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Throughout we will deal with Rn with a norm ‖ ‖. In particular ‖ ‖r will be the r-norm for
some 1 ≤ r <∞. Some of the information below are adopted from Foundations of Quantization
for Probability Distributions, by S. Graf and H. Luschgy, Lecture Notes in Mathematics, #
1730, Springer, 2000.

1. Five-minute Crash Course in Probability.

(Ω,F , P ) : a probability space.
A measurable function X : Ω→ R is called a random variable.
The expectation (or mean) of X is defined as E(X) :=

∫
Ω
XdP.

(i) E(Xk): k-th moment of X; and E(|X|k): k-th absolute moment of X.
(ii) E[(X −E(X))k]: k-th central moment of X; and E[|X −E(X)|k]: k-th absolute central

moment of X.

Note: If k = 1, E[(X −E(X))k] = 0. When k = 2, E[(X −E(X))2] is called the variance of
X.

If X is a random variable, then it induces a probability measure on Borel subsets of R by
PX := P ◦X−1. (Sometimes PX is called a law.)

The distribution (function) of a r.v. X is a function F : R→ R such that

F (x) = PX(−∞, x] = P ({ω : X(ω) ≤ x}).
Observe that F (b)− F (a) = PX(a, b].
Fact. A function F : R → R is a probability distribution if and only if it’s non-decreasing,
continuous from right (i.e., limx→a+ F (x) = F (a)) and satisfies

lim
x→−∞

F (x) = 0, and lim
x→∞

F (x) = 1.

If F is a function satisfying these properties, there is a unique r.v. X whose distribution is F.

All these are closely connected with Lebesgue-Stieltjes measures and their distributions.
Recall that a measure µ : B(R)→ R is called a Lebesgue-Stieltjes measure if µ(I) <∞ for any
bounded interval I. In general, a function F : R→ R which is non-decreasing and continuous
from right is called a distribution function. Via

µ(a, b] = F (b)− F (a),

there is a 1-1 correspondence between Lebesgue-Stieltjes measures and distribution functions.
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A non negative Borel-measurable function f on R is called a density of a r.v. X if

F (x) =

∫
(∞,x]

f(t)dt,

where F is the distribution function of X. Hence,

PX(A) =

∫
A

f(x)dx, A ∈ B(R).

That is, f is the Radon-Nikodym derivative of PX w.r.t. Lebesgue measure.

Random vectors. A measurable function A measurable function X : Ω→ Rn is called an n-
dimensional random variable or a random vector. If Πi is the projection on the i-th coordinate,
then Xi = Πi ◦X is a r.v. for each 1 ≤ i ≤ n.

Note: X = (X1, X2, . . . , Xn) is Borel measurable if and only if each Xi is Borel measurable.
If X is a random vector, then

(i) associated law on Borel subsets of R is defined the same way by PX(B) = P ◦
X−1(B), B ∈ B(R).

(ii) associated distribution function (called joint distribution)is defined by

F (x) = PX(−∞, x] = P ({ω : Xi(ω) ≤ x, 1 ≤ i ≤ n}), x ∈ Rn.

2. Probability Measures and Distributions.

It is not unusual in probability theory to talk about properties/behavior of random variable
X with a distribution function F without any reference to the underlying probability space.
This is due to the fact that F determines PX , which in turn, determines all events involving X
(i.e., the σ-algebra needed to study X). So, all one needs to check is that there is a probability
space on which X is well-defined. Hence, distribution functions play a crucial role in probability
spaces.

There exist only three types of pure probability distributions: discrete, absolutely continu-
ous, and singularly continuous (w..r.t Lebesgue measure).

A r.v. X is called discrete if the set of values {xn} of it is countable. In this case the
distribution function is a step function F with a discontinuity at each xn (with magnitude
pn = PX({xn}). F is also called discrete distribution.

A r.v. X is called absolutely continuous if PX << m, where m is the Lebesgue measure.
Equivalently, the associated distribution function F is absolutely continuous on R.

A r.v. X is called continuous if its distribution function is continuous on R.

Densities of (continuous) probability distributions.

1. Uniform density on [a, b] :

f(x) =


1

b− a
if a ≤ x < b,

0 otherwise.

2. Exponential density:

f(x) =

{
λe−λx if x ≥ 0,

0 if x < 0, where λ > 0

3. Two sided exponential density:

f(x) =
1

2
λe−λ|x|, where λ > 0.
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4. Normal density:

f(x) =
1√
2πσ

e−
(x−m)2

2σ2 , σ > 0, m ∈ R.

5. Cauchy density:

f(x) =
θ

π(x2 + θ2)
, θ > 0.

All these densities induce absolutely continuous (hence, continuous) distributions.

Recall that given two measures µ and ν, by the Lebesgue decomposition theorem ν = νa+νs,
where νa << µ and νs ⊥ µ. Then the Radon-Nikodym derivative dν

dµ
is defined to be dνa

dµ
. If µ is

Lebesgue measure, then there is a further decomposition of the singular part of ν into atomic
and a singular continuous part.

The prime example of a singular continuous measure is defined by the distribution function

F (x) =


0 if x < 0

C(x) if 0 ≤ x < 1,

1 if x ≥ 1,

where C(x) is the Cantor-Lebesgue function (aka, Devil’s staircase) on [0, 1] :

Cantor-Lebesgue function C(x)

Observe that

(i) F ′(x) = 0 a.e.,
(ii) F is continuous but not absolutely continuous,

Hence, the measure ν defined by F is singular w.r.t. Lebesgue measure. It follows from the
construction that support of ν is the Cantor set (an uncountable set).

F. Riesz constructed a purely singular continuous measure with support all of [0, 1]!

There is another convenient method of constructing continuous measures that are not nec-
essarily absolutely continuous. This method involves IFS type fractals which are attractors of
some special maps on Rn.

A map S : Rn → Rn is called a similarity transformation if ∃ a constant 0 < s < 1 (called
contracting factor) such that

‖S(x)− S(y)‖ = s‖x− y‖, ∀ x, y ∈ Rn.

Let {S1, S2, . . . , SN} be similarity transformations, then there is a unique nonempty compact
set A ⊂ Rn with

A = ∪Nk=1Sk(A). [Hutchinson, 1981]
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The setA is called the attractor or invariant set of {S1, S2, . . . , SN}. Furthermore, if (p1, p2, . . . , pN)

is a probability vector (i.e., pi ≥ 0 and
∑N

i=1 pi = 1), then there is a unique probability measure
P on B(Rn) with

P =
N∑
i=1

pi(P ◦ S−1
i ). [Hutchinson, 1981]

If pi > 0 for all 1 ≤ i ≤ N, then the support of P is the attractor A. This measure P is called
the self-similar measure associated with {S1, S2, . . . , SN}.

