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Abstract

Two distribution-free permutation techniques are described for the analysis of ecological data. These methods
are completely data dependent and provide analyses for the commonly-encountered completely-randomized
and randomized-block designs in a multivariate framework. Euclidean distance forms the basis of both tech-
niques, providing consistency with the observed distribution of data in many ecological studies.

Nomenclature: follows Harrington (1964). Manual of the plants of Colorado. Shallow Press, Chicago.

Abbreviations: MRPP = Multiresponse permutation procedure; MRBP = Ibid, randomized block analog

Introduction

Classical least squares (CLS) analysis has dominat-
ed the statistical literature for much of this century.
The dominance and popularity of CLS analysis can
be attributed to the fact that the underlying theory
is simple, the applications are highly developed, and
the methods are well documented. CLS statistics are
optimal and result in maximum likelihood estima-
tors of the unknown parameters of the model if the
population is normal, or multivariate normal, with
equal variances, or a variance-covariance matrix
which exhibits compound symmetry (Huynh &
Mandeville 1979). CLS is far from optimal in many
non-Gaussian situations, especially when the popu-
lation distribution is asymmetric and/or outlying
values are present.

The problems generated by nonnormality are seri-
ous and are likely to be prevalent in ecological data

(e.g., Austin 1987). Hampel ef al. ( (1986) review
studies of data distributions in the natural sciences
and conclude that normality seems to be the excep-
tion rather than the rule. A number of studies have
demonstrated that even a modest departure from
normality can seriously degrade the efficiency of
CLS estimators (Andrews et al. 1972; Rey 1983; Wu
1985). In field studies these assumptions may be very
difficult to satisfy. Many times the underlying distri-
bution model of the population is not known and in
many cases it is definitely non normal; for example,
size of precipitation events in semiarid regions is bet-
ter approximated by an exponential distribution
than by a normal distribution (Sala & Lauenroth
1982; Soriano & Sala 1983). There are many cases in-
volving vegetation analysis where comparisons are
made between plant communities that have different
spatial patterns of plant distribution. Under these
circumstances, the assumption of equal variances
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does not hold. Even when the population is normal-
ly distributed, alternatives to CLS may be required,
especially if the form of the model is not known.

One of the most satisfying robust alternatives to
CLS is the analysis of absolute differences. Statistics
based on absolute differences are resistant to outli-
ers, do not require parametric assumptions of nor-
mality, and, as shown below, provide an attractive al-
ternative to CLS estimators. In recent years,
extensive work has been undertaken to develop
statistics based on some form of absolute values.
The literature is too vast to be summarized here, but
the following provide summaries of the advance-
ments in various fields and applications, and each
contains an extensive bibliography of the area: Diel-
man (1984), Dietz et al. (1987), Dodge (1987), Harter
(1974-1976), Huynh (1982), and Narula & Welling-
ton (1982).

Two of these methods, multiresponse permutation
procedure (MRPP) and its randomized block analog
(MRBP), are described below. This is followed by ex-
amples involving real data sets that highlight the
major characteristics of MRPP and MRBP.

Method description

Let @ = {w},...,wn} be a finite population of N ob-
jects, let x5 = [x,....X;1] denote r commensurate re-
sponse measurements for object w; (/ = 1,...,N),
and let §),...,S, designate an exhaustive partitioning
of the N objects comprising {1 into g disjoint groups.
Also, let Ay be a symmetric distance function value
of the response measurements associated with the
objects wyand w;. The statistic underlying MRPP is
given by

g
6 = E:l Citi @
where
§=(7 L Ap¥i@)¥ fw) @

is the average distance function value for all distinct
pairs of objects in group S; (i = 1,...,8), #; = 2is the

number of @ priori classified objects in groups S; (i
= 1,..,8), N = L{_yn;, Ly ;is the sum over all 7 and
Jsuch that 1 =I<J=N, ¥(wpis | if w; belongs to
S; and 0 otherwise, C; > 0 (i = 1,...,), and L{_,C;
= 1. The C; value generally used is n,/N. The un-
derlying permutation distribution of 6 (under the
null hypothesis) assigns equal probabilities to the

M=N1/( n nl) 3)
i=1

possible allocations of the NV objects to the g disjoint
groups.

