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Section 2.7.1

Proposition 1. If f ∈ Cn([−1, 1]), then∫ 1

−1
f(t)Pn,d(t)(1− t2)

d−3
2 dt = Rn,d

∫ 1

−1
f (n)(t)(1− t2)n+

d−3
2 dt

where

Rn,d =
Γ(d−12 )

2nΓ(n+ d−1
2 )

Cool Equation 2. ∫ 1

−1
[Pn,d(t)]

2(1− t2)
d−3
2 dt =

√
πΓ(d−12 )

Nn,dΓ(d2 )

In particular, for d = 3, we have Nn,3 = 2n+ 1, and∫ 1

−1
[Pn,3(t)]2 dt =

2

2n+ 1

For d = 2, Nn,2 = 2, and ∫ 1

−1
[Pn,2(t)]2(1− t2)−1/2 dt =

π

2

Section 2.7.2

Definition 3. We define

Ldg(t)
def
= (1− t2)

3−d
2
d

dt

[
(1− t2)

d−1
2
d

dt
g(t)

]
, g ∈ C2[−1, 1]

Alternatively,
Ldg(t) = (1− t2)g′′(t)− (d− 1)tg′(t) (1)

C

Definition 4. We define a weighted inner product (·, ·)d by

(f, g)d
def
=

∫ 1

−1
f(t)g(t)(1− t2)

d−3
2 dt C

Cool Equation 5. By integration by parts, we find that for all f, g ∈ C2[−1, 1]

(Ldf, g)d = (f, Ldg)d

Note: This concept can be generalized into a rather neat method of constructing self-adjoint operators,
which is detailed in the theorem below.
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Theorem 6. Let µ be a measure on [a, b] ⊆ R which is absolutely continuous with respect to the Lebesgue

measure and for which R(t)
def
= dµ

dt > 0. Suppose we define a µ-inner product on C2[a, b] by

〈f, g〉µ =

∫ b

a

f(t)g(t) dµ(t) =

∫ b

a

f(t)g(t)R(t) dt

Then for h ∈ C1[a, b] with p(a) = p(b) = 0, the differential operator

Lhf =
1

R(t)

d

dt

(
h(t)

d

dt
f(t)

)
is self-adjoint with respect to the µ-inner product. That is,

〈Lhf, g〉µ = 〈f, Lhg〉µ
Proof.

〈Lhf, g〉µ =

∫ b

a

Lhf(t)g(t)R(t) dt

=

∫ b

a

1

R(t)

d

dt
(h(t)f ′(t)) g(t)R(t) dt

=

∫ b

a

d

dt
(h(t)f ′(t)) g(t) dt

Let us integrate by parts:

= h(t)f ′(t)g(t)|ba −
∫ b

a

h(t)f ′(t)g′(t) dt

= h(b)f ′(b)g(b)− h(a)f ′(a)g(a)−
∫ b

a

h(t)f ′(t)g′(t) dt

= −
∫ b

a

h(t)f ′(t)g′(t) dt

By much the same work, we see that 〈Lhg, f〉µ = −
∫ b
a
h(t)f ′(t)g′(t) dt also. The result follows by the

obvious fact that the µ-inner product is symmetric.

〈Lhf, g〉µ = 〈Lhg, f〉µ = 〈f, Lhg〉µ
Cool Equation 7. The Ld operator maps polynomials of degree n to polynomials of degree n, as seen in
(1). Since (pm, Pn,d)d = 0 for any polynomial of degree m < n (see (2.69) in the text) we have

(Pn,d, LdPm,d)d = (Pm,d, LdPn,d)d = 0 (2)

Since {Pm,d}0≤m≤n form an orthogonal basis for all polynomials of degree less than or equal to n, we may
write

LdPn,d =

n∑
m=0

cmPm,d

Equation (2) tells us that for 0 ≤ m ≤ n− 1 we have cm = 0, i.e. LdPn,d is a multiple of Pn,d(t).
We may write

Pn,d(t) = a0n,dt
n + l.d.t.

where l.d.t. denotes the lower degree terms. Then

LdPn,d(t) = −n(n+ d− 2)a0n,dt
n + l.d.t.

Since LdPn,d is a multiple of Pn,d, this implies that it must be that

LdPn,d(t) = −n(n+ d− 2)Pn,d(t)

In other words, Pn,d is an eigenfunction of the differential operator −Ld for the eigenvalue n(n+ d− 2).
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Cool Equation 8. By substituting in the simpler definition of Ld into the equation

LdPn,d(t) + n(n+ d− 2)Pn,d(t) = 0

we obtain the relation

(1− t2)P ′′n,d(t)− (d− 1)tP ′n,d(t) + n(n+ d− 2)Pn,d(t) = 0

and this (according to the text) implies that Pn,d has no multiple roots in (−1, 1).
Why is this? I don’t see why Pn,d could not have triple (or higher) roots.
Suppose Pn,d has k distinct roots t1, · · · , tk in the interval (−1, 1) for k < n. Then

pk(t) = (t− t1) · · · (t− tk)

and
Pn,d(t) = pk(t)qn−k(t)

qn−k must be positive at 1 and it has no zeros in (−1, 1), so qn−k > 0 on all of (−1, 1). Then, since
deg pk = k < n,

0 = (Pn,d, pk)d

=

∫ 1

−1
Pn,d(t)pk(t)(1− t2)

d−3
2 dt

=

∫ 1

−1
qn−k(t)pk(t)2(1− t2)

d−3
2 dt > 0

This is a contradiction. These results are summarized in the following proposition.

Proposition 9. The Legendre polynomials Pn,d(t) has exactly n distinct roots in (−1, 1).

Section 2.7.3

This is a long section, but its primary result is the following recursive formula for any Legendre polynomial
Pn,d with d ≥ 2.

Theorem 10. Suppose d ≥ 2.

P0,d(t) = 1 (3)

P1,d(t) = t (4)

Pn,d(t) =
2n+ d− 4

n+ d− 3
tPn−1,d(t)−

n− 1

n+ d− 3
Pn−2,d(t) for n ≥ 2 (5)

We may use these recursive formulas to compute different Pn,d. Several examples may be found on page
47. Fixing n = 4 and varying d, we obtain cool plots like
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Much calculation, which may be found on pages 50-51, yields the following equation.

Cool Equation 11.

P ′n,d(t) =
n(n+ d− 2)

d− 1
Pn−1,d+2(t), n ≥ 1, d ≥ 2

More generally, we have the following equality involving higher derivatives.

P
(j)
n,d(t) =

n! (n+ j + d− 3)! Γ(d−12 )

2j(n− j)! (n+ d− 3)! Γ(j + d−1
2 )

Pn−j,d+2j(t) n ≥ j, d ≥ 2

After even more calculation, we arrive at a nice equation.

Theorem 12.

(1− t2)P ′n,d(t) = n [Pn−1,d(t)− tPn,d(t)] n ≥ 1, d ≥ 2, t ∈ [−1, 1]

Section 2.7.4

4


