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Thus

(8) u(z,t) = Z A, cosmt sinmz,

m=1

and note that this series converges absolutely. The solution can also be
expressed in terms of traveling waves. In fact

- oy = 1EHDEI@=D)

Here f(z) is defined for all z as follows: first, f is extended to [—7, 7] by

making it odd, and then f is extended to the whole real line by making

it periodic of period 27, that is, f(z + 2wk) = f(z) for all integers k.
Observe that (8) implies (9) in view of the trigonometric identity

1
cosvsinu = 3 [sin(u + v) + sin(u — v)].

As a final remark, we should note an unsatisfactory aspect of the so-
lution to this problem, which however is in the nature of things. Since
the initial data f(z) for the plucked string is not twice continuously dif-
ferentiable, neither is the function u (given by (9)). Hence v is not truly
a solution of the wave equation: while u(z,t) does represent the position
of the plucked string, it does not satisfy the partial differential equation
we set out to solve! This state of affairs may be understood properly
only if we realize that v does solve the equation, but in an appropriate
generalized sense. A better understanding of this phenomenon requires
ideas relevant to the study of “weak solutions” and the theory of “dis-
tributions.” These topics we consider only later, in Books I1I and IV.

2 The heat equation

We now discuss the problem of heat diffusion by following the same
framework as for the wave equation. First, we derive the time-dependent
heat equation, and then study the steady-state heat equation in the disc,
which leads us back to the basic question (7).

2.1 Derivation of the heat equation

Consider an infinite metal plate which we model as the plane R?, and
suppose we are given an initial heat distribution at time ¢ = 0. Let the
temperature at the point (z,y) at time ¢ be denoted by u(z,y, ).
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. Consider a small square centered at (zo,yp) with sides parallel to the -
axis and of side length h, as shown in Figure 9. The amount of heat

energy in S at time ¢ is given by

H(t) :a//su(a;,y,t)da:dy,

where ¢ > 0 is a constant called the specific heat of the material. There-
fore, the heat flow into S is

oH Ou
—gg—a/sa‘dmd’y,

which is approximately equal to
Ou
th E(mo, Yo, t),

since the area of S is h?. Now we apply Newton’s law of cooling, which
states that heat flows from the higher to lower temperature at a rate
proportional to the difference, that is, the gradient.

h
/——‘"—/%

h + >
(z0,%0) (o 4+ h/2,0)

Figure 9. Heat flow through a small square

The heat flow through the vertical side on the right is therefore
Ou
—kh — h/2,40,t),
K 806(930 + h/2,90,1)

where k > 0 is the conductivity of the material. A similar argument for
the other sides shows that the total heat flow through the square S is
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given by

ou ou
wh 5‘5(1'0 + h/2,y0,t) - 55(330 - h/2,y0,t)

ou ou
+ %(mo,yo +h/2,t) — —a—;(mo,yo ~h/2,t)| .

Applying the mean value theorem and letting h tend to zero, we find
that

ocdu _ %u + O

k Ot 0x2 = Oy?’
this is called the time-dependent heat equation, often abbreviated
to the heat equation.

2.2 Steady-state heat equation in the disc

After a long period of time, there is no more heat exchange, so that
the system reaches thermal equilibrium and Ou/8t =0. In this case,
the time-dependent heat equation reduces to the steady-state heat

equation

Ou | Pu _

(10) B2 + B2 =

The operator 8%/0x2 -+ 82 /0y? is of such importance in mathematics and
physics that it is often abbreviated as A and given a name: the Laplace
operator or Laplacian. So the steady-state heat equation is written as

and solutions to this equation are called harmonic functions.

Consider the unit disc in the plane
D ={(z,y) e R?:a® +y* <1},

whose boundary is the unit circle C. In polar coordinates (r,0), with
0 <7 and0 <6< 2w, we have

D={(r0):0<r<1} and C={(r0):r=1}

The problem, often called the Dirichlet problem (for the Laplacian
on the unit disc), is to solve the steady-state heat equation in the unit
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disc subject to the boundary condition u = f on C. This corresponds to
fixing a predetermined temperature distribution on the circle, waiting a
long time, and then looking at the temperature distribution inside the
disc.