The symmetric distance function (A;)) is extreme-
ly important since it defines the structure of the un-
derlying analysis space of MRPP. The form of the
symmetric distance function considered in this
paper is the Minkowski distance function,

,
A= — 1/
= E P = Xl @

When p = 2, the result is a Euclidean metric and (4)
reduces to

Ay=L £ Gy — %), ©)

which is the normed distance of choice in this paper,
since only p = 2 yields results which are unaffected
by arotation of the r response measurements (Mielke
1987).

Since small values of 6 imply a concentration of
response measurements within at least some of the
g groups, the null hypothesis is rejected when the ob-
served value of 6 is small. The exact Pvalue (ie., the
probability under the null hypothesis of a value of
6 being as or more extreme than the observed value
of 8) is the proportion of all M values of § which are
equal to or less than the observed value of 6.
Although an efficient algorithm for calculating the
exact P-value for an observed value of 6 has been de-
veloped (Berry & Mielke 1984), this procedure is ex-
tremely expensive when M is large (e.g., M > 10).
Approximate Pvalues can be calculated with the use
of the Pearson type I1I distribution which compen-
sates for the fact that the underlying permutation



distribution is often substantially skewed (Brockwell
et al. 1982; Mielke 1984, 1986).

If 6; denotes the jth value among the M possible
values of 6 then, under the null hypothesis, the first
three moments of § (i.e., mean, variance, and skew-
ness) are given by

M
ps=M116;, 6)
Jj=1
F=M"! %452. 2
6 j:l J HE s (7)
and
M
Y= (M _1,215,3' ~ 350 — pd/a}, (8)
j:

respectively. Efficient computational techniques for
obtaining us, 03, and v, are described in Mielke et
al. (1976) and Mielke (1984). The standardized test
statistic given by T = (6 - ps)/ 05 is approximated,
under the null hypothesis, by the Pearson type III
distribution with the density function given by

2
(=2/y¥7
f0)=———— [~ C+»/7] “")/7}
r(4/+3)
exp 20+ 9)

where —c0 < y < -2/v5 and v; < 0. The probability
value (p) for a realized value of 6, say é,, and cor-
respondingly, 7, = (6, - us)/0;, is given by

TO
p=P6 <) = ofrdy . (10)

Example

The general concepts of MRPP can best be illustrat-
ed by considering a comparison between two mutu-
ally exclusive groups of objects (A and B) where two
measured responses (x; and x,) have been obtained
from each object in the two groups. Figure 1 shows
how these responses could be represented in a two-
dimensional diagram where the responses of the
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Fig. 1. Scatter diagram showing the points of the two groups (A
and B) plotted as a function of the measured responses x; and x,.

three objects in group A are plotted as crosses and
the responses of the four objects in group B are plot-
ted as circles. Although a visual impression suggests
that groups A and B are separated, a more rigorous
and objective characterization of this separation is
needed before a quantitative evaluation or inference
can be made.

One way to test the difference between the groups
is by first examining the Euclidean distances

2
Ay = [.E1 Gy — X172
=

between all distinct pairs of points in the diagram.
The seven points of Fig. 1 imply that there are (3) =
21 pairs of points and, consequently, 21 distances to
be computed. These 21 distances are listed in Table
1 and ordered from the lowest to the highest value.
Table 1 confirms the visual impression of clustering
since the distances between points of a common
group tend to be smaller than the distances between
points of different groups. A natural way to consider
this clustering tendency is to form an average of the
between-point distances for each group. Thus, for
the three distances of group A, the average is

£y = (I/3) L Ay = 1.6095
A
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Table 1. Ordered distances between all 21 pairs of the seven
points shown in Fig. 1 where distances between points in either
group A or group B are indicated by crosses (x) or circles (o),
respectively.

Rank Points Distance
1 B,B, 1.000 (o)
2 B,B; 1.000 (o)
3 B;B, 1.000 (o)
4 AA, 1.414 (x)
5 AnA, 1.414 (x)
6 AzB 1.414
7 A3B, 1.414
8 BB, 1.414 (o)
9 B,B, 1.414 (o)

10 A A, 2.000 (x)

11 A,B, 2.000

12 A,4B, 2.000

13 A,B, 2.236

14 A;B, 2.236

15 A3B, 2.236

16 BB, 2.236 (0)

17 A B, 2.828

18 A,B, 3.000

19 A B; 3.162

20 AB, 3.606

21 AB, 4.123

and for the six distances of group B, the average is
B

A measure which describes the separation between
the points of groups A and B is the simple weighted
mean given by

5 = (3/7) &4 + (4/7) Eg = 1.4578.

