Legendre Polynomials: Properties

Adam Buskirk

October 19, 2018

Section 2.7.1

Proposition 1. If $f \in C^{n}([-1,1])$, then

$$
\int_{-1}^{1} f(t) P_{n, d}(t)\left(1-t^{2}\right)^{\frac{d-3}{2}} d t=R_{n, d} \int_{-1}^{1} f^{(n)}(t)\left(1-t^{2}\right)^{n+\frac{d-3}{2}} d t
$$

where

$$
R_{n, d}=\frac{\Gamma\left(\frac{d-1}{2}\right)}{2^{n} \Gamma\left(n+\frac{d-1}{2}\right)}
$$

Cool Equation 2.

$$
\int_{-1}^{1}\left[P_{n, d}(t)\right]^{2}\left(1-t^{2}\right)^{\frac{d-3}{2}} d t=\frac{\sqrt{\pi} \Gamma\left(\frac{d-1}{2}\right)}{N_{n, d} \Gamma\left(\frac{d}{2}\right)}
$$

In particular, for $d=3$, we have $N_{n, 3}=2 n+1$, and

$$
\int_{-1}^{1}\left[P_{n, 3}(t)\right]^{2} d t=\frac{2}{2 n+1}
$$

For $d=2, N_{n, 2}=2$, and

$$
\int_{-1}^{1}\left[P_{n, 2}(t)\right]^{2}\left(1-t^{2}\right)^{-1 / 2} d t=\frac{\pi}{2}
$$

Section 2.7.2

Definition 3. We define

$$
L_{d} g(t) \stackrel{\text { def }}{=}\left(1-t^{2}\right)^{\frac{3-d}{2}} \frac{d}{d t}\left[\left(1-t^{2}\right)^{\frac{d-1}{2}} \frac{d}{d t} g(t)\right], \quad g \in C^{2}[-1,1]
$$

Alternatively,

$$
\begin{equation*}
L_{d} g(t)=\left(1-t^{2}\right) g^{\prime \prime}(t)-(d-1) t g^{\prime}(t) \tag{1}
\end{equation*}
$$

Definition 4. We define a weighted inner product $(\cdot, \cdot)_{d}$ by

$$
(f, g)_{d} \stackrel{\text { def }}{=} \int_{-1}^{1} f(t) g(t)\left(1-t^{2}\right)^{\frac{d-3}{2}} d t
$$

Cool Equation 5. By integration by parts, we find that for all $f, g \in C^{2}[-1,1]$

$$
\left(L_{d} f, g\right)_{d}=\left(f, L_{d} g\right)_{d}
$$

Note: This concept can be generalized into a rather neat method of constructing self-adjoint operators, which is detailed in the theorem below.

Theorem 6. Let μ be a measure on $[a, b] \subseteq \mathbb{R}$ which is absolutely continuous with respect to the Lebesgue measure and for which $R(t) \stackrel{\text { def }}{=} \frac{d \mu}{d t}>0$. Suppose we define a μ-inner product on $C^{2}[a, b]$ by

$$
\langle f, g\rangle_{\mu}=\int_{a}^{b} f(t) g(t) d \mu(t)=\int_{a}^{b} f(t) g(t) R(t) d t
$$

Then for $h \in C^{1}[a, b]$ with $p(a)=p(b)=0$, the differential operator

$$
L_{h} f=\frac{1}{R(t)} \frac{d}{d t}\left(h(t) \frac{d}{d t} f(t)\right)
$$

is self-adjoint with respect to the μ-inner product. That is,

$$
\left\langle L_{h} f, g\right\rangle_{\mu}=\left\langle f, L_{h} g\right\rangle_{\mu}
$$

Proof.

$$
\begin{aligned}
\left\langle L_{h} f, g\right\rangle_{\mu} & =\int_{a}^{b} L_{h} f(t) g(t) R(t) d t \\
& =\int_{a}^{b} \frac{1}{R(t)} \frac{d}{d t}\left(h(t) f^{\prime}(t)\right) g(t) R(t) d t \\
& =\int_{a}^{b} \frac{d}{d t}\left(h(t) f^{\prime}(t)\right) g(t) d t
\end{aligned}
$$

Let us integrate by parts:

$$
\begin{aligned}
& =\left.h(t) f^{\prime}(t) g(t)\right|_{a} ^{b}-\int_{a}^{b} h(t) f^{\prime}(t) g^{\prime}(t) d t \\
& =h(b) f^{\prime}(b) g(b)-h(a) f^{\prime}(a) g(a)-\int_{a}^{b} h(t) f^{\prime}(t) g^{\prime}(t) d t \\
& =-\int_{a}^{b} h(t) f^{\prime}(t) g^{\prime}(t) d t
\end{aligned}
$$

By much the same work, we see that $\left\langle L_{h} g, f\right\rangle_{\mu}=-\int_{a}^{b} h(t) f^{\prime}(t) g^{\prime}(t) d t$ also. The result follows by the obvious fact that the μ-inner product is symmetric.

$$
\left\langle L_{h} f, g\right\rangle_{\mu}=\left\langle L_{h} g, f\right\rangle_{\mu}=\left\langle f, L_{h} g\right\rangle_{\mu}
$$

