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1 Notation

Definition 1. Od-The set of all real orthogonal matrices of order d. A matrix A ∈ Rd×d is
orthogonal if ATA = I an extension of this is that Od(ν) := {A ∈ O : Aν = ν}.

Definition 2. fA-If f : Rd → C and A ∈ Rd×d then fA(x) := f(Ax). Note the primary use
of this notation is for the study of symmetries of the given function. An example of this is
a function f satisfying f = fA for all A ∈ Od(ξ) would then be constant on the blue circle
on the picture below.

Definition 3. Hd
n-the space of all homogeneous complex polynomials of degree n in d di-

mensions. Specifically, Hd
n := {

∑
‖α‖=n aαx

α}, noting that the dimension of this space is(
n+d−1
n

)
by a simple counting argument.

2 Spherical Harmonics

Lemma 1. Harmonic Fact If ∆f = 0 then necessarily ∆fA = 0

Definition 4. Invariant Subspace-A general subspace V of functions defined in Rd or over
a subset of Rd is invariant if for all f ∈ V and A ∈ Od we have fA ∈ V.

Definition 5. Reducible Subspace-A general subspace V of functions defined in Rd or
over a subset of Rd is reducible if ∃V1,V2 ⊆ V that satisfy V = V1 + V2, V1 6= ∅ 6= V2, V1

and V2 are invariant, and V1 ⊥ V2. If no such V1 and V2 exist then V is called irreducible.

Definition 6. Primitive Subspace-A general subspace V of functions defined in Rd or
over a subset of Rd is primitive if it is both invariant and irreducible.

2.1 Spaces of Homogeneous Polynomials

Definition 7. Inner Product (on Hd
n)-An appropriate inner product on Hd

n is given by
(H1, H2) := H1(∇)H2(x). Note that the parenthesis are used in the text to refer to inner
products on a dual space.
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Definition 8. Yn(Rd)-These are the homogeneous harmonic polynomials of degree n on d
variables. By definition Yn(Rd) ⊆ Hd

n. The number Nn,d which is used frequently is defined
to be the dimension of the space of this space. A straightforward arguement gives the relation

Nn,d = dimHd
n−1 + dimHd−1

n−1 =⇒ Nn,d =
(2n+ d− 2)(n+ d− 3)

n!(d− 2)!

.

Example 1 (2.6). For n = 0, 1 we have Yn(Rd) = Hd
n

Example 2 (2.6). For d = 3 and ∀θ ∈ R we have (x3 + ix1 sin θ+ ix2 cos θ)n ∈ Yn(R3). This
is pretty simple as

∆
(
[i sin θ, icosθ, 1]x

)n
= (n− 2)

(
[i sin θ, icosθ, 1]x

)n−2∣∣[i sin θ, icosθ, 1]
∣∣2 = 0

Alternatively, it can be seen using the multinomial theorem as follows here.

Definition 9. Legendre Harmonic/Polynomial-Mathworld-The Legendre harmonic of
degree n in d dimensions, Ln,d : Rd → R is defined by the following conditions

• Ln,d ∈ Yn(Rd)

• Ln,d(Ax) = Ln,d(x) ∀A ∈ Od(ed), ∀x ∈ Rd

• Ln,d(ed) = 1

These give the formula for the Legendre Harmonic (Ln,d) and Legendre Polynomial (Pn,d) as

Ln,d(x) = n!Γ

(
d− 1

2

) bn/2c∑
k=0

(−1)k
|x(d−1)|2k(xd)n−2k

4kk!(n− 2k)!Γ(k + d−1
2

)

Pn,d(t):=Ln,d(ξ(d)) Which is to say

Pn,d(t) = n!Γ

(
d− 1

2

) bn/2c∑
k=0

(−1)k
(1− t2)2ktn−2k

4kk!(n− 2k)!Γ(k + d−1
2

)

Definition 10. Chebyshev Polynomial of the First Kind-Mathworld-These are given
by the recurrence relation:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

Can be defined as the polynomials satisfying

Tn(x) =


cos(n arccosx), if |x| ≤ 1
cosh(n arccosx), if x ≥ 1
(−1)n cosh(n arccosh(-x)), if x ≤ −1
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Definition 11. Dirichlet Kernel-The collection of functions

Dn(x) :=
n∑

k=−n

eikx = 1 + 2
n∑
k=1

cos(kx) =
sin((n+ 1/2)x)

sin(x/2)

Definition 12. Reproducing Kernel Hilbert Space-Let H be a Hilbert space over X,
Lx ∈ H be defined by Lx : f → f(x) for all f ∈ H. Then H is a Reproducing Kernel Hilbert
space if, for all x ∈ X, Lx is continuous (‖Lx‖H < M).

The Reproducing Kernel is given by observing that ∃Kx ∈ H such that for all f ∈ H,
f(x) = 〈f,Kx〉. Then the Reproducing kernel is K : X ×X → R given by

K(x, y) := 〈Kx, Ky〉

Theorem 2.1. Let Yn ∈ Yd
n and ξ,∈ Sd−1. Then Yn is invariant with respect to Od(ξ) if

and only if Yn(ν) = Yn(ξ)Pn,d(ξ · ν), ∀ν ∈ Sd−1

Theorem 2.2. Addition Theorem Let {Yn, j :≤ j ≤ Nn,d} be an orthonormal basis of Yd
n

