Partial orders

Worksheet 13

A partial ordering on set X is a relation which is reflexive, transitive, and antisymmetric.

Show that the following relations define partial orderings on the underlying sets.

1. $\{(n, m): n, m \in \mathbb{Z}$ such that $n-m \geq 0\}$.
2. $\{((a, b),(c, d)):(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$ such that either $a<c$ or $a=$ c and $b \leq d\}$.
3. $\{((a, b),(c, d)):(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}$ such that either $b<d$ or $b=d$ and $a \leq$ c\}.
4. If S is a set then $\{(A, B): A, B \in P(S)$ with $A \subseteq B\}$.

A partial ordering P on X is a total ordering if given any $x, y \in X$ either $(x, y) \in P$ or $(y, x) \in P$.

Which of the preceding partial orderings are total orderings?