u(1,0) = £(9)
< -

Figure 10. The Dirichlet problem for the disc

While the method of separation of variables will turn out to be useful
for equation (10), a difficulty comes from the fact that the boundary
condition is not easily expressed in terms of rectangular coordinates.
Since this boundary condition is best described by the coordinates (7, §),
namely u(1,8) = f(0), we rewrite the Laplacian in polar coordinates. An
application of the chain rule gives (Exercise 10):

8%y 10u 1 0%u

M=g5t e TR

We now multiply both sides by r?, and since Au = 0, we get

7‘292_/“. + Ir?.’li —_— .__?_2.11[_
or? or  00%
Separating these variables, and looking for a solution of the form
u(r,0) = F(r)G(0), we find

2B (r) + 7F'(r) _G"(6)
F(r) G(9)
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Since the two sides depend on different variables, they must both be
constant, say equal to . We therefore get the following equations:

{ G"(6) + AG(8) = 0,
r2F'(r) + rF'(r) — AF(r) = 0.

Since G' must be periodic of period 27, this implies that A > 0 and (as
we have seen before) that A\ = m? where m is an integer; hence

G(0) = Acosmb + Bsinmé.

An application of Euler’s identity, e = cosz +isinz, allows one to
rewrite G in terms of complex exponentials,

G(0) = Ae'™® 4 Be~imf

With A =m? and m # 0, two simple solutions of the equation in F are
F(r) =7r™and F(r) = r~™ (Exercise 11 gives further information about
these solutions). If m = 0, then F(r) = 1 and F(r) =logr are two solu-
tions. If m > 0, we note that r—™ grows unboundedly large as r tends
to zero, so F(r)G(6) is unbounded at the origin; the same occurs when
m =0 and F(r) =logr. We reject these solutions as contrary to our
intuition. Therefore, we are left with the following special functions:

U (r,0) = rlmlgimé o 7

We now make the important observation that (10) is linear, and so as
in the case of the vibrating string, we may superpose the above special
solutions to obtain the presumed general solution:

- u(r, ) = Z amrl™leime,

m=—o

If this expression gave all the solutions to the steady-state heat equation,
then for a reasonable f we should have '

u(1,0) = i ame™® = £(6).

We therefore ask again in this context: given any reasonable function f
on [0, 27] with f(0) = f(27), can we find coefficients @ so that

f(6) = i ame™? 7

m=—00




4. Problem

where p(h) — 0 as h — 0.
Deduce that

F(z +h) + F(z — h) — 2F(z)

3 — F'(z) ash—0.

[Hint: This is simply a Taylor expansion. It may be obtained by noting that
z+h
Fa+m-F@) = [ Fo)d,

and then writing F/(y) = F'(z) + (y — z)F"(z) + (y — &)¥(y — =), where ¢(h) —
Oash—0]

9. In the case of the plucked string, use the formula for the Fourier sine coefli-
clents to show that

_ 2h sinmp
m? p(m —p)’
For what position of p are the second, fourth, ... harmonics missing? For what
position of p are the third, sixth, ... harmonics missing? '

10. Show that the expression of the Laplacian

o? 52
N=—+ —

522 T oy
is given in polar coordinates by the formula

9 190 1 92
A + =+

~o2 et P e

Also, prove that
oul” | foul"_Jouf 1 |ouf”
Oz dy|  |or r2 100

11. Show that if n € Z the only solutions of the differential equation
r2F"(r) + rF'(r) = n®F(r) =0,

which are twice differentiable when 7 > 0, are given by linear combinations of
r® and ™ when n # 0, and 1 and logr when n = 0.

[Hint: If F solves the equation, write F'(r) = g(r)r™, find the equation satisfied
by g, and conclude that 7g'(r) + 2ng(r) = ¢ where ¢ is a constant.]
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Corollary 5.3 If f is integrable on the circle and f(n) =0 for all n,
then f =0 at all points of continuity of f.

The proof is immediate since all the partial sums are 0, hence all the
Cesaro means are 0.
Corollary 5.4 Continuous functions on the circle can be uniformly ap-
prozimated by trigonometric polynomsials.

This means that if f is continuous on [, 7] with f(—m) = f(7) and
¢ > 0, then there exists a trigonometric polynomial P such that

|f(z) — P(z)] <e foral —v<z<m.

This follows immediately from the theorem since the partial sums, hence
the Cesaro means, are trigonometric polynomials. Corollary 5.4 is the
periodic analogue of the Weierstrass approximation theorem for polyno-
mials which can be found in Exercise 16.

