
Chapter 3

Erdős–Rényi random graphs
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3.1 Definitions

Fix n, consider the set V = {1, 2, . . . , n} =: [n], and put N :=
(

n
2

)

be the number of edges on the full graph
Kn, the edges are {e1, e2, . . . , eN}. Fix also p ∈ [0, 1] and choose edges according to Bernoulli’s trials:
an edge ei is picked with probability p independently of occurrences of other edges. What we obtain
as a result of this procedure is usually called the Erdős–Rényi random graph and will be denoted as
G(n, p). The words “random graph” is a misnomer, since actually we are dealing with a probability space

G(n, p) = (Ω,F ,P), where Ω is the sample space of all possible graphs on n vertices, |Ω| = 2N = 2(
n
2), P

is the probability measure that for each graph G ∈ Ω assigns probability

P(G) = pm(1− p)N−m,

where m is the number of edges in G, and F are the events, which are natural to interpret in these
settings as graph properties. For instance, if A is a property that graph is connected then

P(A) =
∑

G∈A

P(G),

where the summation is through all the connected graphs in G(n, p).
Another convention is that while talking about some characteristics of a random graph, it is usually

meant the average across all ensemble of outcomes. For example, while talking about the clustering
coefficient of G(n, p), it is usually meant

C =
E(#{closed paths of length 2})

E(#{paths of length 2}) ,

where #{closed paths of length 2} and #{paths of length 2} are random variables defined on G(n, p).
An alternative approach is to fix n and m at the very beginning, where n is the order of the graph,

and m is the size of the graph, and pick any of possible graphs on n labeled vertices with exactly m edges
with equal probabilities. We thus obtain G(n,m) = (Ω,F ,P), where now |Ω| =

(

N
m

)

, and

P(G) =
1
(

N
m

) .

This second approach was used initially by Erdős and Rényi, but the random graph G(n, p) is somewhat
more amenable to analytical investigation due to the independence of edges in the graph. This is not true,
obviously, for G(n,m). Actually, there is a very close connection between the two, and the properties of
G(n,m) and G(n, p) are very similar in the case m =

(

n
2

)

p.
Here are some simple properties of G(n, p):

• The mean number of edges in G(n, p) is
(

n
2

)

p. We can arrive to this results by noting that the
distribution of the number of edges X in G(n, p) is binomial with parameters N and p:

P(X = k) =

(

N

k

)

pk(1− p)N−k,

and recalling the formula for the expectation of the binomial random variable. A more straightfor-
ward approach is to consider the event A = {e ∈ G}, i.e., edge e belongs to the graph G ∈ G(n, p).
Naturally, the number of edges in G is given by

X =
∑

e∈Kn

1{e∈G}.

Now apply expectations to the both sides, use the linearity of expectation, the fact that E1A = P(A)
and P({e ∈ G}) = p, and that |E(Kn)| =

(

n
2

)

to get the same conclusion.
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• The degree distribution for any vertex in G(n, p) is binomial with parameters n − 1 and p. I.e., if
Di is the random variable denoting the degree of the vertex i, then

P(Di = k) =

(

n− 1

k

)

pk(1− p)k−1,

since each vertex can be connected to n−1 other vertices. Note that for two different vertices i and
j the random variables Di and Dj are not exactly independent (e.g., if Di = n− 1 then obviously
Dj 6= 0), however, for large enough n, they are almost independent and we can assume that the
degree distribution of the random graph G(n, p) approaching the binomial distribution. Since the
binomial distribution can be approximated by the Poisson distribution in the case np → λ, so we
set p = λ

n and state the final result that the degree distribution of the Erdős–Rényi random graph
is Poisson with parameter λ:

P(X = k) =
λk

k!
e−k.

That is why G(n, p) is sometimes called Poisson random graph.

• The clustering coefficient of G(n, p) can be formally calculated as

C =
E(#{closed paths of length 2})

E(#{paths of length 2}) =

(

n
3

)

p3 · 6
(

n
3

)

p2 · 3 · 2 = p,

where
(

n
3

)

is the number of triples in n vertices. However, even without this formal derivation, recall
that the clustering coefficient describes how many triangles in the network. In G(n, p) model this is
equivalent to the fact how often the path of length 2 is closed, and this is exactly p, the probability
of having edge between two vertices. Note that if we consider p = λ

n and let n→ ∞, then C → 0.

Problem 3.1. What is the mean number of squares in G(n, p)? You probably should start solving this
problem by answering the question: How many different necklaces can be made out of i stones.

Our random graphs are considered as models of real-world complex networks, which are usually
growing. Hence it is natural to assume that n→ ∞. In several cases we already suggested the assumption
that p should depend on n and approach zero as n grows. Here is one more reason for this: The growing
sequence of random graphs G(n, p) for fixed p is not particularly interesting.

Problem 3.2. Prove that for constant p G(n, p) is connected whp.

Theorem 3.1. If p fixed G(n, p) has diameter 2 whp.