(WRT the L2-norm). Then

Nn,d∑
j=1

Yn,j(ξ)Yn,j(η) =
Nn,d

|Sd−1|
Pn,d(ξ · η) ∀ξ, η ∈ Sd−1

As a consequence of the Addition Theorem we see that Kn,d(ξ, η) :=
Nn,d

|Sd−1|Pn,d(ξ · η) is

the reproducing kernel of Yd
n
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∆f = 0 =⇒ ∆fA = 0

Proof. First let M ∈ On, ∆u = 0, and {ei} be the standard basis on Rn (if δi,j is the
Kronocker delta then ei = (δ1,i, δ2,i, ..., δn,i). Then

∆u(Mx+ c) =
∑
i

∂2

∂x2i
u(Mx+ c)

=
∑
i

∂

∂xi

∑
j

uj(Mx+ c)
∂ej(Mx+ c)

∂xi

=
∑
i,j

∂

∂xi
uj(Mx+ c)ejMeTi

=
∑
i,j,k

ujk(Mx+ c)ejMeTi ekMeTi

=
∑
i,j,k

ujk(Mx+ c)ejMeTi eiM
T eTk Since ekMeTi ∈ R

=
∑
j,k

ujk(Mx+ c)ejM

(∑
i

eTi ei

)
MT eTk

=
∑
j,k

ujk(Mx+ c)ejMIMT eTk

=
∑
j,k

ujk(Mx+ c)eje
T
k Since M ∈ On we have MMT = I

=
∑
j,k

ujk(Mx+ c)δi,k

=
∑
j

ujj(Mx+ c)

= ∆u(Mx+ c) = 0
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Statement

Proof. First note that the original equation can be expressed in multi-index notation using
v = [i sin θ, i cos θ, 1]T and {ej} to be the standard basis of R3 (Column Vectors),∑

|α|=n

(
n

α

)
vαxα

This gives the following

∆
∑
|α|=n

(
n

α

)
vαxα =

3∑
j=1

∑
|α|=n

(
n

α

)
vαxα−2ej(α · ej)(α · ej − 1)

=
3∑
j=1

∑
|α|=n

(
n

α− 2ej

)
vαxα−2ej

=
3∑
j=1

∑
|α|=n−2

(
n

α

)
vα+2ejxα

=
∑
|α|=n−2

(
n

α

)
vαxα

3∑
j=1

v2ej

=
∑
|α|=n−2

(
n

α

)
vαxα(v · v)

=
∑
|α|=n−2

(
n

α

)
vαxα(− sin2 θ − cos2 θ + 1) = 0

As you can see from this as long v · v = 0 this generalizes to examples in Yd(Rn). A nice fun

example is v =
[
ω0
d, ω

1/2
d , ..., ω

(d−1)/2
d

]T
where ωd is a primitive dth root of unity.
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Addition Theorem

Proof. Let A ∈ Od and 1 ≤ k ≤ Nn,d, Yn,k(Aη) ∈ Yd
n and then write in terms of the basis

elements

Yn,k(Aη) =

Nn,d∑
j=1

ckjYn,j(η), ck,n ∈ C

This gives a nice way of seeing that∫
Sd−1

Yn,k(Ax)Yn,j(Ax) dSd−1(x) =

∫
Sd−1

Nn,d∑
a,b=1

ckacjbYn,a(x)Yn,b(x) dSd−1(x)

=

Nn,d∑
a,b=1

ckacjb

∫
Sd−1

Yn,a(x)Yn,b(x) dSd−1(x)

=

Nn,d∑
a=1

ckacja∫
Sd−1

Yn,k(Ax)Yn,j(Ax) dSd−1(x) =

∫
Sd−1

Yn,k(x)Yn,j(x)| det(A)| dSd−1(x)

= δj,k

δj,k =

Nn,d∑
a=1

ckacja

Note that this last equality means CCH = CHC = I. Defining Y (ξ, η) :=
∑Nn,d

j=1 Yn,j(ξ)Yn,j(η)
we get

Y (Aξ,Aη) =

Nn,d∑
j=1

Nn,d∑
a,b=1

cjacjbYn,a(ξ)Yn,b(η)

=

Nn,d∑
a,b=1

Yn,a(ξ)Yn,b(η)

Nn,d∑
j=1

cjacjb

=

Nn,d∑
a,b=1

Yn,a(ξ)Yn,b(η)δa,b

=

Nn,d∑
a=1

Yn,a(ξ)Yn,a(η) = Y (ξ, η)

One of the middle steps can be seen by noting CCH = I. The result is that Y (ξ, η) is rotation
invariant. Fixing ξ gives Y (ξ, ·) ∈ Yd

n and is invariant under A ∈ Od(ξ) (remembering Aξ = ξ
makes this clear). By Theorem 2.1 Y (ξ, ν) = Y (ξ, ξ)Pn,d(ξ · ν). Now if Pn,d(ξ · ν) 6= 0 (then
using continuity we see ∀ξ, ν ∈ Sd−1)

Y (ξ, ξ) =
Y (ξ, ν)

Pn,d(ξ · ν)
= Y (ν, ν)
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To find out what this constant is

Y (ξ, ξ) =

Nn,d∑
j=1

∣∣Yn,j(ξ)∣∣2
Y (ξ, ξ) = −

∫
Sd−1

Y (ξ, ξ) dSd−1(ξ) = −
∫
Sd−1

Nn,d∑
j=1

∣∣Yn,j(ξ)∣∣2 dSd−1(ξ) =

Nn,d∑
j=1

1

|Sd−1|
=

Nn,d

|Sd−1|

Finally, Substituting it back in we get

Y (ξ, η) =
Nn,d

|Sd−1|
Pn,d(ξ · η)
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