Small values of é indicate a tendency for clustering
while large values of 6 indicate a lack of clustering.
The problem is to determine whether or not the ob-
served statistic (6 = 1.4578) for this particular parti-
tion (A and B) is unusual with respect to other possi-
ble partitions with the same size structure that could
have been made with these seven objects. Now, N ob-
jects can be partitioned into two groups (4 and B)
with fixed number of points n4 and np, respectively,
in precisely M=NV/{n lng!) ways. Since M = 35
for this example, all values of 6 can be obtained by
complete enumeration. These 35 values of 6 are list-

ed in Table 2 and ordered from the lowest to the
highest value. It can be seen that the observed statis-
tic (6 = 1.4578) obtained for the realized partition
(A4 and B) is indeed unusual since each of the remain-
ing 34 values is greater than 1.4578. Because each
partition could have occurred with equal chance (the
null hypothesis), the observed significance level or P-
value is 1/35 = 0.0286.

This example of MRPP involved only a two-group
analysis. The procedure is easily extended to a mul-
tigroup analysis. A variation of this method applied
to a randomized block design follows.

Randomized blocks

MRBP is the MRPP analog for cases when ran-
domized block designs are used. Let b blocks and g
treatments be associated with a randomized block
design. Let x,-'j = [Xy;j,...,%p] denote r commensurate
response measurements corresponding to treatment
i and block j. The modified MRPP statistic for this
situation is given by

g
5 = [g&1! ffljfk A (xyy xi) (1)

Table 2. Ordered values of 6 for all 35 partitions of the seven
points shown in Fig. 1 into two groups (A and B) having fixed
sizes ny = 3 and ng = 4.

Rank Value Rank Value
1 1.4578 19 2.1381
2 1.5421 20 2.1480
3 1.6939 21 2.1591
4 1.7505 22 2.1646
5 1.8389 23 2.1709
6 1.8547 24 2.1740
7 1.8935 25 2.1769
8 1.9898 26 2.1891
9 1.9915 27 2.1939

10 1.9988 28 2.2025

11 2.0060 29 2.2169

12 2.0157 30 2.2258

13 2.0176 31 2.2280

14 2.0522 32 2.2470

15 2.0575 33 2.2518

16 2.0829 34 2.2812

17 2.0944 35 2.2935

18 2.1158




where A(x, y)is the symmetric distance function val-
ue of the points x’ = [x},....x,] and ¥y’ = [y1,...,]
defined in equation (5). The underlying permutation
distribution of 6 (the null hypothesis) assigns equal
probabilities to the M = (g!)? possible allocations
of the g r-dimensional measurements to the g treat-
ment positions within each of the b blocks.

In a manner analogous to MRPP, small values of
6 imply a concentration of the response measure-
ments associated with each of the g treatments (i.e.,
over blocks). Therefore, P(6 < §,) is again the P-
value associated with §, (the realized value of §).
When M is large, the Pearson type III distribution
is used to approximate P (Mielke 1984).

Simulation

Since a demonstration that the Pearson type III ap-
proximation is superior to other conceptual approxi-
mation is very satisfactory. Ten thousand indepen-
intended to show that the Pearson type III approxi-
mation is very satisfactory. Ten thousand indepen-
dent random samples were drawn from a two-
dimensional Poisson population! for two values of
the Poisson parameter A and two sample sizes, with
each sample being randomly partitioned into two

I Suggested by a reviewer.
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groups of equal size: A = 5, n; = n, = 10; A = 5,
ng=ny,=20N=10,n, = n, = 10; and A = 10,
ny =n, = 20. For each of the four simulations,
10000 MR PP probability values were calculated, us-
ing the Pearson type 111 approximation. The proba-
bility values were assigned to eight disjoint and ex-
haustive categories given by p > 0.50, 0.50 = p =
025,025 = p > 010,010 = p > 0.05,005 = p
> 0.01, 0.01 = p > 0.005, 0.005 = p > 0.001, and
0.001 = p. The results of the Monte Carlo analyses
are summarized in Table 3. The chi-square
goodness-of-fit test statistic used for these compari-
sons is given by