Proof. Consider the random variable Xn which is the number of vertex pairs in the graph G ∈ G(n, p)
on n vertices with no common neighbors. To prove the theorem, we have to show that

P(Xn = 0) → 1, n→ ∞.

Or, switching to the complementary event,

P(Xn ≥ 1) → 0, n→ ∞.

We have
P(Xn ≥ 1) ≤ EXn by Markov’s inequality.

Now consider
Xn =

∑

u,v∈V

1{u, v have no common neighbor},

apply the expectation

EXn =
∑

u,v∈V

P({u, v have no common neighbor}) =
(

n

2

)

(1− p2)n−2,

which approaches zero as n→ ∞. �

34



3.2 Triangles in Erdős–Rényi random graphs

Before turning to the big questions about the Erdős–Rényi random graphs, let us consider a toy example,
which, however shows the essence of what is usually happening in these random graphs.

Denote T3,n the random variable on the space G(n, p), which is equal to the number of triangles in
a random graph. For example, T3,n(Kn) =

(

n
3

)

, and for any graph G with only two edges T3,n(G) = 0.
First I will establish the conditions when there are no triangles whp. I will use the same method that
I used implicitly in proving Theorem 3.1, which is called the first moment method, and which can be
formally formulated as follows.

Theorem 3.2 (First moment method). Let Xn ≥ 0 be an integer valued random variable. If EXn → 0
then Xn = 0 whp as n→ ∞.

Proof. By Markov’s inequality P(X ≥ 1) ≤ EX , hence the theorem. �

Theorem 3.3. Let α : N −→ R be a function such that α(n) → 0 as n → ∞; let p(n) = α(n)
n for each

n ∈ N. Then T3,n = 0 whp.

Proof. The goal is to show that
P(T3,n = 0) → 1,

as n→ ∞. This is the same as P(T3,n ≥ 1) → 0. According to Markov’s inequality

P(T3,n ≥ 1) ≤ E(T3,n).

Let us estimate E(T3,n). For each fixed n the random variable T3,n can be represented as

T3,n = 1τ1 + . . .+ 1τk , k =

(

n

3

)

,

where τi is the event that the ith triple of vertices from the set of all vertices of G(n, p) forms a triangle.
Here we assume that all possible triples are ordered and labeled. Using the linearity of the expectation

E(T3,n) = E1τ1 + . . .+ E1τk = P(τ1) + . . .+ P(τk) =

(

n

3

)

p3,

since P(τi) = p3 in the Erdős–Rényi random graphs G(n, p).
Finally, we have

E(T3,n) =

(

n

3

)

p3 =
n!

(n− 3)!3!

α3(n)

n3
=
n(n− 1)(n− 2)α3(n)

6n3
∼ α3(n)

6
→ 0.

�

Now I will establish the conditions when the Erdős–Rényi random graphs have triangles almost always.
For this I will use the second moment method.

Theorem 3.4 (The second moment method). Let Xn ≥ 0 be an integer valued random variable. If
EXn > 0 for n large and VarXn/(EXn)

2 → 0 then Xn > 0 whp.

Proof. By Chebyshev’s inequality P(|X−EX | ≥ EX) ≤ VarX/(EX)2, from where the result follows. �

Theorem 3.5. Let ω : N → R be a function such that ω(n) → ∞ as n → ∞; let p(n) = ω(n)
n for each

n ∈ N. Then T3,n ≥ 1 a.a.s.
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Proof. Here we start with Chebyshev’s inequality

P(T3,n = 0) = P(T3,n ≤ 0)

= P(−T3,n ≥ 0)

= P(ET3,n − T3,n ≥ ET3,n)

≤ P(|ET3,n − T3,n| ≥ ET3,n)

≤ VarT3,n
(ET3,n)2

.

From Theorem 3.3 we already know ET3,n ∼ ω3(n)
6 . To find VarT3,n = ET 2

3,n − (ET3,n)
2 note, using the

same notations as before, that

E(T 2
3,n) = E(1τ1 + . . .+ 1τk)

2 =

= E12
τ1 + . . .+ E12

τk
+
∑

i6=j

E(1τi 1τj) =

=
∑

i

E 1τ1 +
∑

i6=j

E(1τi 1τj ).

Here the sum in the second term is taken through all the ordered pairs of i 6= j, hence there is no “2” in the
expression. Recall that E(1τi 1τj ) = P(τi ∩ τj) is the probability that both triples of the vertices number
i and number j belong to G(n, p). If τi ∩ τj = ∅ then P(τi ∩ τj) = p6; if τi and τj have only one vertex in
common then P(τi ∩ τj) = p6, and if they have two vertices in common then P(τi ∩ τj) = p5 (draw some
examples to convince yourself). The total number of the pairs of triples i and j with no common vertices
is
(

n
3

)(

n−3
3

)

, with one common vertex is 3
(

n
3

)(

n−3
2

)

, with two common vertices is 3
(

n
3

)(

n−3
1

)

. Summing,

∑

i6=j

E(1τi 1τj ) =
∑

i6=j

P(τi ∩ τj) =
(

n

3

)(

n− 3

3

)

p6 + 3

(

n

3

)(

n− 3

2

)

p6 + 3

(

n

3

)(

n− 3

1

)

p5.

