1. Let \(A = \begin{bmatrix} x + 2 & 2 & -4 & 6 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & x + 3 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2x & -5 \\ 0 & 1 & 2 \end{bmatrix} \). Find all values of \(x \) such that \(\det(A) = \det(B) \).

2. Let \(A \) and \(B \) be \(4 \times 4 \) matrices such that \(\det(A) = -2 \) and \(B \) is produced by performing the following sequence of operations on \(A \):

\[
R_1 \leftrightarrow R_2, 4R_1 \rightarrow R_1, 4R_2 + R_3 \rightarrow R_3, \sqrt{2}R_1 \rightarrow R_1, 2R_3 + R_1 \rightarrow R_1, \frac{1}{2}R_4 \rightarrow R_4
\]

a) Find \(\det(B) \).

b) Find \(\det(4(A^{-1})^2B^T) \).

c) Find \(\det(BA - 3B^2AI_3(BA)^{-1}A) \).

3. Let \(A \) be an \(n \times n \) matrix and let \(H = \{ B \in \mathbb{M}_{n \times n} : AB = BA \} \). Determine if \(H \) is a subspace of \(\mathbb{M}_{n \times n} \).

4. Consider the transformation \(F : \mathbb{P}_3 \rightarrow \mathbb{R}^2 \) given by \(F(p(x)) = \begin{bmatrix} p(0) \\ p(0) \end{bmatrix} \).

 (a) Show that \(F \) is a linear transformation.

 (b) Describe the kernel of \(F \).

 (c) Does \(S = \{ x^2, x^3 - 2x, 3x^3 + \pi x^2 + 5x \} \) span the kernel of \(F \)?

5. (a) Define a transformation \(T : \mathbb{M}_{2 \times 2} \rightarrow \mathbb{R} \) by \(T(A) = \det(A) \). Determine if \(T \) is a linear transformation. Clearly justify your conclusion.

 (b) Let \(H = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} : a = -2c, f = 2e + d \right\} \). Is \(H \) a subspace of \(\mathbb{M}_{2 \times 3} \).

6. (Bonus) Let \(T : V \rightarrow W \) be a linear transformation. Prove that \(T \) is one-to-one if and only if \(\text{Ker}(T) = \{0\} \). (Recall a transformation \(T : V \rightarrow W \) is said to be one-to-one if for all \(v_1, v_2 \) in \(V \), \(T(v_1) = T(v_2) \) implies \(v_1 = v_2 \).)