I res

(O; - E)/E,

where O; is the observed frequency in the ith among
the eight categories given above and E; = 5000, E,
= 2500, F; = 1500, E, = 500, E5 = 400, £4 = 40,
E, = 40, Eg = 10. If the Pearson type III approxi-
mation with 10000 replications is inadequate, then
a small chi-square probability value would be ex-
pected. However, the four chi-square goodness-of-
fit probability values with 7 degrees of freedom were
all greater than 0.5, indicating that the distribution
of the MRPP statistic follows the Pearson typw III
distribution in a reasonable manner.

Table 3. Summary of Monte Carlo computer simulation results with two group sizes (n; = n, = 10and n; = n, = 20) and two Pois-
son parameters (A = 5 and A = 10) with 10000 replications for each combination.

Group size: n = n, = 10 np=n, =20
Poisson parameter: A=S5 A =10 A=S5 A=10
p > 0.50 4959 4984 4963 5013
0.50 = p> 025 2558 2539 2522 2544
025 = p>0.10 1462 1479 1512 1448
0.10 = p > 0.05 494 484 479 500
0.05 =p>0.01 423 401 418 393
0.01 =p > 0.005 56 59 60 54
0.0005 = p > 0.001 41 46 38 40
0.001 = p 7 8 8 8
Chi-Square: 5.68 4.39 4.76 3.45
P-value: 0.5771 0.7341 0.6898 0.8401
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Applications

In this section, applications of MRPP and MRBP
to two case studies in vegetation research are present-
ed. The first case study comes from research on
secondary succession (Biondini ef al. 1985) and con-
tained four treatments. Treatment 1 consisted of
mechanical removal of vegetation with minimal dis-
turbance to the topsoil (A and B horizons). In Treat-
ment 2, the vegetation was mechanically removed
and the topsoil was scarified to a depth of 30 cm.
Treatment 3 consisted of mechanical removal of the
topsoil and subsoil (C horizon) to a depth of 1 m;
the material was mixed together and replaced. In
Treatment 4, two layers of 1 m of soil were removed
and replaced in a reverse order with the second
layer placed on the surface. The hypothesis tested
was that increased levels of soil disturbance signifi-
cantly alter the direction of secondary succession.
The main patterns of vegetation succession in this
study were given by the changes through time of
the following species groups (the groups were de-
rived from a species ordination analysis): (1) peren-
nial grasses (the dominant species being: Agropyron
riparium, A. smithii, Koeleria cristata, Oryzopsis
hymenoides, and Stipa comata), (2) perennial forbs
(the dominant species being: Sphaeralcea coccinea,
Erigeron engelmanii, Phlox longifolia, Senecio mul-
tilobatus, and Trifolium gymnocarpon), (3) annual
forbs (the dominant species being: Salsola iberica)

and (4) shrubs (the dominant species being: Ar-
temisia tridentata, Chrysothamnus nauseousus, C.
viscidiflorus, and Gutierrezia sarothrae).

The hypothesis was formally tested with MRPP.
The percent relative cover of perennial grasses,
perennial forbs, annual forbs, and shrubs shown in
Table 4 were used as the multivariate observation
which characterized the species composition of each
treatment. Treatments were analyzed at two points
in time: (1) one year into succession and (2) six years
into succession. The data are ideal for a distribution-
free permutation test based on Euclidean distances
for two reasons: (1) the vegetation in the highly dis-
turbed plots (Treatments 3 and 4) one year after
natural succession was very unevenly distributed
causing a higher variance for Treatments 3 and 4
when compared with Treatment 1; and (2) a few
quadrats in Treatments 3 and 4 were located either
in microsites with high annual forb cover or over
bare soil causing some of the data points to look like
outliers. This case is fairly typical of successional
studies where in the early stages only a fraction of
the soil is covered by vegetation. The results of the
MRPP analysis are given in Table 5.