In the case that the collection {S1, S2, . . . , SN} of similarities satisfy some additional condi-
tions (such as open set condition, or strong separation condition), then the associated attractor
is a fractal with n-dimensional Lebesgue measure 0. Hence, P is singular w.r.t. Lebesgue
measure.

3. Voronoi Partitions.

Generally speaking, a Voronoi diagram is the partitioning of a (plane) region with n points
(called generating points) into subregions (convex polygons) such that each subregion contains
exactly one generating point and every point in a given subregion is closer to its generating
point than to any other.

Let α ⊂ Rd be a (finite or locally finite) nonempty subset. The Voronoi region generated by
a ∈ α is the set defined by

W (a|α) = {x ∈ Rd : ‖x− a‖ = min
b∈α
‖x− b‖},

i.e., the Voronoi region generated by a ∈ α is the set of all points in Rd which are closest to
a ∈ α. The set α is called the generator and the collection {W (a|α) : a ∈ α} is called the
Voronoi diagram or Voronoi tessellation of Rd with respect to α.

Let P be a Borel probability measure on Rd. A Borel measurable partition {Aa : a ∈ α} of
Rd is called a Voronoi partition of Rd with respect to α (and P ) if

Aa ⊂ W (a|α) (P -a.e.) for every a ∈ α.

Voronoi diagrams w.r.t Euclidean metric d2 (L) and w.r.t. Taxi-cab metric d1 (R)

Remarks. The following are some properties of Voronoi regions:

1. Voronoi regions depend on the metric (norm); hence so does the associated Voronoi
diagram.

2. A Voronoi diagram is a (locally) finite covering for Rd; hence, the number of sets in
{W (a|α) : a ∈ α} intersecting any bounded subset of Rd is finite.

3. If W0(a|α) = {x ∈ Rd : ‖x − a‖ < minb∈α,b 6=a ‖x − b‖}, then W0(a|α) ⊂ Aa for all
a ∈ α.

4. Let β = {b ∈ α : W (b|α) ∩W (a|α) 6= ∅, then W (a|β) = W (a|α).
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Figure 1. (a) Voronoi diagram generated by α = {A,B,C}; (b) Voronoi dia-
gram generated by β = {P,Q,R} of the square in ‖ ‖2-norm.

5. The sets W (a|α) are all star-shaped relative to their generator a. Furthermore, for all
a ∈ α, a ∈ int(W (a|α)).

6. If the norm ‖ ‖ is strictly convex, then int(W (a|α) = W0(a|α) and W (a|α) = W0(a|α).
7. If d = 2 or the norm ‖ ‖ is strictly convex, then m(∂W (a|α)) = 0, where m is the
d-dimensional Lebesgue measure.

8. In Euclidean spaces Voronoi regions are always convex. The converse statement is also
valid; namely, if W (a|α) is convex for all finite α ⊂ Rd, then the underlying norm ‖ ‖ of
Rd is Euclidean. Hence, convexity of Voronoi regions is a characterization of Euclidean
norms! This is a classical result due to H. Mann (1935).

Let B ⊂ Rd be a Borel set and µ be a Borel measure on Rd. A µ-tessellation of B is a
countable covering {Cn}n∈N of B by Borel sets Cn ⊂ B such that µ(Cn ∩ Cm) = 0 for m 6= n.
In general, the Voronoi diagram of a set α ⊂ Rd need not be a tessellation of Rd; however, if
‖ ‖ is a strictly convex, then it is a tessellation.

4. Centers and Moments of Probability Distributions.

Let X = (X1, X2, . . . , Xd) be a Rd-valued random variable with distribution P such that
E‖X‖r <∞, 1 ≤ r <∞.

• A point a ∈ Rd is called a center of P (of order r) if E‖X − a‖r = infb∈Rd E‖X − b‖r.
In general, centers of P need not be unique. The set of all centers of P (of order r) is
denoted by Cr(P ).
• The value Vr(P ) = infa∈Rd E‖X − a‖r, where a ∈ Cr(P ), is called the r-th moment of
P about the center.

Note. If ‖ ‖ is strictly convex and r > 1, then |Cr(P )| = 1.

A map T : Rd → Rd is called a similarity transformation if there exists c ∈ (0,∞) such that
‖Tx− Ty‖ = c‖x− y‖. (The real number c is called as the scaling number.) The following are
known: Let T : Rd → Rd be a similarity with scaling factor c.

1. If α is the set of generators of a Voronoi diagram, then the set T (α) = {Ta : a ∈ α} is
(locally) finite.

2. W (Ta|T (α)) = TW (a|α).
3. Cr(T (P )) = TCr(P ), and Vr(TP ) = crVr(P ).

5. Quantization - Set up.

The term quantization has its origin in the theory of signal processing. It is used as a
mean to process discretising signals. As a mathematical concept, quantization for probability



6 Doğan Çömez

distributions is the process of approximating a d-dimensional probability distribution P by a
discrete probability with a given number of supporting points. In other words, it concerns with
the best approximation of a random vector X with distribution P by a random vector Y with
range consisting of finitely many points. It follows that this problem concerns determining an
appropriate partitioning of the underlying space.

Consequently, two main goals of the theory of quantization are: (1) to find the exact config-
uration of n-optimal sets that yield to “good” approximation that would allow one to quantize
the given probability to within an allowable margin of error, and (2) estimate the rate at which
some specified measure of error goes to 0 as n→∞.

Let X be a Rd-valued random variable with distribution P such that E‖X‖r <∞. Assume
that the set α = {a : a ∈ Rd} of centers for the quantizing measure of P be given. If
Aα = {Aa : a ∈ α} is the Voronoi partition of Rd w.r.t α, then the quantized version of X is
f(X), where f =

∑
a∈α aχAa . So, the goal is to find n-optimal sets Aα (of centers) such that

X and f(X) are within an allowable margin of error in an appropriate metric on the space of
probability measures on Rd.

There are many well known such metrics: Levy metric, Prokhorov metric, Ky Fan metric,
etc. The most suitable metric for our purposes is Kantorovich Lr-metric. For any two Borel
probability measures P1 and P2 on Rd with

∫
‖x‖rdPi <∞, the Kantorovich metric is defined

as

ρr(P1, P2) = inf
µ

[

∫
‖x− y‖rdµ(x, y)]

1
r ,

where infimum is taken over Borel probability measures µ on R2d with marginals P1 and P2.