Using the facts that
(

n

3

)

∼
(

n− 3

3

)

∼ n3

6
,

(

n− 3

2

)

∼ n2

2
, n− 3 ∼ n,

we find that
∑

i6=j E(1τi 1τj ) = (1 + o(1))(ET3,n)
2 and ET3,n → ∞, hence,

VarT3,n
(ET3,n)2

=
1

ET3,n
+

∑

i6=j E(1τi 1τj)− (ET3,n)
2

(ET3,n)2
→ 0.

�

Problem 3.3. Fill in the details of the estimates in the last part of the proof of Theorem 3.5.

Finally, let me tackle the border line case. For this I will use the method of moments and the notion of
a factorial moment of a random variable X of order r which is defined as E

(

X(X − 1) . . . (X − r+1)
)

=:
E(X)r.

Problem 3.4. Show that if X is a Poisson random variable with parameter λ then E(X)r = λr.

Theorem 3.6. Let Xn be a sequence on non-negative integer values random variables. Let E(Xn)r ∼ λr

for any r for n→ ∞, where λ > 0 is some constant. Then

P(Xn = k) ∼ λke−λ

k!
.
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Theorem 3.7. Let p(n) ∼ c
n for some constant c > 0. Then the random variable T3,n converges in

distribution to the random variable T3 that has a Poisson distribution with the parameter λ = c3

6 .

Proof. To prove this theorem we will use the method of moments. First we note that in the proof of
Theorem 3.5 we could use the notation

E (T3,n)2 = E
(

T3,n(T3,n − 1)
)

=
∑

i6=j

E(1τi 1τj ),

for the second factorial moment of T3,n. Recall that we use (x)r = x(x − 1) . . . (x− r + 1). Similarly,

E (T3,n)3 = E
(

T3,n(T3,n − 1)(T3,n − 2)
)

=
∑

i6=j 6=l

E(1τi 1τj 1τl),

where the summation is along all ordered triples i 6= j 6= l (prove it).
In general, one has

E (T3,n)r = E
(

T3,n(T3,n − 1) . . . (T3,n − r + 1)
)

=
∑

i1...ir

E(1τi1
. . . 1τir ). (3.1)

Using the proofs of Theorems 3.3 and 3.5 we can conclude that under the hypothesis of the theorem

ET3,n → λ, n→ ∞,

E (T3,n)2 → λ2, n→ ∞.

To prove the theorem we need to show that

E (T3,n)r → λr, n→ ∞,

for any fixed r. This, according to the method of moments, would mean that

T3,n
d−→ T3,

and T3 has a Poisson distribution with the parameter λ.
For each tuple i1, . . . , ir the events τi1 , . . . , τir can be classified as such that 1) there are no common

vertices for any triples and 2) there is at least one vertex that belongs to at least two events at the same
time (cf. proof of Theorem 3.5). Denote the sum of probabilities of the first type events as Σ1, and for
the second type as Σ2. Two facts we will show are 1) Σ1 ∼ λr, 2) Σ2 = o(Σ1) = o(1).

We have, assuming that 3r ≤ n, that

Σ1 =

(

n

3

)(

n− 3

3

)

. . .

(

n− 3(r − 1)

3

)

p3r,

which means that
Σ1

λr
→ 1,

since λr ∼
((

n
3

)

p3
)r

(fill in the details).
Represent Σ2 as

Σ2 =

3r−1
∑

s=4

Σs,

where Σs gives the total contribution of tuples i1, . . . , ir such that |τi1 ∪ . . .∪ τir | = s. The total number
t of edges of the triangles generated by τi1 , . . . , τir is always strictly bigger than s (give examples), hence

E(1τi1
. . . 1τir ) = pt ∼ ct

nt
=

1

n
O
(

1

ns

)

.
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On the other hand, for each s the number of terms in Σs is
(

n
s

)

θ = O(ns), where θ does not depend on
n, therefore

Σ2 =

3r−1
∑

s=4

Σs =

3r−1
∑

s=4

O(ns)
1

n
O
(

1

ns

)

= O
(

1

n

)

= o(1).

�

Theorems 3.3, 3.5, and 3.7 cover in full the question about triangles in G(n, p). Indeed, for any
p = p(n) we may have that either np(n) → 0 (Theorem 3.3, here p = o(1/n)), np(n) → ∞ (Theorem
3.5, here 1/n = o(p)), or np(n) → c > 0 (Theorem 3.7, here p ∼ c/n). In particular, if p = c > 0 we
immediately get a corollary that any random graph G(n, p) have at least one triangle whp, no matter
how small p is.

Clearly function 1/n plays an important role in this discussion.

