field. We begin by noting that we may assume that the residue field R/m

is infinite. This is accomplished, if need be, by passing to the faithfully flat extension

R′ = R[X]m[X]. If J ′ = JR′, then q(J) = q(J ′) and cq(J) = cq(J
′). Moreover, J(J+yR)r−1 =

(J + yR)r if and only if J ′(J ′ + yR′)r−1 = (J ′ + yR′)r.

We may also assume that R is complete and unmixed. This is done by passing to R̂, a

faithfully flat extension of R. Further, we may also assume that R is an integral domain.

Indeed, by (2.5.2) we know that

cq(J) =
∑

p∈Min(R)

cq(J(R/p))λ(Rp).

For each p ∈ Min(R), if y satisfies an equation of integral dependence over J(R/p) of

degree rp = cq(J(R/p)), then there exist ai,p ∈ J i such that

fp := yrp + a1,py
r−1 + · · ·+ arp,p ∈ p.

Let f :=
∏

p∈Min(R) f
λ(Rp)
p and note that

f ∈
∏

p∈Min(R)

pλ(Rp) ⊆
⋂

p∈Min(R)

pλ(Rp) = (0),

where the last equality follows by localizing at each p ∈ Ass(R) = Min(R). The equality

f = 0 shows that y satisfies an equation of integral dependence over J of degree r = cq(J).
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Let K := (x1, . . . , xl) be a minimal reduction of J , where l = `(J) = ht J . Then K is

an equimultiple ideal of height l and cq(K) = cq(I) (see 2.5). Since any equation of integral

dependence of y over K is also an equation of integral dependence over J , without loss of

generality we may assume that J = (x1, . . . , xl). Keeping in mind that dimR/J = d − l,

let xl+1, . . . , xd ∈ R be such that (xl+1, . . . , xd)(R/J) is a minimal reduction of the maximal

ideal m/J of R/J . In particular, this implies that x1, . . . , xd is a system of parameters of R.

The next step is to reduce the problem to the hypersurface case by constructing a formal

power series ring A over a coefficient field of R such that A ⊆ R is finite. This is, again,

more or less standard. It is the technique introduced by Scheja and also employed by Hickel.

However, since our ideal J is not m-primary, we need to do it a bit more carefully by

choosing a special set of parameters as above. More precisely, since R is a complete domain

that contains a field, the ring R has a coefficient field k. Define φ : S = k[[X1, . . . , Xd]]→ R

by φ(f) = f(x1, . . . , xd). Considering R as an S-module, since R/(x1, . . . , xd)R is a finitely

generated module over S/(X1, . . . , Xd) = k, by complete Nakayama’s lemma [14, Theorem

8.4] it follows that R is a finitely generated S-module. Moreover, S/Kerφ ⊆ R is a finite

extension, hence dimS/Kerφ = dimR = d, which implies that Kerφ = 0, and hence φ

is injective. Therefore have a finite extension A := k[[x1, . . . , xd]] ⊆ R, where A is an

isomorphic copy of the formal power series ring S = k[[X1, . . . , Xd]].

Let y ∈ J and consider the finite extensions

A = k[[x1, . . . , xl, xl+1, . . . , xd]] ⊆ B := A[y] ⊆ R.

Since y is integral over the normal domain A, the ring B = A[y] = A[[y]] is isomorphic

to A[Y ]/P , where P is a prime ideal containing all the equations of integral dependence of

y over A, each of them of the form ys + a1(x1, . . . , xd)y
s−1 + · · · + as(x1, . . . , xd) = 0 with

ai(x1, . . . , xd) ∈ A. Note that A[Y ]/P = A[[Y ]]/PA[[Y ]] and since PA[[Y ]] is a non-zero

prime ideal of height one in the unique factorization domain T := A[[Y ]], it follows that

PA[[Y ]] = (f) is a principal ideal with f = Y r +a1(x1, . . . , xd)Y
r−1 + · · ·+ar(x1, . . . , xd) for

some r ≥ 1 and ai(x1, . . . , xd) ∈ A.

Since y is integral over the ideal (x1, . . . , xl)R and B ⊆ R is a finite extension, y is also

integral over (x1, . . . , xl)B ([13, 1.6.1]). In particular, y is integral over (x1, . . . , xd)B, so
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eB((x1, . . . , xd), B) = eB((x1, . . . , xd, y), B). Using (2.4) and the fact that A and B have the

same residue field, we obtain

(3.2.1) eA((x1, . . . , xd), A) · rankAB = eB((x1, . . . , xd), B) = eB((x1, . . . , xd, y), B).

On the other hand, B ∼= T/(f), so eB((x1, . . . , xd, y), B) = ordT (f), with ordT (f) = max{n |

f ∈ (X1, . . . , Xd, Y )nT}. Since eA((x1, . . . , xd), A) = 1 and rankAB = r, it follows that

r = ordT (f). This equality shows that we must have ai(x1, . . . , xd) ∈ (x1, . . . , xd)
iA for all

i = 1, . . . , r. If we set I := (x1, . . . , xl, y)B, the equality f(y) = 0 shows, in particular, that

(3.2.2) Ir ⊆ Ir−1(x1, . . . , xl)B + (xl+1, . . . , xd)B.