Cool Equation 7. The L_{d} operator maps polynomials of degree n to polynomials of degree n, as seen in (1). Since $\left(p_{m}, P_{n, d}\right)_{d}=0$ for any polynomial of degree $m<n$ (see (2.69) in the text) we have

$$
\begin{equation*}
\left(P_{n, d}, L_{d} P_{m, d}\right)_{d}=\left(P_{m, d}, L_{d} P_{n, d}\right)_{d}=0 \tag{2}
\end{equation*}
$$

Since $\left\{P_{m, d}\right\}_{0 \leq m \leq n}$ form an orthogonal basis for all polynomials of degree less than or equal to n, we may write

$$
L_{d} P_{n, d}=\sum_{m=0}^{n} c_{m} P_{m, d}
$$

Equation (2) tells us that for $0 \leq m \leq n-1$ we have $c_{m}=0$, i.e. $L_{d} P_{n, d}$ is a multiple of $P_{n, d}(t)$.
We may write

$$
P_{n, d}(t)=a_{n, d}^{0} t^{n}+\text { l.d.t. }
$$

where l.d.t. denotes the lower degree terms. Then

$$
L_{d} P_{n, d}(t)=-n(n+d-2) a_{n, d}^{0} t^{n}+\text { l.d.t. }
$$

Since $L_{d} P_{n, d}$ is a multiple of $P_{n, d}$, this implies that it must be that

$$
L_{d} P_{n, d}(t)=-n(n+d-2) P_{n, d}(t)
$$

In other words, $P_{n, d}$ is an eigenfunction of the differential operator $-L_{d}$ for the eigenvalue $n(n+d-2)$.

Cool Equation 8. By substituting in the simpler definition of L_{d} into the equation

$$
L_{d} P_{n, d}(t)+n(n+d-2) P_{n, d}(t)=0
$$

we obtain the relation

$$
\left(1-t^{2}\right) P_{n, d}^{\prime \prime}(t)-(d-1) t P_{n, d}^{\prime}(t)+n(n+d-2) P_{n, d}(t)=0
$$

and this (according to the text) implies that $P_{n, d}$ has no multiple roots in $(-1,1)$.
Why is this? I don't see why $P_{n, d}$ could not have triple (or higher) roots.
Suppose $P_{n, d}$ has k distinct roots t_{1}, \cdots, t_{k} in the interval $(-1,1)$ for $k<n$. Then

$$
p_{k}(t)=\left(t-t_{1}\right) \cdots\left(t-t_{k}\right)
$$

and

$$
P_{n, d}(t)=p_{k}(t) q_{n-k}(t)
$$

q_{n-k} must be positive at 1 and it has no zeros in $(-1,1)$, so $q_{n-k}>0$ on all of $(-1,1)$. Then, since $\operatorname{deg} p_{k}=k<n$,

$$
\begin{aligned}
0 & =\left(P_{n, d}, p_{k}\right)_{d} \\
& =\int_{-1}^{1} P_{n, d}(t) p_{k}(t)\left(1-t^{2}\right)^{\frac{d-3}{2}} d t \\
& =\int_{-1}^{1} q_{n-k}(t) p_{k}(t)^{2}\left(1-t^{2}\right)^{\frac{d-3}{2}} d t>0
\end{aligned}
$$

This is a contradiction. These results are summarized in the following proposition.
Proposition 9. The Legendre polynomials $P_{n, d}(t)$ has exactly n distinct roots in $(-1,1)$.

Section 2.7.3

This is a long section, but its primary result is the following recursive formula for any Legendre polynomial $P_{n, d}$ with $d \geq 2$.
Theorem 10. Suppose $d \geq 2$.

$$
\begin{align*}
& P_{0, d}(t)=1 \tag{3}\\
& P_{1, d}(t)=t \tag{4}\\
& P_{n, d}(t)=\frac{2 n+d-4}{n+d-3} t P_{n-1, d}(t)-\frac{n-1}{n+d-3} P_{n-2, d}(t) \quad \text { for } n \geq 2 \tag{5}
\end{align*}
$$

We may use these recursive formulas to compute different $P_{n, d}$. Several examples may be found on page 47. Fixing $n=4$ and varying d, we obtain cool plots like

Much calculation, which may be found on pages 50-51, yields the following equation.
Cool Equation 11.

$$
P_{n, d}^{\prime}(t)=\frac{n(n+d-2)}{d-1} P_{n-1, d+2}(t), \quad n \geq 1, \quad d \geq 2
$$

More generally, we have the following equality involving higher derivatives.

$$
P_{n, d}^{(j)}(t)=\frac{n!(n+j+d-3)!\Gamma\left(\frac{d-1}{2}\right)}{2^{j}(n-j)!(n+d-3)!\Gamma\left(j+\frac{d-1}{2}\right)} P_{n-j, d+2 j}(t) \quad n \geq j, \quad d \geq 2
$$

After even more calculation, we arrive at a nice equation.
Theorem 12.

$$
\left(1-t^{2}\right) P_{n, d}^{\prime}(t)=n\left[P_{n-1, d}(t)-t P_{n, d}(t)\right] \quad n \geq 1, d \geq 2, t \in[-1,1]
$$

Section 2.7.4