Definition 3.8. An increasing property is a graph property conserved under the addition of edges. A
function t(n) is a threshold function for an increasing property if (a) p(n)/t(n) → 0 implies that G(n, p)
does not possess this property whp, and b if p(n)/t(n) → ∞ implies that it does possess this property whp.

The number of triangles is an increasing property (by adding an edge we cannot reduce the number
of triangles in a graph), and the function

t(n) =
1

n

is a threshold function for this property.

Problem 3.5. Is the threshold function unique?

Here are some other examples of increasing properties:

• A fixed graph H is a subgraph in G.

• There exists a large components in G.

• G is connected.

• The diameter of G is at most d.

Problem 3.6. Can you specify a graph property that is not increasing?

Problem 3.7. Consider the Erdős–Rényi random graph G(n, p). What is the expected number of
spanning trees in G(n, p)? (Cayley’s formula is useful here, which says that the number of different trees
on n labeled vertices is nn−2. Can you think of how to prove this formula?)

Problem 3.8. Consider two Erdős–Rényi random graphs G(n, p) and G(n, q). What is the probability
that H ∈ G(n, p) ⊆ G ∈ G(n, q)?

Problem 3.9. Consider the following graph (call it H). Prove that for G(n, p) there exists a threshold
function such that G(n, p) contains a.a.s. no subgraphs isomorphic to H if p is below the threshold and
contains H as a subgraph a.a.s. if p is above the threshold.

Problem 3.10. Prove that

• If pn = o(1) then G(n, p) contains no cycles. Hence, all components are trees.

• If pnk/(k−1) = o(1) then there are no trees of order k. (Cayley’s formula can be useful.)

• If pnk/(k−1) = c then the trees of order k distributed according to the Poisson law with mean
λ = ck−1kk−2/k!.
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Figure 3.1: Graph H

The given exercises can be generalized in the following way. The ratio 2|E(G)|/|V (G)| for a graph G
is called its average vertex degree. A graph G is called balanced if its average vertex degree is equal to
the maximum average vertex degree over all its induced subgraphs.

Theorem 3.9. For a balanced graph H with k vertices and l ≥ 1 edges the function t(n) = n−k/l is a
threshold function for the appearance of H as a subgraph of G(n, p).

Problem 3.11. What is the threshold function of appearance of complete graphs of order k?

Even more generally, it can be proved that all increasing properties have threshold functions!

3.3 Connectivity of the Erdős–Rényi random graphs

Function logn/n is a threshold function for the connectivity in G(n, p).

Problem 3.12. Show that the function logn/n is a threshold function for the disappearance of isolated
vertices in G(n, p).

Theorem 3.10. Let p = c logn
n . If c ≥ 3 and n ≥ 100 then

P({ G(n, p) is connected }) → 1.

Proof. Consider a random variable X on G(n, p), which is defined as X(G) = 0 if G is connected, and
X(G) = k is G has k components (note that X(G) 6= 1 for any G). We need to show P(X = 0) → 1,
which is the same as P(X ≥ 1) → 0, and by Markov’s inequality (first moment method) P(X ≥ 1) ≤ EX .

Represent X as
X = X1 + . . .+Xn−1,

where Xj is the number of the components that have exactly j vertices. Now suppose that we order all

j-element subsets of the set of vertices and label them from 1 to
(

n
j

)

. Consider the events Kj
i such that

the ith j elements subset forms a component in G. Using the usual notation, we have

Xj =

(nj)
∑

i=1

1Kj
i
.

As a result,

EX =

n−1
∑

j=1

(nj)
∑

i=1

E 1Kj
i
=

n−1
∑

j=1

(nj)
∑

i=1

P(Kj
i ).

Next,

P(Kj
i ) ≤ P({ there are no edges connecting vertices in Kj

i and in V \Kj
i }) = (1− p)j(n−j).
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Here we just disregard the condition that all the vertices in Kj
i have to be connected.

The last inequality yields

EX ≤
n−1
∑

j=1

∑

i=1

(1− p)j(n−j) =

n−1
∑

j=1

(

n

j

)

(1− p)j(n−j). (3.2)

The last sum is symmetric in the sense that the terms with j and n− j are equal. Let j = 1:

n(1− p)n−1 ≤ ne−p(n−1) ≤ e−
3(n−1) log n

n .

Take n such that (n− 1)/n ≥ 0.9, hence

n(1− p)n−1 ≤ e−2.7 logn =
1

n2.7
.

Consider now the quotient of two consecutive terms in (3.2)
(

n
j+1

)

(1− p)(j+1)(n−j−1)

(

n
j

)

(1− p)j(n−j)
=
n− j

j + 1
(1− p)n−2j−1.

If j ≤ n/8 then

n− j

j + 1
(1− p)n−2j−1 ≤ (n− 1)(1− p)

3n
4 −1 ≤ (n− 1)e−

9 log n
4 +p ≤

≤ ne−
9 log n

4 +p ≤ (for sufficiently large n) ≤

≤ ne−2n logn =
1

n
.