Let X be a Rd-valued random variable with distribution P such that E‖X‖r < ∞. Given
a positive integer n, let f : Rd → Rd be a measurable (partitioning) function such that
|f(Rd)| ≤ n. We call the collection

Fn = {f : Rd → Rd : f measurable, |f(Rd)| ≤ n}
as the set of n-quantizers. Observe that, for all f ∈ Fn, f(X) is a quantized version of X with
range consisting of at most n points.

Fact.1 If P f is the image measure of P under f, then

inf
f∈Fn

E‖X − f(X)‖r = inf
f∈Fn

ρrr(P, P
f ).

Hence, the quantity inff∈Fn E‖X − f(X)‖r provides the best approximation sought after.
Consequently, the n-th quantization error for P of order r is defined by

Vn,r(P ) = Vn,r(X) = inf
f∈Fn

E‖X − f(X)‖r.

A quantizer f ∈ Fn is called an n-optimal quantizer for P of order r if

Vn,r(P ) = E‖X − f(X)‖r;
i.e., the infimum is attained by f(X). For a fixed n, searching for an n-optimal quantizer for
P (of order r) is equivalent to the n-centers problem.

Fact 2. Vn,r(P ) = infα⊂Rd, |α|≤nE(mina∈α ‖X − a‖r).
A (finite) set α ⊂ Rd, |α| ≤ n, is an n-optimal set of centers for P of order r if

Vn,r(P ) = E(min
a∈α
‖X − a‖r).

Fact 3. If f ∈ Fn is an n-optimal quantizer for P (of order r), then f(Rd) is an n-optimal set
of centers for P (of order r).
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There is the following converse statement of Fact 2:

Fact 2′. If α ⊂ Rd is n-optimal set of centers for P and {Aa : a ∈ α} is a Voronoi partition of
Rd with respect to α, then f =

∑
a∈α aχAa is an n-optimal quantizer for P.

For the rest of this section we assume that n ≥ 2 (to avoid triviality) and X is a Rd-valued
r.v. with distribution P with |supp(P )| ≥ 2 and E‖X‖r < ∞ for some 1 ≤ r < ∞. P need
not be absolutely continuous w.r.t. m.

Let n ≥ 2 be fixed and let Cn,r(P ) = Cn,r(X) denote the family of all n-optimal set of centers
for P of order r. The following statement provides a necessary conditions for optimality.

Theorem 1. Let α ∈ Cn,r(P ).

a) Let r > 1 or P (α) = 0. If the underlying norm is strictly convex, then the Voronoi
diagram of α is a P -tessellation of Rd.

b) Let {Aa : a ∈ α} be a Voronoi partition of Rd w.r.t. α and P. Then |α| = n and
P (Aa) > 0 for all a ∈ α. In particular, P (W (a|α)) > 0.

Notice that P in the previous Theorem need not be absolutely continuous w.r.t. m. The
assertion (a) of the Theorem is not valid in general. (see: Example 4.5 on p:40 in [GL]).

Let Sn,r(P ) be the family of all sets α ⊂ Rd with |α| = n satisfying the condition P (W (a|α)) >
0. It is clear that Cn,r(P ) ⊂ Sn,r(P ).

Corollary. Let f ∈ Fn be an n-optimal quantizer for P of order r and let α = f(Rd). Then

a) a ∈ Sn,r(P ),
b) {{f = a} : a ∈ α} is a Voronoi partition of Rd w.r.t. α and P,
c) P ({f = a}) > 0, and
d) a ∈ Cn,r(P (�|{f = a})) for every a ∈ α.

The sets Cn,r(X) and Sn,r(X) have the following same equivariance property.

Fact 4. Let T : Rd → Rd be a similarity with scaling factor c > 0. Then

a) Cn,r(TX) = TCn,r(X),
b) Sn,r(TX) = TSn,r(X), and
c) Vn,r(TX) = crVn,r(X).

The n-th quanatization error functional has the following properties:

Fact 5. Let P =
∑m

i=1 siPi, where si ≥ 1 with
∑m

i=1 si = 1, and
∫
‖x‖rdPi(x) <∞.

a) Vn,r(P ) ≥
∑m

i=1 siVn,r(Pi). (Concavity)
b) If ni ∈ N with

∑m
i=1 ni ≤ n, αi ∈ Cn,r(Pi), and α = ∪αi, then

Vn,r(P ) ≤
∫

min
a∈α
‖x− a‖rdP (x) ≤

m∑
i=1

siVn,r(Pi).

The next statement ensures the existence of n-optimal quantizers.

Theorem 2. Let X is a Rd-valued r.v. with distribution P with E‖X‖r < ∞ for some
1 ≤ r <∞. Then

a) Cn,r(P ) 6= ∅ and ∪{α : α ∈ Cn,r(P )} is a bounded subset of Rd.
b) Vn,r(P ) < Vn−1,r(P ).
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Remark. There may be more than one n-optimal set of centers for P, even in the case that
P is absolutely continuous w.r.t. m.

Examples. 1. Let P be the uniform distribution on [0, 1]2 ⊂ R2. For any k > 1, let
A1, A2, . . . , An, n = 2k, be the translations of [0, 1

k
]2. If ai is the mid-point of A1, then α =

{ai : 1 ≤ i ≤ 2k} is n-optimal set of centers for P, and

E‖X − fn(X)‖r = n−
r
2

∫
[− 1

2
, 1
2

]2
‖x‖rdx, where fn =

n∑
i=1

aiχAi .

For instance, if ‖ ‖ is the sup-norm, then Vn,r = n−
r
2

2
(2+r)2r

, and α is optimal.

2. Let P be the normal distribution N(0, 1) on (R2, d2) and r = 2.

(i) When n = 2, C2,2 = {α = {−a, a} : a ∈ R2, ‖a‖2 = E|X| =
√

2
π
}., whereas V2,2(X) =

2− 2
π
. This is optimal.

(ii) When n = 3, then one can exhibit more than one set of 3-centers. These are

α1 = {(−c, 0), (0, 0), (c, 0)}, where c ≈ 1.224, with V3,2 ≈ 1.190, and

α2 = {(0, b), (
√

3b

2
,− b

2
), (−

√
3b

2
,− b

2
), where b ≈ 1.036, with V3,2 ≈ 1.036.

Hence α2 is optimal.

