Notes: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction

Chase Reuter

15/08/2018

1 Notation

Definition 1. \mathbb{O}^{d}-The set of all real orthogonal matrices of order d. A matrix $A \in \mathbb{R}^{d \times d}$ is orthogonal if $A^{T} A=I$ an extension of this is that $\mathbb{O}^{d}(\nu):=\{A \in \mathbb{O}: A \nu=\nu\}$.

Definition 2. f_{A}-If $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ and $A \in \mathbb{R}^{d \times d}$ then $f_{A}(x):=f(A x)$. Note the primary use of this notation is for the study of symmetries of the given function. An example of this is a function f satisfying $f=f_{A}$ for all $A \in \mathbb{O}^{d}(\xi)$ would then be constant on the blue circle on the picture below.

Definition 3. \mathbb{H}_{n}^{d}-the space of all homogeneous complex polynomials of degree n in d dimensions. Specifically, $\mathbb{H}_{n}^{d}:=\left\{\sum_{\|\alpha\|=n} a_{\alpha} \mathbf{x}^{\alpha}\right\}$, noting that the dimension of this space is $\binom{n+d-1}{n}$ by a simple counting argument.

2 Spherical Harmonics

Lemma 1. Harmonic Fact If $\Delta f=0$ then necessarily $\Delta f_{A}=0$
Definition 4. Invariant Subspace-A general subspace \mathbb{V} of functions defined in \mathbb{R}^{d} or over a subset of \mathbb{R}^{d} is invariant if for all $f \in \mathbb{V}$ and $A \in \mathbb{O}^{d}$ we have $f_{A} \in \mathbb{V}$.

Definition 5. Reducible Subspace-A general subspace \mathbb{V} of functions defined in \mathbb{R}^{d} or over a subset of \mathbb{R}^{d} is reducible if $\exists \mathbb{V}_{1}, \mathbb{V}_{2} \subseteq \mathbb{V}$ that satisfy $\mathbb{V}=\mathbb{V}_{1}+\mathbb{V}_{2}, \mathbb{V}_{1} \neq \emptyset \neq \mathbb{V}_{2}, \mathbb{V}_{1}$ and \mathbb{V}_{2} are invariant, and $\mathbb{V}_{1} \perp \mathbb{V}_{2}$. If no such \mathbb{V}_{1} and \mathbb{V}_{2} exist then \mathbb{V} is called irreducible.

Definition 6. Primitive Subspace-A general subspace \mathbb{V} of functions defined in \mathbb{R}^{d} or over a subset of \mathbb{R}^{d} is primitive if it is both invariant and irreducible.

2.1 Spaces of Homogeneous Polynomials

Definition 7. Inner Product (on \mathbb{H}_{n}^{d})-An appropriate inner product on \mathbb{H}_{n}^{d} is given by $\left(H_{1}, H_{2}\right):=H_{1}(\nabla) H_{2}(x)$. Note that the parenthesis are used in the text to refer to inner products on a dual space.

Definition 8. $\mathbb{Y}_{n}\left(\mathbb{R}^{d}\right)$-These are the homogeneous harmonic polynomials of degree n on d variables. By definition $\mathbb{Y}_{n}\left(\mathbb{R}^{d}\right) \subseteq \mathbb{H}_{n}^{d}$. The number $N_{n, d}$ which is used frequently is defined to be the dimension of the space of this space. A straightforward arguement gives the relation

$$
N_{n, d}=\operatorname{dim} \mathbb{H}_{n-1}^{d}+\operatorname{dim} \mathbb{H}_{n-1}^{d-1} \Longrightarrow N_{n, d}=\frac{(2 n+d-2)(n+d-3)}{n!(d-2)!}
$$

Example 1 (2.6). For $n=0,1$ we have $\mathbb{Y}_{n}\left(\mathbb{R}^{d}\right)=\mathbb{H}_{n}^{d}$
Example 2 (2.6). For $d=3$ and $\forall \theta \in \mathbb{R}$ we have $\left(x_{3}+i x_{1} \sin \theta+i x_{2} \cos \theta\right)^{n} \in \mathbb{Y}_{n}\left(\mathbb{R}^{3}\right)$. This is pretty simple as

$$
\Delta([i \sin \theta, i \cos \theta, 1] x)^{n}=(n-2)([i \sin \theta, i \cos \theta, 1] x)^{n-2}|[i \sin \theta, i \cos \theta, 1]|^{2}=0
$$