If j > n
8 one has

(

n

j

)

< 2n, (1 − p)j(n−j) ≤ (1− p)
n2

16 ≤ e−
pn2

16 ≤ e−
3n log n

16 ,

hence
(

n

j

)

(1− p)j(n−j) ≤ 2nn− 3n
16 ,

which is again, for sufficiently large n is small compared to n−2.7. Hence in the sum (3.2) the first term
is the biggest, therefore

EX ≤
n−1
∑

j=1

1

n2.7
<

n

n2.7
→ 0, n→ ∞.

�

More exact (theoretically) results is that

Theorem 3.11. Let p = c logn
n . If c > 1 then G(n, p) is connected whp. If c < 1 then G(n, p) is not

connected whp.

The proof for the part c > 1 follows the lines of Theorem 3.10, however the estimates have to be made
more accurately. For the part c < 1 the starting point is again Markov’s inequality. We need to show
that PX > 1 → 1 as n → ∞ (cf. Theorem 3.5). For the case c = 1, however, we need p(n) ∼ logn

n and
there are many possible functions of this form. Here is an example of a statement for one of them:

Theorem 3.12. Let p(n) = (log n+ c+ o(1))n−1. Then

P({ G is connected }) → e−e−c

.

In particular, if p = logn
n , this probability tends to e−1.
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3.4 The giant component of the Erdős–Rényi random graph

3.4.1 Non-rigorous discussion

We know that if pn = o(1) then there are no triangles. In a similar manner it can be shown that there
are no cycles of any order in G(n, p). This means that most components of the random graph are trees
and isolated vertices. For p > c logn/n for c ≥ 1 the random graph is connected whp. What happens in
between these stages? It turns our that a unique giant component appears when p = c/n, c > 1. We first
study the appearance of this largest component in a heuristic manner. We define the giant component as
the component of G(n, p), whose order is O(n).

Let u be the frequency of the vertices that do not belong to the giant component. In other words,
u gives the probability that a randomly picked vertex does not belong to the giant component. Let
us calculate this probability in a different way. Pick any other vertex. It can be either in the giant
component or not. For the original node not to belong to the giant component these two either should
not be connected (probability 1− p) or be connected, but the latter vertex is not in the giant component
(probability pu). There are n− 1 vertices to check, hence

u = (1− p+ pu)n−1.

Recall that we are dealing with pn ∼ λ, hence it is convenient to use the parametrization

p =
λ

n
, λ > 0.

Note that λ is the mean degree of G(n, p). We get

u =

(

1− λ

n
(1− u)

)n−1

=⇒

log u(n− 1) log

(

1− λ

n
(1− u)

)

=⇒

log u ≈ −λ(n− 1)

n
(1 − u) =⇒

log u ≈ −λ(1− u) =⇒
u = e−λ(1−u),

where the fact that log(1 + x) ≈ x for small x was used.
Finally, for the frequency of the vertices in the giant component v = 1− u we obtain

1− v = e−λv.

This equation always has the solution v = 0. However, this is not the only solution for all possible λs. To
see this consider two curves, defined by f(v) = 1− e−λv and g(v) = v. Their intersections give the roots
to the original equation. Note that, as expected, f(0) = g(0) = 0. Note also that f ′(v) = λe−λv > 0 and
f ′′(v) = −λ2e−λv < 0. Hence the derivative for v ≤ 0 cannot be bigger than at v = 0, which is f ′(0) = λ.
Hence (see the figure), if λ ≤ 0 then there is unique trivial solution v = 0, but if λ > 1 then another
positive solution 0 < v < 1 appears.

Technically, we only showed that if λ ≤ 1 then there is no giant component. If λ > 1 then we use the
following argument. Since λ gives the mean degree, then, starting from a randomly picked vertex, it will
have λ neighbors on average. Its neighbors will have λ2 neighbors (there are λ of them and each has λ
adjacent edges) and so on. After s steps we would have λs vertices within the distance s from the initial
vertex. If λ > 1 this number will grow exponentially and hence most of the nodes have to be connected
into the giant component. Their frequency can be found as the nonzero solution to 1 − v = e−λv. Of
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Figure 3.2: The analysis of the number of solutions of the equation 1 − v = e−λv. The left panel shows
that if v ≥ 0 then it is possible to have one trivial solution v = 0 in the case λ ≤ 1, and two solutions if
λ > 1. The right panel shows the solutions (thick curves) as the functions of λ

course this type of argument is extremely rough, but the fact is that it can be made absolutely rigorous
within the framework of the branching processes.

Moreover, the last heuristic reasoning can be used to estimate the diameter of G(n, p). Obviously, the
process of adding new vertices cannot continue infinitely, it has to stop when we reach all n vertices:

λs = n.

From where we have that

s =
logn

logλ

approximates the diameter of the Erdős–Rényi random graph. It is quite surprising that the exact results
are basically the same: It can be proved that for np > 1 and np < c logn, the diameter of the random
graph (understood as the diameter of the largest connected component) is concentrated on at most four
values around logn/ lognp.