In one dimensional setting, under a rather relaxed condition, one can ensure uniqueness of
optimality. A probability distribution is called strongly unimodal if P = hm, where h is a
measurable function with I = {h > 0} is an open interval and log h is concave on I.

Theorem 3. (Kieffer, 1983) If P is strongly unimodal, then |Cn,r(P )| = 1 for every n ∈
N, 1 ≤ r <∞.

Examples. 1. Uniform distribution N(0, 1) on [0, 1] is strongly unimodal. For n = 2k, α =
{2i−1

2k
: i = 1, 2, . . . , n} is the set of n-optimal centers of order r, for all r ≥ 1, and Vn,r(P ) =

1
nr(1+r)2r

.

2. Exponential distribution Pe is also strongly unimodal. P = λh, where h(x) = 1
c
e−

x
cχ(0,∞),

with c = 1
log 2

. Then {a1, a2, . . . , an}, where ai = ln(
√
n2+n

n+1−i ), 1 ≤ i ≤ n, is the unique optimal

set of n-centers for P of order 1. In this case, Vn,1 = ln(1 + 1
n
).

As the following example shows, if P is not strongly unimodal, then the assertion of Theo-
rem.3 may not hold.

Example. Let P = λh, be on R, where

h(x) =


− |x|

3
+

5

12
if |x| < 1

7− |x|
72

if 1 ≤ x < 7,

0 if x ≥ 7.

P is symmetric and unimodal, but not strongly unimodal (since log h is not concave). For
n = r = 2, the sets

α1 = {−1, 3}, α2 = {−31}, and α3 = {−61

36
,
61

36
}
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are set of 2-centers for P of order 2. Since

E(min
a∈α1

|X − a|2) = E(min
a∈α2

|X − a|2) =
47

18
= 2.611 . . . with V2,2 =

47

18
;

E(min
a∈α3

|X − a|2) =
355

129
= 2.739 . . . with V2,2 =

53

18
.

Hence α1 and α2 are 2-optimal, whereas α3 is not 2-optimal. Hence, |C2,2(P )| = 2.

There is a well known iterative algorithm to construct an n-optimal centers for P of order
r, which is originally due to H. Steinhaus (1956) and rediscovered by S.P. Lloyd (1957 but
published in 1982).

Having the main results outlined above, we will summarize the (practical) optimality con-
ditions and describe Lloyd algorithm. The necessary conditions for a set α with |α| = n to
be optimal for a probability P are: (1) the Voronoi diagram generated by α all have positive
P measure, and (2) each a ∈ α is optimal (i.e., center) for its Voronoi region. The Lloyd
algorithm is based on these conditions and proceeds as follows: First choose a set of size n and
determine the Voronoi diagram generated by this set, and then replace this set with a new set
whose elements are the centers of these Voronoi regions. Continue this process, always using
the new set to generate new Voronoi diagrams and then replacing this set with new centers,
until the average error has reached to within some predetermined accuracy. If P is strongly
unimodal, then the Lloyd algorithm yields to an optimal set. Without unimodality, the Lloyd
algorithm yields at best a set which gives the local minimum.

4. Asymptotic Quantization (non-singular case).

In this section we will study the asymptotic behavior of Vn,r(P ) as n → ∞, mostly in the
case that P is nonsingular w.r.t m. Throughout this section P = Pa + Ps is the Lebesgue
decomposition, where Pa is the absolutely continuous part and Ps is the singular part of P.

Fact 6. If E‖X‖r <∞, then limn→∞ Vn,r(P ) = 0.

Remark. Fact.6 reflects that ∪∞n=1Fn is a dense subset of all probability distributions on Rd.

Let A ⊂ Rd be a bounded Borel set with m(A) > 0 and U be the uniform distribution on
A. Define

Mn,r(A) =
Vn,r(U(A))

m(A)r/d
,

the normalized n-th quantization error for U of order r. Also define

Qr(A) := inf
n≥1

nr/dMn,r(A), where A ⊂ Rd Borel set.

With the convention that, for 0 < p <∞, ‖f‖p = [
∫
|f |pdµ]1/p, we have

Theorem 4. Let E‖X‖r+δ <∞ for some δ > 0. Then

a) Qr([0, 1]d) > 0, and
b) limn→∞ n

r/dVn,r(P ) = Qr([0, 1]d)‖dPa
dm
‖d/d+r.

Remarks. 1. If P is a singular distribution, then (b) above only yields Vn,r(P ) = o(n−
r
d ).

2. The moment condition E‖X‖r+δ < ∞, for some δ > 0, ensures that the limit exists.
Without the moment condition we have

lim inf
n→∞

nr/dVn,r(P ) ≥ Qr([0, 1]d)‖dPa
dm
‖d/d+r.
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When Pa 6= 0 it follows from (a) and (b) of the Theorem that 0 < Qr([0, 1]d)‖dPa
dm
‖d/d+r <∞.

The number

Qr(P ) = Qr(X) = Qr([0, 1]d)‖dPa
dm
‖d/d+r

is called the r-th quantization coefficient of the probability P on Rd. Notice that Qr(P ) de-
pends on the underlying norm. Also, the scaling property of Vn,r(P ) carries over to Qr(P ) :
Qr(TX) = crQr(X).

Examples. 1. If P is the uniform distribution U([a, b]), then Qr(P ) = 1
1+r

( b−a
2

)r.

2. If P is the normal distribution N(0, 1), then Qr(P ) = (π
2
)
r
2 (1 + r)

r−1
2 .

3. If P is the exponential distributionE(λ), then Qr(P ) = (λ(1+r)
2

)r.

Let Γ = {αn}n≥1 be a sequence where αn ⊂ Rd with |αn| ≤ n. The sequence Γ is called
asymptotically n-optimal set of centers for P of order r if

lim
n→∞

nr/dE(min
a∈αn
‖X − a‖r) = Qr(P ),

provided that Pa 6= 0 and E‖X‖r+δ <∞ for some δ > 0.

Observe that if {αn}n≥1 is asymptotically n-optimal set of centers for P of order r and
{Aa : a ∈ αn} is a Voronoi partition of Rd w.r.t. αn, then (fn)n with fn =

∑
a∈αn aχAa ∈ Fn

is an asymptotically n-optimal quantizer of order r, that is,

lim
n→∞

nr/dE‖X − fn(X)‖r) = Qr(P ).

Under rather mild conditions, asymptotically n-optimal set of centers for P of order r exists.
(see: [GL] Section 7).