Alternatively, it can be seen using the multinomial theorem as follows here.
Definition 9. Legendre Harmonic/Polynomial Mathworld-The Legendre harmonic of degree n in d dimensions, $L_{n, d}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is defined by the following conditions

- $L_{n, d} \in \mathbb{Y}_{n}\left(\mathbb{R}^{d}\right)$
- $L_{n, d}(A x)=L_{n, d}(x) \quad \forall A \in \mathbb{O}^{d}\left(e_{d}\right), \forall x \in \mathbb{R}^{d}$
- $L_{n, d}\left(e_{d}\right)=1$

These give the formula for the Legendre Harmonic ($L_{n, d}$) and Legendre Polynomial $\left(P_{n, d}\right)$ as

$$
\begin{aligned}
L_{n, d}(x) & =n!\Gamma\left(\frac{d-1}{2}\right) \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} \frac{\left|x_{(d-1)}\right|^{2 k}\left(x_{d}\right)^{n-2 k}}{4^{k} k!(n-2 k)!\Gamma\left(k+\frac{d-1}{2}\right)} \\
P_{n, d}(t): & =L_{n, d}\left(\xi_{(d)}\right) \quad \text { Which is to say } \\
P_{n, d}(t) & =n!\Gamma\left(\frac{d-1}{2}\right) \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} \frac{\left(1-t^{2}\right)^{2 k} t^{n-2 k}}{4^{k} k!(n-2 k)!\Gamma\left(k+\frac{d-1}{2}\right)}
\end{aligned}
$$

Definition 10. Chebyshev Polynomial of the First Kind Mathworld-These are given by the recurrence relation:

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

Can be defined as the polynomials satisfying

$$
T_{n}(x)=\left\{\begin{array}{lr}
\cos (n \arccos x), & \text { if }|x| \leq 1 \\
\cosh (n \arccos x), & \text { if } x \geq 1 \\
(-1)^{n} \cosh (n \operatorname{arccosh}(-\mathrm{x})), & \text { if } x \leq-1
\end{array}\right\}
$$

Definition 11. Dirichlet Kernel-The collection of functions

$$
D_{n}(x):=\sum_{k=-n}^{n} e^{i k x}=1+2 \sum_{k=1}^{n} \cos (k x)=\frac{\sin ((n+1 / 2) x)}{\sin (x / 2)}
$$

Definition 12. Reproducing Kernel Hilbert Space-Let H be a Hilbert space over X, $L_{x} \in H$ be defined by $L_{x}: f \rightarrow f(x)$ for all $f \in H$. Then H is a Reproducing Kernel Hilbert space if, for all $x \in X, L_{x}$ is continuous $\left(\left\|L_{x}\right\|_{H}<M\right)$.

The Reproducing Kernel is given by observing that $\exists K_{x} \in H$ such that for all $f \in H$, $f(x)=\left\langle f, K_{x}\right\rangle$. Then the Reproducing kernel is $K: X \times X \rightarrow \mathbb{R}$ given by

$$
K(x, y):=\left\langle K_{x}, K_{y}\right\rangle
$$

Theorem 2.1. Let $Y_{n} \in \mathbb{Y}_{n}^{d}$ and $\xi, \in \mathbb{S}^{d-1}$. Then Y_{n} is invariant with respect to $\mathbb{O}^{d}(\xi)$ if and only if $Y_{n}(\nu)=Y_{n}(\xi) P_{n, d}(\xi \cdot \nu), \forall \nu \in \mathbb{S}^{d-1}$

Theorem 2.2. Addition Theorem Let $\left\{Y_{n}, j: \leq j \leq N_{n, d}\right\}$ be an orthonormal basis of \mathbb{Y}_{n}^{d} (WRT the L^{2}-norm). Then

$$
\sum_{j=1}^{N_{n, d}} Y_{n, j}(\xi) \overline{Y_{n, j}(\eta)}=\frac{N_{n, d}}{\left|\mathbb{S}^{d-1}\right|} P_{n, d}(\xi \cdot \eta) \quad \forall \xi, \eta \in \mathbb{S}^{d-1}
$$