Finally we note that since the appearance of the giant component shows this threshold behavior (if
λ < 1 there is no giant component a.a.s., if λ > 1 the giant component is present a.a.s.) one often speaks
of a phase transition.

3.5 Branching processes

3.5.1 Generating functions

For the following we will need some information on probability generating functions. This section serves
as a short review of the pertinent material.

Let (ak)
∞
k=0 = a0, a1, a2 . . . be a sequence of real numbers. If the function

ϕ(s) = a0 + a1s+ a2s
2 + . . . =

∞
∑

k=0

aks
k

converges in some interval |s| < s0, then ϕ is called the generating function for the sequence (ak)
∞
k=0.

The variable s here is a dummy variable. If (ak)
∞
k=0 is bounded then ϕ(s) is convergent at least for some

s other than zero.
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Example 3.13. Let ak = 1 for any k = 0, 1, 2, . . .. Then (prove this formula)

ϕ(s) = 1 + s+ s2 + s3 + . . . =
1

1− s
, |s| < 1.

Let (ak)
∞
k=0 = 1, 2, 3, 4, . . . then

ϕ(s) = 1 + 2s+ 3s2 + 4s3 + . . . =
1

(1− s)2
|s| < 1.

Let (ak)
∞
k=0 = 0, 0, 1, 1, 1, 1, . . . then

ϕ(s) = s2 + s3 + s4 + . . . =
s2

1− s
, |s| < 1.

Let ak =
(

n
k

)

then

ϕ(s) =
∞
∑

k=0

(

n

k

)

sk =
n
∑

k=0

(

n

k

)

sk = (1 + s)n, s ∈ R.

Let ak = 1
k! then

ϕ(s) = 1 + s+
s2

2!
+
s3

3!
+ . . . = es, s ∈ R.

Problem 3.13. Consider the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . . ,

where we have
ak = ak−1 + ak−2, k = 2, 3, 4, . . . .

Find the generating function for this sequence.

If we have A(s) then the formula to find the elements of the sequence is

ak =
A(k)(0)

k!
.

Let X be a discrete random variable that assumes integer values 0, 1, 2, 3, . . . with the corresponding
probabilities

P(X = k) = pk.

The generating function for the sequence (pk)
∞
k=0 is called probability generating function and often

abbreviated pgf:
ϕ(s) = ϕX(s) = p0 + p1s+ p2s

2 + . . .

Example 3.14. Let X be a Bernoulli’s random variable, then its pgf is

ϕX(s) = 1− p+ ps.

Let Y be a Poisson random variable, then its pgf is

ϕY (s) =

∞
∑

k=0

(λs)k

k!
e−λ = e−λ(1−s).
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Note that for any pgf
ϕ(1) = p0 + p1 + p2 + . . . = 1,

hence pgf converges in some interval containing 1.
Let ϕ(s) be a pgf of X that assumes values 0, 1, 2, 3, . . .. Consider P ′(1):

ϕ′(1) =

∞
∑

k=0

kpk = EX,

if the corresponding expectation exists (there are random variables with no average). Therefore, if we
know pgf then it is straightforward to find the mean value.

Similarly,

E
(

X(X − 1)
)

=

∞
∑

k=1

k(k − 1)pk = ϕ′′(1),

or, in general,
E (X)r = ϕ(r)(1).

Hence any moment can be found using the pgf. For instance,

VarX = ϕ′′(1) + ϕ′(1)−
(

ϕ′(1)
)2
.

Problem 3.14. Show that

E(Xr) =

(

s
d

ds

)r

ϕX(s)

∣

∣

∣

∣

s=1

.

Problem 3.15. Prove for the geometric random variable that is defined as

P(X = k) = (1 − p)kp, k = 0, 1, 2, . . .

that

EX =
1− p

p
, VarX =

1− p

p2
.

(This random variable can be interpreted as the number of the first win in a series of trials with the
probability of success p in one trial.)

Problem 3.16. Prove the equality

EX =

∞
∑

k=0

P(X > k)

for the integer values random variable X by introducing the generating function ψ(s) for the sequence

qk =

∞
∑

j=k+1

pj .

Let X assume values 0, 1, 2, 3, . . .. For any s the expression sX is a well defined new random variable,
which has the expectation

E(sX) =

∞
∑

k=0

ksk = ϕ(s).

If random variables X and Y are independent then so sX and sY , therefore,

E(sX+Y ) = E(sX)E(sY ),

44



which means for the probability generating functions

ϕX+Y (s) = ϕX(s)ϕY (s),

i.e., the pgf of the sum of two independent random variables can be found as the product of the corre-
sponding pgf-s. The next step is to generalize this expression on the sum of n random variables. Let

Sn = X1 +X2 + . . .+Xn,

where Xi are i.i.d. random variables with pgf ϕX(s). Then

ϕSn
(s) =

(

ϕX(s)
)n
.