For any set α ⊂ Rd, let d(x, α) = infa∈α ‖x− a‖, the distance of x to α. Now, for any Borel
probability measure P on Rd define

en,r(P ) = inf
α⊂Rd, |α|≤n

‖d(x, α)‖r.

From Fact.1, it follows that, for 1 ≤ r <∞,

en,p(P ) = Vn,r(P )1/r.

When r =∞ (the worst case scenario), the definition becomes

en,∞(P ) = inf{ sup
x∈supp(P )

d(x, α) : α ⊂ Rd, |α| ≤ n}.

Furthermore, if supp(P ) is compact, en,∞(P ) < ∞. Now, for any nonempty compact set
A ⊂ Rd, we define en,r(A) = en,r(P ), where P is a probability with A = supp(P ). The number
en,∞(A) is called an n-th covering radius for A, since searching for α ∈ Cn,∞ is equivalent to
the problem of finding the most economical covering of A by at most n-balls of equal radius.

Fact.7 Let n ∈ N.
a) If 1 ≤ r ≤ s ≤ ∞, then en,r(P ) ≤ en,s(P ).
b) If supp(P ) is compact, then limr→∞ en,r(P ) = en,∞(P ).
c) If A ⊂ Rd is a nonempty compact set, then en,∞(A) = inf |α|≤n dH(α,A), where dH(�, �)

is the Hausdorff metric.
d) If A ⊂ Rd is a nonempty compact set with m(A) = 0, then en,∞(A) = o(n1/d).
e) If X is a Rd-valued r.v. with distribution P and supp(P ) is compact, then

en,∞(A) = inf
f∈Fn
‖X − f(X)‖∞.
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5. Asymptotic Quantization for Singular Probability Distributions.

In the previous section we have seen that, if the absolutely continuous (w.r.t. m) part of the
propability does not vanish, the asymptotics of the minimal error tend to behave “nicely”, and
certain limits are known to exist. However, such results are either not known or much difficult
to obtain in the strictly singular case.

Simplest, and absolutely uninteresting, singular measure is the dirac delta distribution. It
is the Lebesgue-Stieltjes measure induced by the Heaviside step function H(x) = 0 if x < 0
and H(x) = 1 if x ≥ 0. This measure has support consisting of only the point 0 (hence, such
measures are called pure point measures).

Interesting singular measures are those with larger supports. One such measure is the
constructed using Cantor-Lebesgue function (also known as the Devil’s Staircase). Let D :
[0, 1]→ [0, 1] be the Cantor-Lebesgue function, which is a non-decreasing continuous function
with D(0) = 0, D(1) = 1, and has derivative 0 almost everywhere on [0, 1] w.r.t. Lebesgue
measure (since Lebesgue measure of the Cantor set is 0). Let µD be the measure on given by the
Lebesgue-Stieltjes measure induced by the function D. Then the Radon-Nikodym derivative
dµD
dm

= 0, yet µD is certainly not 0 since µD([0; 1]) = 1. At the same time, since D is continuous,
µD contains no atoms. Therefore, µD is a purely singular continuous measure.

The previous example is not really that different from the atomic case except the support
of the singular part of the measure is an uncountable fractal set rather than a countable
collection of points. To see strange Singular measures can be very “strange”; for instance,
consider the measure µF given by F. Riesz. It is constructed similarly to µD, where the
function D is replaced by an increasing function F : [0, 1] → [0, 1] with F (x) 6= 0 for all
x ∈ [0, 1] such that dF

dm
= 0 m-a.e. Hence µF has the Radon-Nikodym derivative dµF

dm
= 0, yet

µF has no atoms. Hence µF is purely singular continuous measure with support [0, 1]. (See the
article Singular Continuous Measures by Michael Pejic, and/or the article On fine structure of
singularly continuous probability measures and random variables with independent Q-symbols
by S. Albeverio, et al.)

Another class of singular measures is obtained via self-similar sets (fractals). If {A; f1, . . . , fn}
is an IFS with attractor A, where each fi is a contracting similarity on Rd, and (p1, . . . , pn) is
a probability vector, then there is a unique probability measure P on Rd with

P =
n∑
i=1

pi(P ◦ f−1
i ). [Hutchinson, 1981]

Then this measure P is singular w.r.t. the Lebesgue measure m on Rd. Hence, with this
method, one can construct many non-trivial singular measures.

In this section we will study the asymptotic behavior of en,r(P ) as n → ∞ for continuous
singular distributions P w.r.t m, where

en,p(P ) = Vn,r(P )1/r, 1 ≤ r <∞, and

en,∞(P ) = inf{ sup
x∈supp(P )

d(x, α) : α ⊂ Rd, |α| ≤ n}.

Such singular measures may have have discrete support or continuous; of course, the interesting
cases are those with non-discrete support. Since, for singular measures, we only know that
en,p(P ) = o(n1/d), one needs a more refined tool to study the behaviour of en,p. It turns out that
there is a very close relationship between dimension theory and quantization. This, besides
leading to the notion of “quantization dimension”, also provides a convenient way to investigate
asymptotic behavior of en,r(P ) for any probability measure P.
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Given a Borel probability measure P on Rd, and r ∈ [1,∞], the lower quantization dimension
of P of order r is defined as

Dr := Dr(P ) = lim inf
n→∞

log n

− log en,r
, and

the upper quantization dimension of P of order r is defined as

Dr := Dr(P ) = lim sup
n→∞

log n

− log en,r
.

If Dr = Dr = Dr = Dr(P ) (i.e., when the limit exists), then Dr = limn→∞
logn

− log en,r
is called the

quantization dimension of P of order r. Observe that Dr does not depend on the underlying
metric (norm), but depends only on the support of P. Also, if Dr exists, we have

log en,r ∼ log(
1

n
)1/Dr .

This can be interpreted that quantization dimension measures the asymptotic rate at which
en,r goes to zero.

Before proceeding further, let’s have a short sojourn to the realm of Dimension Theory.

Covering Dimension: A space has Covering (Lebesgue) dimension m if for every open
cover of that space has a refinement such that every point is contained in at most m+1
elements (of the refinement).

Box Dimension: dimB(A) := limε→0
logN(ε)
log(1/ε)

, where N(ε) is the number of boxes of

side-length ε required to cover A.
Packing Dimension: The value at which Pd(A) = limδ→0 inf{Ui}

∑
i(diamUi)

d transi-
tions from∞ to 0, where {Ui} is a countable pairwise disjoint closed balls with centers
in A and radius δ. Notation: dimP (A).
Hausdorff Dimension: The value at which Hd(A) = limε→0 inf{Ui}

∑
i(diamUi)

d transi-
tions from ∞ to 0. Notation: dimH(A).