5.3 Abel means and summation

Another method of summation was first considered by Abel and actually

predates the Cesaro method.
A series of complex numbers Y po ¢k is said to be Abel summable

to s if for every 0 < r < 1, the series
o0
Alr) = Z cpr®
k=0

converges, and
lim A(r) = s.
r—1

The quantities A(r) are called the Abel means of the series. One can
prove that if the series converges to s, then it is Abel summable to s.
Moreover, the method of Abel summability is even more powerful than
the Cesiro method: when the series is Cesaro summable, it is always
Abel summable to the same sum. However, if we consider the series

1-2+43—445—-=> (-DFE+1),
k=0
then one can show that it is Abel summable to 1/4 since

[ece]

’ ’ 1
A(r) = g;o(—l)k(k +1)rk = A2

but this series is not Cesaro summable; see Exercise 13.
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5.4 The Poisson kernel and Dirichlet’s problem in the unit disc

To adapt Abel summability to the context of Fourier series, we define
the Abel means of the function f(6) ~ 32°° __ ane™ by

o0

A(f)(O) = Z rila,e™?.

n=—00

Since the index n takes positive and negative values, it is natural to write
co = ag, and ¢, = ane™® + a_ne” ™ for n > 0, so that the Abel means
of the Fourier series correspond to the definition given in the previous
section for numerical series.

We note that since f is integrable, |an| is uniformly bounded in 7, so
that A,(f) converges absolutely and uniformly for each 0 < r < 1. Just
as in the case of Cesaro means, the key fact is that these Abel means can
be written as convolutions

A (£)(0) = (f = Pr)(6),

where P,.(0) is the Poisson kernel given by

[oe]

. (4) PT(H): Z ,r.lnleine.

n=—oo

In fact,

oQ

A(f)(0) = E riMa,et™?

n=—oco
oo

= (-2-17; /_ 7; flp)e™™* ds@) e’

n=—00

= 517; /_ 7; f(w)( > T'"'e‘i"“”“’)) dp,

n=-oo

where the interchange of the integral and infinite sum is justified by the
uniform convergence of the series.

Lemma 5.5 If0 <r <1, then

1—1r?
—2rcos@+12’

Pr(a) = 1
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The Poisson kernel is a good kernel,® as T tends to 1 from below.

Proof The identity Pr 6) = ﬁm has already been derived in

Qection 1.1. Note that
1—9rcosf+ri=1-7)+2r(1— cos 0).

Henceif 1/2<r<landd < |6] < 7, then
1—92rcosf+712>cs > 0.

Thus Pr(0) < (1 — 72)/cs when § < |6] < m, and the third property of
good kernels is verified. Clearly P.(6) =0, and integrating the expres-
sion (4) term by term (which is justified by the absolute convergence of

the series) yields
1 ¥ie
= /—W P.(6)d0 =1,

thereby concluding the proof that Pr is a good kernel.

s lemma with Theorem 4.1, we obtain our next result.

Combining thi
e circle

Theorem 5.6 The Fourier series of an integrable function on th
is Abel summable to f at every point of continuity. Moreover, if f s

continuous on the circle, then the Fourier series of f is uniformly Abel

summable to f.
We now return to a problem discussed in Chapter 1, where we sketched
the solution of the steady-state heat equation Au =0 in the unit disc

with boundary condition u = £ on the circle. We expressed the Laplacian
in terms of polar coordinates, separated variables, and expected that a

solution was given by
© .
(5) u(r,0) = Z amr ™™,
m=—0Q

where a,, was the m*? Fourier coefficient of f. In other words, we were

led to take
u(r8) = AF)O = o | T@P0 =) d

We are now in a position to show that this is indeed the case.

ed by a continuous parameter 0 <7 < i,
ly. In the definition of good kernels, we
for example 7 — 1

81n this case, the family of kernels is index

rather than the discrete n considered previous
simply replace n by 7 and take the limit in property (c) appropriately,

in this case.
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5. Cesaro and Abel summability: applications to Fourier series

Theorem 5.7 Let f be ah integrable function defined on the unit circle.
Then the function u defined in the unit disc by the Poisson integral

(6) u(r,0) = (f * Pr)(0)

has the following properties:

(i) u has two continuous derivatives in the unit disc and satisfies
Au = 0.