The second case study comes from a study as-
sociated with mine reclamation research (Redente et
al. 1982). An area that had been shallowly disturbed
was seeded with a combination of grasses, forbs, and
shrubs and subjected to six treatments. The treat-
ments were (1) no fertilizer, (2) low fertilizer (56 kg

Table 4. Mean percent relative cover of the dominant plant species groups of each treatment on years 1 and 6 of secondary succession

(Biondini ef al. 1985).

Species Treatment 1 Treatment 2 Treatment 3 Treatment 4
group

Yrl Yr 6 Yr1 Yré6 Yr1 Yr 6 Yrl Yr6
Grasses 49.04 62.15 14.27 38.07 1.27 43.80 0.04 5.44
Perennial forbs 33.90 32.86 13.39 21.05 1.14 25.31 1.48 11.79
Annual forbs 14.63 2.54 66.12 2.29 91.56 21.04 92.62 6.57
Shrubs 2.32 2.17 5.55 37.71 5.91 9.25 5.40 76.86

Treatment 1 — the vegetation was mechanically removed with minimal disturbance to topsoil (A and B horizons).

Treatment 2 — the vegetation was mechanically removed and the topsoil scarified to a depth of 30 cm.

Treatment 3 — topsoil and subsoil (C horizon) were removed to a depth of 1 m. The material was mixed together and replaced.
Treatment 4 — two layers of 1 m of soil were removed and replaced in a reverse order with the second layer placed on the surface.
The experiment consisted of two replications per treatment. Ten 0.25 m2 quadrats per replication were used to estimate species basal

cover.



167

Table 5. Results from the MRPP analysis run on data shown in Table 4 for years 1 and 6.

Test Year 1 Year 6

treatment treatment

1 2 3 1 2 3 4
MRPP a b b a b a c

For each test, treatments within a year that have different letters are significantly different (»<0.05; multiple comparison).

N/ha + 28 kg P/ha), (3) high fertilizer (112 kg N/ha
+ 56 kg P/ha), (4) mulch (2.2 MT/ha of wood fiber
hydromulch) and no fertilizer, (5) mulch and low
fertilizer, and (6) mulch and high fertilizer. The ex-
periment was organized in a randomized block de-
sign with three blocks (see Table 6). The biomass of
three shrubs (Atriplex canescens, Ceratoides lanata,
and Ephedra viridis) was used as the multivariate
observation that characterized each treatment. The
data were analyzed with the use of MRBP; the prob-
ability of no difference among treatments is p =
0.068.

Table 6. Biomass data on shrubs (gm=—2) for a reclamation -

study on a shallowly disturbed site (Redente ef al. 1982). The
three shrubs measured on each treatment are: Aftriplex
canescens, Ephedra viridis, low Ceratoides lanata. The treat-
ments are (1) no fertilizer; (2) low fertilizer; (3) high fertilizer;
(4) mulch and no fertilizer; (5) mulch and low fertilizer; and (6)
mulch and high fertilizer.

Treatment

Block 1 0.33 6.67 6.33 3.83 9.67 14.50
1.00 5.00 8.50 8.00 1.33 0.50
2.17 2.00  2.17 1.33 3.67 2.17

Block 2 2.50 18.67 4.17 11.50 8.33 21.67
0.83 0.17 1.67 2.50 1.50 0.83
4.33 2.83 2.17 3.50 2.50 2.17

Block 3 1.00 8.67 5.17 0.67 23.67 7.33
0.50 0.50 3.33 7.00 0.50 7.50
2.33 2.00 2.00 2.50 3.33 4.50

Note: The data for each block is the average of 6 0.5 m2 quad-
rats.

Summary-and conclusions

The parametric statistical tests commonly used in
ecological research have limitations that can become
a critical source of error in data interpretation. The
assumptions of a normal distribution and equality
of variance (or variance-covariance matrices) are
often difficult to meet in field experiments. In this
paper, a statistical test called multiple response per-
mutation procedures (MRPP) and its randomized
block design analog (MRBP) have been presented.
These methods are based on Euclidean distances and
are completely data-dependent. Consequently, they
require no assumptions about the underlying distri-
bution structure of the population under study.
Computer programs to implement MRPP and
MRBP in IBM compatible PC’s are available from
the authors.
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