We also have the concept of dimension of a (probability) measure µ which is defined as

dim�(µ) := lim
δ→0

inf{dim�(A) : µ(A) = 1− δ}.

It turns out that these various dimensions are interrelated in some fashion:

(i) In general, we have

dimH(A) ≤ dimP (A) ≤ dimB(A), and dimH(A) ≤ dimB(A) ≤ dimB(A).

(ii) For self similar sets satisfying Open Set Condition, all these are equal (and is also called
similarity dimension).

(iii) It is possible that dim�(µ) < dim�(K), where K is the support of µ.

Fact 8. Let P be a Borel probability measure and r ∈ [1,∞].

a) If 0 ≤ t < Dr < s, then lim supn→∞ ne
t
n,r =∞ and limn→∞ ne

s
n,r = 0.

b) If 0 ≤ t < Dr < s, then limn→∞ ne
t
n,r =∞ and lim infn→∞ ne

s
n,r = 0.

Corollary. Let P be a Borel probability measure and r ∈ [1,∞].

a) If 1 ≤ r ≤ s ≤ ∞, then Dr ≤ Ds and Dr ≤ Ds.

b) If D ∈ (0,∞) is such that 0 < lim infn→∞ ne
D
n,r ≤ lim supn→∞ ne

D
n,r <∞, then Dr = D.

c) If r ∈ [1,∞) and E(‖X‖r+δ) <∞ for some δ > 0, then Dr ≤ d. If Pa 6= 0, then Dr = d.
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d) D∞ ≤ d. If m(supp(P ) > 0, then D∞ = d.

There is an interesting relationships of the quantization dimension to other types of (fractal)
dimensions can be summarized as follows.
Fact 9. Let K ⊂ Rd be compact and P be a Borel probability measure with supp(P ) = K.
Then

dimH(K) ≤ D∞(P ), and, ∀r ≥ 1, dimH(P ) ≤ Dr(P ).

Theorem 5. Let K ⊂ Rd be compact. Then

dimB(K) = D∞(K), and dimB(K) = D∞(K).

Corollary. If dimB(K) exists for K ⊂ Rd compact, then D∞(K) also exists and equals the
box dimension.

Theorem 6. (Pötzelberger) Let P be a Borel probability measure with compact support
K ⊂ Rd. Then, for 1 ≤ r ≤ s ≤ ∞,

a) Dr(P ) ≤ Ds(P ) ≤ D∞(P ) = D∞(K) = dimB(K), and
b) Dr(P ) ≤ Ds(P ) ≤ D∞(P ) = D∞(K) = dimB(K).

6. Self-similar Sets and Measures.

The problem of determining quantization dimension function for a general measure is open;
however, for some classes of measures some positive results have been obtained. One such case
is the class of self-similar sets and self-similar measures.

Let Si : Rd → Rd, 1 ≤ i ≤ N, be a collection of contractive similarity transformations with
corresponding scaling factors 0 < si < 1. Then there exists a unique nonempty compact subset
A ⊂ Rd with

A = ∪Ni=1Si(A).

The set A is called the attractor of the collection S = {Si}; it is also called as the self-similar
set associated to {Si}. Hutchinson (1981) showed that there exists a unique real number D ≥ 0

such that
∑N

i=1 s
D
i = 1. D is called the similarity dimension of S (or, of A) and is equal to

Hausdorff dimension of A. Hutchinson also showed that for a probability vector (p1, p2, . . . , pN),
there is a unique probability measure P on Rd such that

P =
N∑
i=1

pi(P ◦ S−1
i ).

If pi > 0 for all 1 ≤ i ≤ N, then supp(P ) = A. The measure P is called the self-similar measure
associated to (S, {pi}Ni=1).

If S satisfies the open set condition P is the self-similar measure corresponding to (S; {sDi }Ni=1),
then P is the normalized D-dimensional Hausdorff measure restricted to the attractor A; that
is

• 0 < HD(A) <∞, and
• P = 1

HD(A)
HD
|A.

The following are some results known about quantization of self-similar sets A and measures
P associated to (S, {pi}Ni=1).

Fact 10. Ler r ∈ [1,∞) be fixed.

a) There exists unique real number κ ∈ (0,∞) such that
∑N

i=1(pis
r
i )

κ
κ+r = 1.

b) If κ satisfy (a), then lim supn→∞ ne
κ
n,r <∞; in particular, Dr(P ) ≤ κ.



14 Doğan Çömez

c) If D is the similarity dimension of S, then lim supn→∞ ne
D
n,∞ < ∞; in particular,

D∞(P ) ≤ D.
d) If S satisfy strong separation condition and κ satisfy (a), then lim infn→∞ ne

κ
n,r > 0; in

particular, Dr(P ) ≥ κ.
e) If S satisfy strong separation condition and D is the similarity dimension of S, then

lim infn→∞ ne
D
n,∞ > 0; in particular, D∞(P ) ≥ D.

Theorem 7. Let r ∈ [1,∞), κ satisfy (a) in the fact above, and S satisfy strong separation
condition. Then 0 < lim infn→∞ ne

κ
n,r ≤ lim supn→∞ ne

κ
n,r < ∞. In particular, Dr(P ) exists

and equals κ.

Theorem 8. Let r ∈ [1,∞], κ satisfy (a) in the fact above, and S satisfy strong separation
condition.

a) If pi = sDi , 1 ≤ i ≤ N, then Dr(P ) = D.
b) If (p1, . . . , pN) 6= (sD1 , . . . , s

D
N), then Dr(P ) exists and

Dr(P ) =

{
D, r =∞,
κ, r <∞.

Moreover, q < r ⇒ Dq(P ) < Dr(P ), and limr→∞Dr(P ) = D.

As observed above, for many self-similar probabilities, the inequality

0 < lim inf
n→∞

neDrn,r ≤ lim sup
n→∞

neDrn,r <∞

holds for r ∈ [1,∞]. One naturally asks existence of conditions under which the limit exists.
In general, existence of the quantization coefficient, the r

Dr
-th of this limit, is the question. It

is known that only under some strict conditions this limit exists (see Theorem 14.12 of [GL]),
without which the limit fails to exist.

Cantor Distribution.
Above, we have seen that for self-similar distributions one can obtain more features of

the associated quantization. In the very special case of self-similar set/measure of Cantor
distribution, there is more. Namely, besides the properties known for general self-similar
distributions, one can also describe all optimal sets of n-centers, quantization errors Vn,r(P ),
and all limit points of the sequence (n2/DVn,r(P ))n for r = 2. Also, one can show that the
quantization coefficient Q2(P ) does not exist.