As a consequence of the Addition Theorem we see that $K_{n, d}(\xi, \eta):=\frac{N_{n, d}}{\left|\mathbb{S}^{d-1}\right|} P_{n, d}(\xi \cdot \eta)$ is the reproducing kernel of \mathbb{Y}_{n}^{d}

$$
\Delta f=0 \Longrightarrow \Delta f_{A}=0
$$

Proof. First let $M \in \mathbb{O}^{n}, \Delta u=0$, and $\left\{e_{i}\right\}$ be the standard basis on \mathbb{R}^{n} (if $\delta_{i, j}$ is the Kronocker delta then $e_{i}=\left(\delta_{1, i}, \delta_{2, i}, \ldots, \delta_{n, i}\right)$. Then

$$
\begin{aligned}
\Delta u(M x+c) & =\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}} u(M x+c) \\
& =\sum_{i} \frac{\partial}{\partial x_{i}} \sum_{j} u_{j}(M x+c) \frac{\partial e_{j}(M x+c)}{\partial x_{i}} \\
& =\sum_{i, j} \frac{\partial}{\partial x_{i}} u_{j}(M x+c) e_{j} M e_{i}^{T} \\
& =\sum_{i, j, k} u_{j k}(M x+c) e_{j} M e_{i}^{T} e_{k} M e_{i}^{T} \\
& =\sum_{i, j, k} u_{j k}(M x+c) e_{j} M e_{i}^{T} e_{i} M^{T} e_{k}^{T} \\
& =\sum_{j, k} u_{j k}(M x+c) e_{j} M\left(\sum_{i} e_{i}^{T} e_{i}\right) M^{T} e_{k}^{T} \\
& =\sum_{j, k} u_{j k}(M x+c) e_{j} M I M^{T} e_{k}^{T} \\
& =\sum_{j, k} u_{j k}(M x+c) e_{j} e_{k}^{T} \\
& =\sum_{j, k} u_{j k}(M x+c) \delta_{i, k} \\
& =\sum_{j} u_{j j}(M x+c) \\
& =\Delta u(M x+c)=0
\end{aligned}
$$

$$
=\sum_{j, k} u_{j k}(M x+c) e_{j} e_{k}^{T} \quad \text { Since } M \in \mathbb{O}^{n} \text { we have } M M^{T}=I
$$

Statement

Proof. First note that the original equation can be expressed in multi-index notation using $v=[i \sin \theta, i \cos \theta, 1]^{T}$ and $\left\{e_{j}\right\}$ to be the standard basis of \mathbb{R}^{3} (Column Vectors),

$$
\sum_{|\alpha|=n}\binom{n}{\alpha} v^{\alpha} x^{\alpha}
$$

This gives the following

$$
\begin{aligned}
\Delta \sum_{|\alpha|=n}\binom{n}{\alpha} v^{\alpha} x^{\alpha} & =\sum_{j=1}^{3} \sum_{|\alpha|=n}\binom{n}{\alpha} v^{\alpha} x^{\alpha-2 e_{j}}\left(\alpha \cdot e_{j}\right)\left(\alpha \cdot e_{j}-1\right) \\
& =\sum_{j=1}^{3} \sum_{|\alpha|=n}\binom{n}{\alpha-2 e_{j}} v^{\alpha} x^{\alpha-2 e_{j}} \\
& =\sum_{j=1}^{3} \sum_{|\alpha|=n-2}\binom{n}{\alpha} v^{\alpha+2 e_{j}} x^{\alpha} \\
& =\sum_{|\alpha|=n-2}\binom{n}{\alpha} v^{\alpha} x^{\alpha} \sum_{j=1}^{3} v^{2 e_{j}} \\
& =\sum_{|\alpha|=n-2}\binom{n}{\alpha} v^{\alpha} x^{\alpha}(v \cdot v) \\
& =\sum_{|\alpha|=n-2}\binom{n}{\alpha} v^{\alpha} x^{\alpha}\left(-\sin ^{2} \theta-\cos ^{2} \theta+1\right)=0
\end{aligned}
$$

As you can see from this as long $v \cdot v=0$ this generalizes to examples in $\mathbb{Y}_{d}\left(\mathbb{R}^{n}\right)$. A nice fun example is $v=\left[\omega_{d}^{0}, \omega_{d}^{1 / 2}, \ldots, \omega_{d}^{(d-1) / 2}\right]^{T}$ where ω_{d} is a primitive $d^{\text {th }}$ root of unity.