Example 3.15. The pgf for the binomial random variable Sn can be easily found by noting that

Sn = X1 + . . .+Xn,

where each Xi has Bernoulli’s distribution. Therefore,

ϕSn
(s) = (1− p+ ps)n,

which also can be proved directly. (Prove this formula directly and find ESn and VarSn.)

Example 3.16. We have that for Poisson random variable its generating function is e−λ(1−s). Consider
now two independent Poisson random variables with parameters λ1 and λ2 respectively. We have

ϕX(s)ϕY (s) = e−λ1(1−s)e−λ2(1−s) = e−(λ1+λ2)(1−s) = ϕX+Y (s).

In other words for the sum of two independent Poisson random variables we found that it also has Poisson
distribution with parameter λ1 + λ2.

It is important to mention that pgf determines the random variable. More precisely, if two random
variable have pgfs ϕ1(s) and ϕ2(s), both pgfs converge in some open interval containing 1 and ϕ1(s) =
ϕ2(s) in this interval, then the two random variable have identical distributions. A second important fact
is that if a sequence of pgfs converges to a limiting pgf, then the sequence of the corresponding probability
distributions converges to the limiting probability distribution (note that the pgf for a binomial random
variable converges to the pgf of the Poisson random variable).

3.5.2 Branching processes

Branching processes are central to the mathematical analysis of random networks. Here I would like to
define the Galton–Watson branching process and study its basic properties.

It is convenient to define the Galton–Watson process in terms of individuals and their descendants.
Let X0 = 1 be the initial individual. Let Y be the random variable with the probability distribution
P(Y = k) = pk. That random variable describes the number of descendants of each individual. The
number of descendants in generation Xn+1 depends only on Xn and is given by

Xn+1 =

Xn
∑

j=1

Yj ,

where Yj are i.i.d. random variables such that Yj ∼ Y . Sequence (X0, X1, . . . , Xn, . . .) defines the
Galton–Watson branching process.

Let ϕ(s) be the probability generating function of Y ; i.e.,

ϕ(s) =

∞
∑

k=0

pks
k.

45



Let us find the generating function for Xn:

ϕn(s) =

∞
∑

k=0

P(Xn = k)sk, n = 0, 1, . . .

We have
ϕ0(s) = s, ϕ1(s) = ϕ(s).

Further,

ϕn+1(s) =

∞
∑

k=0

P(Xn+1 = k)sk

=

∞
∑

k=0

∞
∑

j=0

P(Xn+1 = k | Xn = j)P(Xn = j)sk

=

∞
∑

j=0

P(Xn = j)

∞
∑

k=0

P(Y1 + . . .+ Yj = k)sk

=

∞
∑

j=0

P(Xn = j)
(

ϕ(s)
)j

= ϕn(ϕ(s)),

where the properties of the generating function of the sum of independent random variables were used.
Now, using the relation

ϕn+1(s) = ϕn(ϕ(s)),

we find EXn and VarXn. Assume that EY = µ and VarY = σ2 exist.

EXn =
d

ds
(ϕn−1(s))|s=1 = ϕ′

n−1(1)ϕ
′(1) = ϕ′

n−2(1)
(

ϕ′(1)
)2

= µn.

Hence the expectation grows if µ > 1, decreases if µ < 1 and stays the same if µ = 1.

Problem 3.17. Show that

VarXn =







σ2µn−1µ
n − 1

µ− 1
, µ 6= 1,

nσ2, µ = 1.

Now I would like to calculate the extinction probability:

P({Xn = 0 for some n}).

To do this, consider
qn = P(Xn = 0) = ϕn(0).

Also note that p0 has to be bigger than zero. Then, since the relation ϕn+1(s) = ϕn(ϕ(s)) can be
rewritten (why?) as

ϕn+1(s) = ϕ(ϕn(s)),

I have
qn+1 = ϕ(qn).

Function ϕ(s) is strictly increasing, with q1 = p0 > 0, which implies that qn+1 > qn and all qn are
bounded by 1. Therefore, there exists

π = lim
n→∞

qn,
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and 0 < π ≤ 1. Since ϕ(s) is continuous, we obtain that

π = ϕ(π),

which actually gives the equation to find the extinction probability π (due to the fact that qn are defined
to be probabilities of extinction at generation n or prior to it). Actually, it can be proved (exercise!) that
π is the smallest root of the equation

ϕ(s) = s.

Note that this equation always has root 1. Now assume that p0 + p1 < 1. Then ϕ′′(s) > 0 and ϕ(s) is
a convex function, which can intersect the 45◦ line at most at two points. On of these points is 1. The
other one is less than 1 only if ϕ′(1) = µ > 1. Therefore, we have proved

Theorem 3.17. For the Galton–Watson branching process the probability of extinction is given by the
smallest root to the equation

ϕ(s) = s.

This root is 1, i.e., the process dies out for sure if µ < 1 (subcritical process), or if µ = 1 and p1 6= 1
(critical process), and this root is strictly less than 1 if µ > 1 (supercritical process).