Recall the Cantor set: Let S1, S2 : R → R, where S1(x) = 1
3
x, and S1(x) = 1

3
x = 2

3
. The

attractor of S = {S1, S2} is the standard Cantor set C ⊂ [0, 1]. It is known that the similarity
dimension of C is D = log 2

log 3
. Consider the probability vector (1

2
, 1

2
), and let P be the self similar

probability associated to (S; 1
2
, 1

2
). Since S satisfies strong separation condition, P is the D-

dimensional Hausdorff measure on C; hence, it is called as the Cantor distribution. Observe
that (sD1 , s

D
2 ) = (1

2
, 1

2
), by Theorem 8 above, D is the quantization dimension of P of order r

for all r ∈ [1,∞].

For any σ ∈ {0, 1}∗ (the set of all words in {1, 2}) let aσ = Sσ(1
2
). Let l(n) = [log2 n], n ≥ 1.

If I ⊂ {1, 2}l(n) with |I| = n− 2l(n), let

αn(I) = {aσ : σ ∈ {1, 2}l(n) \ I} ∪ ∪σ∈I{aσ1,σ2}.

Also, let f : [1, 2]→ R be defined by f(x) = 1
72
x2/D(17− 8x). Observe that V2(P ) = 1

8
.

Theorem 9. [GL2] Let P be the Cantor distribution and let D, l(n), αn(I), and f be as
defined above.
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a) For every n ≥ 1 TFAE:
(i) α is an n-optimal set of centers of order 2 for P.
(ii) ∃ I ⊂ {1, 2}l(n) with α = αn(I).

b) For every n ≥ 1,

Vn,2(P ) =
1

18l(n)

1

8
[2l(n)+1 − n+

1

9
(n− 2l(n))].

c) The set of accumulation points of (n2/DVn,2(P ))n is the interval

[
1

8
, f(

17

8 + 4D
)] = [0.125, 0.2589 . . . ].

The picture of n-optimal sets, n = 1, 2, 3 and 4, for the cantor distribution are below.
0
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Some known results (quantization dimension)
Since the early 1980’s, beginning with Zador, many mathematicians, notable Graf & Luscghy,

have obtained numerous properties of quantization. The field is relatively new, and there are
numerous questions we have no answers for.

Recall that if µ has non-vanishing absolutely continuous part, then Dr(µ) exists and Dr = d.
If µ is singular, then Dr(µ) may or may not exist. We don’t know the complete picture yet;
however there are some results in some cases.

If µ has bounded support K, then

D2 ∈ [dimH(µ), dimB(µ)] and D2 ∈ [dimP (µ), dimB(µ)].

This result appears in the papers of Pötzelberger, M. Dai and Z. Liu, among others. Fur-
thermore,

If supp(µ) = K is compact,

dimH(µ) ≤ Dr(µ) ≤ dimB(K), and Dr(µ) ≤ dimB(K).

Theorem [Graf-Luschgy, 2000] Let µ be a self-similar measure generated by an IFS sat-

isfying strong separation condition and κ satisfy the equation
∑N

i=1(pis
r
i )

κ
κ+r = 1. Then

0 < lim infn→∞ nV
κ/r
n,r ≤ lim supn→∞ nV

κ/r
n,r < ∞. In particular, Dr(P ) exists and equals κ

(similarity dimension).

Some known results (quantization coefficient)
In general, the existence of the quantization coefficient for singular measures is not known.

However, under some very stringent conditions the quantization coefficient exists (Graf-Luschgy,
2000).
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• Lindsay and Mauldin Investigated Dr for a measure µ associated with a conformal
finite IFS with OSC. In particular, they proved that the upper quantization coefficient
for µ associated such and IFS is finite.
• In a series of articles Roychowdhury proved the existence of Dr for probability mea-

sures µ with bounded distortion (2009), Moran measures (2010, 2011), recurrent self-
similar measures (2011), self-similar measures generated by infinite IFS (2011), for
Gibbs-like measures (2013); he also obtained estimates of Dr for condensation systems
(2012).
• Roychowdhury (2011) and Zhu (2008) independently proved that the lower quan-

tization coefficient for µ associated with a conformal finite IFS with OSC is positive.
This was an open question for sometime.
• Roychowdhury (2014) also studied quantization coefficient for ergodic measures on

symbolic spaces.
• Also, Mihailescu & Roychowdhury (2015) worked on quantization coefficients for

infinite IFS.

Some known results (optimal sets)
Study of optimal sets is relatively recent. This is mostly due to the fact that it is a difficult

problem to deal with. The optimal sets of n-means for many probability measures is not
known. The problem is studied only in the case of some absolutely continuous measures and
some special cases of singular measures.

• Graf & Luschgy (1997) Obtained complete characterization of the optimal sets for
the (classical) Cantor distribution. A major accomplishment as well as an inspiration
and guide for many others.
• Dettmann & Roychowdhury (2017): For uniform distributions on equilateral tri-

angles.
• Roychowdhury: For distributions generated by dyadic Cantor sets, infinite simili-

tudes on R, etc.
• Çömez & Roychowdhury (2016, 2017): For probability distributions on Sierpinski

carpets, for probability distributions generated by infinite affine transformations, and
for probability distributions on R-triangles.

For example, Sierpinski Carpet S given by, as an IFS, the similarity mapping S1(x1, x2) =
1
3
(x1, x2), S2(x1, x2) = 1

3
(x1, x2) + (2

3
, 0), S3(x1, x2) = 1

3
(x1, x2) + (0, 2

3
), and S4(x1, x2) =

1
3
(x1, x2) + (2

3
, 2

3
), (x1, x2) ∈ R2, satisfies SSC. For the associated self-similar Borel probability

measure PS on R2 the optimal sets of n-means, as in the cantor distribution, (roughly) followthe
action of the maps Sω, ω ∈ {1, 2, 3, 4}k.