(ii) If 0 is any point of continuity of f, then
}irri u(r, ) = f(0).

If f is continuous everywhere, then this limit 1s uniform.

(iii) If f is continuous, then u(r, ) is the unique solution to the steady-
state heat equation in the disc which satisfies conditions (i) and (if).

Proof For (i), we recall that the function u is given by the series ().
Fix p < 1; inside each disc of radius 7 < p <1 centered at the origin, the
series for u can be differentiated term by term, and the differentiated se-
ries is uniformly and absolutely convergent. Thus u can be differentiated
twice (in fact infinitely many times), and since this holds for all p <1,
we conclude that u is twice differentiable inside the unit disc. Moreover,

in polar coordinates,

&u 10u 1 8%u

Au=m tror T o

so term by term differentiation shows that Au=0.

The proof of (ii) is & simple application of the previous theorem. To
prove (iil) we argue as follows. Suppose v solves the steady-state heat
equation in the disc and converges to f uniformly as 7 tends to 1 from
below. For each fixed r with 0 <7 < 1, the function v(r, 0) has a Fourier
series

Z an(r)eine where an(r):% / o7, 9)e~m9 0.

n=—00
Taking into account that v(r, §) solves the equation

v 10v 10%
) a5 tror T e
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we find that
1 n?
(8) an(r) + ;GZ(T’) - ;,aan("") = 0.

Indeed, we may first multiply (7) by e—® and integrate in 6. Then,

since v is periodic, two integrations by parts give

s 2
51; / %gg(r, 0)6"“9 do = —-nzan('r).

we may interchange the order of differentiation and integra-

Finally,
e since v has two continuous derivatives; this

tion, which is permissibl
yields (8).

Therefore, we must have an(r) = Ant" + B,,r~" for some constants
A,, and By, when n # 0 (see Exercise 11 in Chapter 1). To evaluate the
constants, we first observe that each term a,(r) is bounded because v is
bounded, therefore By, = 0. To find A,, we let  — 1. Since v converges

uniformly to f as 7 — 1 we find that
A= — / " p(0)e= im0 do
Y Y - :

By a similar argument, this formula also holds when n = 0. Our con-
clusion is that for each 0 <7 <1, the Fourier series of v is given by the
series of u(r,0), so by the uniqueness of Fourier series for continuous

functions, we must have u = v.

Remark. By part (iii) of the theorem, we may conclude that if u
solves Au = 0 in the disc, and converges to 0 uniformly as » — 1, then
u must be identically 0. However, if uniform convergence is replaced by

pointwise convergence, this conclusion may fail; see Exercise 18.

6 Exercises

1. Suppose f is on-periodic and integrable on any finite interval. Prove that if

a,b € R, then
b b4-2m b—27
/ f(:c)dw:/ f(a:)d:v:/ f(=) dz.
a at27 a-—-27

Also prove that

Xis

s T +a
flz +a)dz = : f(a;)dm:/ flz)de.

—Tr —7+a
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(b) Using a similar argument, show that if f has a jump discontinuity at 6,
S0
5 .

the Fourier series of f at @ is Cesaro summable to
18. If P.(6) denotes the Poisson kernel, show that the function

OP,

U(T,g) = W,

defined for 0 < r < 1 and 8 € R, satisfies:
(i) Aw = 0in the disc.
(ii) limy—1u(r,d) =0 for each 6.
However, u is not identically zero.
19. Solve Laplace’s equation Au = 0 in the semi infinite strip
S={(z,y):0<z <1, 0<y},
subject to the following boundary conditions
u(0,y) =0 when0<y,
u(l,y)=0 when0<y,

u(z,0) = f(z) when0<z <1

. where f is a given function, with of course f(0) = f(1) = 0. Write
flz) = Z a, sin(nmz)
n=1

and expand the general solution in terms of the special solutions given by
un(z,y) = e " sin(nnz).
Express u as an integral involving f, analogous to the Poisson integral for-

mula (6).

20. Consider the Dirichlet problem in the annulus defined by {(r,8) : p < < 1},
where 0 < p < 1 is the inner radius. The problem is to solve

8%y 16u 1 6%

o2 tror Trrae )

subject to the boundary conditions

{ u(]‘)e) = f(e):
u(p,0) = g(6),