Problem 3.18. How the results above change if X0 = i, where i ≥ 2?

We showed that if the average number of descendants ≤ 1 then the population goes extinct with
probability 1. On the other hand, if the average number of offspring is > 1, then still there is nonzero
probability that the process will die out (π), however, with probability 1− π we find that Xn → ∞.

Example 3.18. Let Y ∼ Poisson(λ), then ϕ(s) = eλ(s−1), and the extinction probability can be found
as the smallest root of

s = eλ(s−1).

This is exactly the equation for the probability that a randomly chosen node in the Erdős–Rényi model
G(n, p) does not belong to the giant component! And of course this is not a coincidence.

Problem 3.19. Find the probability generating function for the random variable

T =

∞
∑

i=0

Xi = 1 +

∞
∑

i=1

Xi.

Use the fact that

T = 1 +

X1
∑

j=1

Tj ,

where T, T1, . . . , TX1 are i.i.d. random variables. Show that

ET =
1

1− µ
.

3.5.3 Rigorous results for the appearance of the giant component

Add the discussion on the branching processes

and relation to the appearance of the giant component.
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3.5.4 Rigorous results on the diameter of the Erdős–Rényi graph

3.6 The evolution of the Erdős–Rényi random graph

Here I summarize the distinct stages of the evolution of the Erdős–Rényi random graph.

Stage I: p = o(1/n)

The random graph G(n, p) is the disjoint union of trees. Actually, as you are asked to prove
in one of the exam problems, there are no trees of order k if pnk/(k−1) = o(1). Moreover, for
p = cn−k/(k−1) and c > 0, the probability distribution of the number of trees of order k tends
to the Poisson distribution with parameter λ = ck−1kk−2/k!. If 1/(pnk/(k−1)) = o(1) and pkn −
log n − (k − 1) log logn → ∞, then there are trees of any order a.a.s. If 1/(pnk/(k−1)) = o(1) and
pkn− logn− (k − 1) log logn ∼ x then the trees of order k distributed asymptotically by Poisson
law with the parameter λ = e−x/(kk!).

Stage II: p ∼ c/n for 0 < c < 1

Cycles of any given size appear. All connected components of G(n, p) are either trees or unicycle
components (trees with one additional edge). Almost all vertices in the components which are
trees (n− o(n)). The largest connected component is a tree and has about α−1(logn− 2.5 log logn)
vertices, where α = c−1−log c. The mean of the number of connected components is n−p

(

n
2

)

+O(1),
i.e., adding a new edge decreases the number of connected components by one. The distribution of
the number of cycles on k vertices is approximately a Poisson distribution with λ = ck/(2k).

Stage III: p ∼ 1/n+ µ/n, the double jump

Appearance of the giant component. When p < 1/n then the size of the largest component is
O(log n) and most of the vertices belong to the components of the size O(1), whereas for p > 1/n
the size of the unique largest component is O(n), the remaining components are all small, the
biggest one is of the order of O(logn). All the components other than the giant one are either trees
or unicyclic, although the giant component has complex structure (there are cycles of any period).
The natural question is how the biggest component grows so quickly. Erdős and Rényi showed
that it actually happens in two steps, hence the term“double jump.” If µ < 0 then the largest
component has the size (µ− log(1+µ))−1 logn+O(log logn). If µ = 0 then the largest component
has the size of order n2/3, and for µ > 0 the giant component has the size αn for some constant α.

Stage IV: p ∼ c/n where c > 1

Except for one giant component all the components are small, and most of them are trees. The
evolution of the random graph here can be described as merging the smaller components with the
giant one, one after another. The smaller the component, the larger the chance of “survival.” The
survival time of a tree of order k is approximately exponentially distributed with the mean value
n/(2k).

Stage V: p = c logn/n with c ≥ 1

The random graph becomes connected. For c = 1 there are only the giant component and isolated
vertices.

Stage VI: p = ω(n) logn/n where ω(n) → ∞ as n→ ∞. In this range the random graph is not only connected,
but also the degrees of all the vertices are asymptotically equal.

Here is the numerical illustration of the evolution of the random graph. To present it I fixed n = 1000
the number of vertices and generated

(

n
2

)

random variables, uniformly distributed in [0, 1]. Hence each

edge gets its only number pj ∈ [0, 1], j = 1, . . . ,
(

n
2

)

. For any fixed p ∈ (0, 1) I draw only the edges for
which pj ≤ p. Therefore, in this manner I can observe how the evolution of the random graph occurs for
G(n, p).
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Figure 3.3: Stages I and II. Graphs G(1000, 0.0005) and G(1000, 0.00095) are shown
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Figure 3.4: Stages III and IV. Graphs G(1000, 0.001) and G(1000, 0.0015) are shown. The giant compo-
nent is born
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Figure 3.5: Stages IV and V. Graphs G(1000, 0.004) and G(1000, 0.007) are shown. The final graph is
connected (well, almost)
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