Theorem. [Ç & Roychowhury, 2016] Let n ≥ 4 and 1 ≤ m ≤ 3. If n = m4`(n) + k, where k
is a positive integer such that 0 ≤ k < 4`(n) for some positive integer `(n), and t ⊂ I`(n) with
card (t) = k, then,

αn(t) = {Sσ(αm) : σ ∈ I`(n) \ t} ∪ {Sσ(αm+1) : σ ∈ t}

is an optimal set of n-means. The number of such sets is (2m−1)4`(n)−k · 4`(n)Ck · 2mk if m = 1, 2,

and (2m−1)4`(n)−k · 4`(n)Ck if m = 3. The corresponding quantization error is given by

Vn =
∑

σ∈I`(n)\t

∫
Jσ

min
a∈Sσ(αm)

‖x− a‖2dP +
∑
σ∈t

∫
Jσ

min
a∈Sσ(αm+1)

‖x− a‖2dP,

where uCv =

(
u
v

)
, the binomial coefficients.
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Figure 2. Optimal configuration of n points, 1 ≤ n ≤ 9 for Sierpinski Carpet
with SSC

Beyond the cases mentioned above, the problem of determining n-optimal sets is completely
open for self-similar measures with overlap.

7. Condensation Systems

Condensation measures and systems
Let F = {Sj}Nj=1 be an IFS, p = (p0; p1, p2, · · · , pN) a probability vector and ν be a Borel

probability measure on Rd with compact support E. Then, there exists a unique Borel prob-
ability measure µ on Rd with (compact) support KE such that

µ = p0ν +
N∑
j=1

pjµ ◦ S−1
j , where KE = ∪Nj=1Sj(KE) ∪ E.

The measure µ is the condensation measure (or inhomogeneous self-similar measure) of the
condensation system (F, p, ν).

Consider the condensation system ({Sj}2
j=1, (pj)

2
j=0, ν), where:

S1(x) =
1

5
x, S2(x) =

1

5
x+

4

5
;T1(x) =

1

3
x+

4

15
, T2(x) =

1

3
x+

2

5

ν =
1

2
ν ◦ T−1

1 +
1

2
ν ◦ T−1

2 , and p = (
1

3
,
1

3
,
1

3
).
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Then condensation measure P associated with this system and its support K satisfy

(∗) P =
1

3
(P ◦ S−1

1 ) +
1

3
(P ◦ S−1

1 ) +
1

3
ν, and K = S1(K) ∪ S2(K) ∪ C,

where C (the dyadic Cantor set) is the support of ν.

Properties of the Condensation measure and the optimal set of 1-mean

1. Iterating (*), for ω = ω1ω2 · · ·ωn ∈ {1, 2}n,

P =
1

3n

∑
|ω|=n

P ◦ S−1
ω +

n−1∑
k=0

1

3k+1
(
∑
|ω|=k

ν ◦ S−1
ω ), and ν =

1

2k

∑
ω∈Ik

ν ◦ T−1
ω .

2. P is ‘symmetric’ about 1
2
: if two intervals of equal lengths are equidistant from the

point 1
2

then they have the same P -measure.

3. Expected value of ν := E(ν) = 1
2

and the variance of V ar(ν) := W = 1
200
.

4. Expected value of P := E(P ) = 1
2

and the variance of V ar(P ) := V = 65
584
.

∀ x0 ∈ R,
∫

(x− x0)2dP = (x0 −
1

2
)2 + V.

Thus, the optimal set of one-mean for P consists of the expected value E(P ) = 1
2
;

the quantization error is V = 65
584
.

Optimal sets for n ≥ 2
The optimal set αn of n-means and associated quantization errors Vn for n = 2, 3, 4 :

α2 = {a1, a2}, where a1 = 19
90
, a2 = 71

90
; V2 = 32929

1182600
.

α3 = {a1, a2, a3}, where a1 = S1(1
2
) = 1

10
, a2 = 1

2
, a3 = S2(1

2
) = 9

10
; V3 = 203

43800
.

α4 = {S1(1
2
), T1(1

2
), T2(1

2
), S2(1

2
)}; V4 = 1243

394200
.

Description of optimal set of n-means for n ≥ 5 requires some technical tools.
Define the sequences {a(n)}n≥1 and {F (n)}n≥1 by

a(n) =
1

4

(
6n+ (−1)n+1 − 7

)
, and

F (n) =


2n(n+ 1) if 1 ≤ n ≤ 4,

5 · 2n + 2n−
7
4

n∑
k=5

2
k
2

+
(−1)k+1

4 if n ≥ 5,

Observe that

a(n) : 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, . . . ,

F (n) : 4, 12, 32, 80, 224, 576, 1664, 4352, 12800, 33792, 100352, 266240, . . . .

Now, define

S(a(n)) = α2a(n) , S(a(n− 1)) = ∪ω∈ISω(α2a(n−1)),
S(a(n− 2)) = ∪ω∈I2Sω(α2a(n−2)),

· · · · · · · · · · · · ,
S(a(4)) = ∪ω∈In−4Sω(α2a(4)), S(a(3)) = ∪ω∈In−3Sω(α2a(3)),
S(2) = ∪ω∈In−2Sω(α22) = S(2), S(1) = ∪ω∈In−1Sω(α2) = S(1), and
S(0) = {Sω(1

2
) : ω ∈ In}, where I = {1, 2}.
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Set

αF (n) :=


S(1) ∪ S(0) if n = 1,

S(2) ∪ S(1) ∪ S(0) if n = 2,(
n
∪
`=3

S(a(`))
)
∪ S(2) ∪ S(1) ∪ S(0) if n ≥ 3.

Theorem (Çömez & Roychowdhury, 2017) For any n ≥ 1, the set αF (n)(P ) is an optimal
set of F (n)-means with quantization error given by

VF (n) =



1

3.9
W +

2

75
V if n = 1,

1

3.92
W +

2

75

1

3.9
W +

(
2

75

)2

V if n = 2,

n∑
`=3

(
2

75

)n−`
W

3.9a(`)
+

(
2

75

)n−2
W

3.92
+

(
2

75

)n−1
W

3.9
+

(
2

75

)n
V, n ≥ 3.

(V = 65
584
, W = 1

200
, variance of P and ν, respectively.)

Quantization dimension and coefficients

Theorem (ÇR, 2017) Let P be the condensation measure associated with the self-similar
measure ν. Then,

• limn→∞
2 logn

log Vn(P )
= β, i.e., the quantization dimension D(P ) of the measure P exists

and equals β = log 2
log 3

.

• β-dimensional quantization coefficient for the condensation measure P does not exist,
and the β-dimensional lower and upper quantization coefficients for P are finite and
positive.

Proposition (ÇR, 2017) Let D(P ) be the quantization dimension of the condensation mea-
sure P . Then, D(P ) = max{k,D(ν)}, where k is the unique number such that

(
1

3
(
1

5
)2)

k
2+k + (

1

3
(
1

5
)2)

k
2+k = 1.
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