At this point we note that I is an equimultiple ideal of B of height l. This follows from the

fact that IR is equimultiple and B ⊆ R is a finite extension of formally equidimensional local

rings. Indeed, let QB ⊇ I be a prime ideal of B with htQB = ht I. Let QR be a prime ideal of

R such that QR∩B = QB. Then ht I = htQB = dimB−dimB/QB = dimR−dimR/QR =

htQR ≥ ht IR = l. On the other hand, since y is integral over (x1, . . . , xl)B we have `(I) ≤ l.

As `(I) ≥ ht I we must have l = `(I) = ht I. We can now apply Lemma 3.1 for p = I and

conclude that Ir ∩ (xl+1, . . . , xd)B = Ir(xl+1, . . . , xd)B. On the other hand, using (3.2.2) we

have

Ir ⊆ Ir−1(x1, . . . , xl)B + Ir ∩ (xl+1, . . . , xd)B

= Ir−1(x1, . . . , xl)B + Ir(xl+1, . . . , xd)B

⊆ Ir−1(x1, . . . , xl)B + mBI
r

where mB is the maximal ideal of B. This shows that Ir = Ir−1(x1, . . . , xl)B, i.e. y satisfies

an equation of integral dependence of degree r over the ideal (x1, . . . , xl)B, and hence over

J = (x1, . . . , xl)R.

It remains to prove that r ≤ cq(J). First observe that since R and B have the same residue

field, we have eB((x1, . . . , xd), B) · rankB R = eR((x1, . . . , xd), R). As r = eB((x1, . . . , xd), B)

(see 3.2.1), it follows that r ≤ eR((x1, . . . , xd), R).

We next prove that eR((x1, . . . , xd), R) = cq(J), which will finish the proof. Consider-

ing the system of parameters x1, . . . , xd of R, by applying (2.3) and keeping in mind that
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R/(xl+1, . . . , xd) is equidimensional ([13, B.4.4]), we obtain

eR((x1, . . . , xd), R) =
∑
p∈Λ

eR((xl+1, . . . , xd), R/p)) eRp((x1, . . . , xl)Rp),

where Λ consists of all the minimal prime ideals p over J = (x1, . . . , xl). However, recall

that for our chosen system of parameters, the elements xl+1, . . . , xd generate a (minimal)

reduction of the maximal ideal of R/(x1, . . . , xl), so

eR((xl+1, . . . , xd), R/p) = eR(m, R/p) = eR(R/p) for each p ∈ Λ.

On the other hand, from (2.5.1)

cq(J) =
∑
p∈Λ

eR(R/p) eRp((x1, . . . , xl)Rp),

which implies that cq(J) = eR((x1, . . . , xd), R), finishing the proof. �

Remark 3.3. In the case of an m-primary ideal J , each element of J satisfies an equation

of integral dependence over J of degree eA(J). At the same time, as proved by Rees, the

Hilbert-Samuel multiplicity eA(J) gives a numerical characterization of the integral closure

of J . From this point of view, when J is just equimultiple, it is perhaps not surprising that

cq(J) gives an upper bound for the degree of an equation of integral dependence because, as

noted in (2.6), cq(J) characterizes the integral closure of equimultiple ideals the same way

the classical Hilbert-Samuel multiplicity does it for m-primary ideals.

If the characteristic of the field contained in R is zero, the following corollary shows that

the big reduction number of an equimultiple ideal is at most cq(J)− 1.

Corollary 3.4. Let (R,m) be an unmixed local ring containing a field of characteristic zero

and J an equimultiple ideal of R. If K is a minimal reduction of J , then rK(J) ≤ cq(J)− 1.

Proof. We first observe that for any ideal I in a noetherian ring R that contains a field of

characteristic zero and each n ≥ 1, the ideal In is generated by {xn | x ∈ I}. In order

to see this, choose a finite set of generators for I = (a1, . . . , at). In the polynomial ring

R[X1, . . . , Xn] we have the identity

n!X1 · · ·Xn =
∑

(−1)n−s(Xi1 + · · ·+Xis)
n,
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where the sum runs over all s ∈ {1, . . . , n} and all (i1, . . . , is) with 1 ≤ i1 < . . . < is ≤ n.

Since n! is invertible in R, this implies that aα1
1 · · · aαt

t ∈ 〈xn | x ∈ I〉 for every α1, . . . , αt ≥ 0

with α1 + · · ·+ αt = n, and hence In = 〈xn | x ∈ I〉.

Set r := cq(J) and let x ∈ J arbitrary. Since the ideal K is equimultiple, by Theorem 3.2

the element x satisfies an equation of integral dependence over K of degree at most r =

cq(K) = cq(J). It follows that xr ∈ K(K + xR)r−1 ⊆ KJr−1 for every x ∈ J and thus

Jr = KJr−1. �

Remark 3.5. Under the assumptions of the previous corollary, if J is an m-primary ideal and

K is a minimal reduction of J , then cq(J) = eR(J) and rK(J) ≤ eR(J)− 1. Since the ideal

J is m-primary, Theorem 3.2 is not needed. The inequality follows directly from Hickel’s

theorem and the argument used in Corollary 3.4.
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