Addition Theorem

Proof. Let $A \in \mathbb{O}^{d}$ and $1 \leq k \leq N_{n, d}, Y_{n, k}(A \eta) \in \mathbb{Y}_{n}^{d}$ and then write in terms of the basis elements

$$
Y_{n, k}(A \eta)=\sum_{j=1}^{N_{n, d}} c_{k j} Y_{n, j}(\eta), \quad c_{k, n} \in \mathbb{C}
$$

This gives a nice way of seeing that

$$
\begin{aligned}
\int_{\mathbb{S}^{d-1}} Y_{n, k}(A x) \overline{Y_{n, j}(A x)} d S^{d-1}(x) & =\int_{\mathbb{S}^{d-1}} \sum_{a, b=1}^{N_{n, d}} c_{k a} \overline{c_{j b}} Y_{n, a}(x) \overline{Y_{n, b}(x)} d S^{d-1}(x) \\
& =\sum_{a, b=1}^{N_{n, d}} c_{k a} \overline{c_{j b}} \int_{\mathbb{S}^{d-1}} Y_{n, a}(x) \overline{Y_{n, b}(x)} d S^{d-1}(x) \\
& =\sum_{a=1}^{N_{n, d}} c_{k a} \overline{c_{j a}} \\
\int_{\mathbb{S}^{d-1}} Y_{n, k}(A x) \overline{Y_{n, j}(A x)} d S^{d-1}(x) & =\int_{\mathbb{S}^{d-1}} Y_{n, k}(x) \overline{Y_{n, j}(x)}|\operatorname{det}(A)| d S^{d-1}(x) \\
& =\delta_{j, k} \\
\delta_{j, k} & =\sum_{a=1}^{N_{n, d}} c_{k a} \overline{c_{j a}}
\end{aligned}
$$

Note that this last equality means $C C^{H}=C^{H} C=I$. Defining $Y(\xi, \eta):=\sum_{j=1}^{N_{n, d}} Y_{n, j}(\xi) \overline{Y_{n, j}(\eta)}$ we get

$$
\begin{aligned}
Y(A \xi, A \eta) & =\sum_{j=1}^{N_{n, d}} \sum_{a, b=1}^{N_{n, d}} c_{j a} \overline{c_{j b}} Y_{n, a}(\xi) \overline{Y_{n, b}(\eta)} \\
& =\sum_{a, b=1}^{N_{n, d}} Y_{n, a}(\xi) \overline{Y_{n, b}(\eta)} \sum_{j=1}^{N_{n, d}} c_{j a} \overline{c_{j b}} \\
& =\sum_{a, b=1}^{N_{n, d}} Y_{n, a}(\xi) \overline{Y_{n, b}(\eta)} \delta_{a, b} \\
& =\sum_{a=1}^{N_{n, d}} Y_{n, a}(\xi) \overline{Y_{n, a}(\eta)}=Y(\xi, \eta)
\end{aligned}
$$

One of the middle steps can be seen by noting $C C^{H}=I$. The result is that $Y(\xi, \eta)$ is rotation invariant. Fixing ξ gives $Y(\xi, \cdot) \in \mathbb{Y}_{n}^{d}$ and is invariant under $A \in \mathbb{O}^{d}(\xi)$ (remembering $A \xi=\xi$ makes this clear). By Theorem $2.1 Y(\xi, \nu)=Y(\xi, \xi) P_{n, d}(\xi \cdot \nu)$. Now if $P_{n, d}(\xi \cdot \nu) \neq 0$ (then using continuity we see $\forall \xi, \nu \in \mathbb{S}^{d-1}$)

$$
Y(\xi, \xi)=\frac{Y(\xi, \nu)}{P_{n, d}(\xi \cdot \nu)}=Y(\nu, \nu)
$$

To find out what this constant is

$$
\begin{aligned}
Y(\xi, \xi) & =\sum_{j=1}^{N_{n, d}}\left|Y_{n, j}(\xi)\right|^{2} \\
Y(\xi, \xi)=\int_{\mathbb{S}^{d-1}} Y(\xi, \xi) d S^{d-1}(\xi) & =\int_{\mathbb{S}^{d-1}} \sum_{j=1}^{N_{n, d}}\left|Y_{n, j}(\xi)\right|^{2} d S^{d-1}(\xi)=\sum_{j=1}^{N_{n, d}} \frac{1}{\left|\mathbb{S}^{d-1}\right|}=\frac{N_{n, d}}{\left|\mathbb{S}^{d-1}\right|}
\end{aligned}
$$

Finally, Substituting it back in we get

$$
Y(\xi, \eta)=\frac{N_{n, d}}{\left|\mathbb{S}^{d-1}\right|} P_{n, d}(\xi \cdot \eta)
$$

