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Abstract.—We demonstrate that the competitive ability and landscape distribution of organisms
can be affected by the interaction between their size and scaling properties and the scaling
properties of the resources they consume. First, we prove that the landscape distribution of
plants can be significantly affected by the interaction between their root lateral spread (RLS)
and the scaling of soil N. Furthermore, we show that the nature of this interaction is highly
dependent on the levels of soil N and plant age (adults or seedlings). We also demonstrate how
the optimal RLS depends on the combination of soil N scaling properties at different levels of
resolution. We made the ALLOCATE model spatially explicit for RLS and soil N scaling to
analyze plant competition in a fractal environment. We show that, on the average, plants with
low RLS and high root density (RD) dominate under low N stress, while plants with high RLS
and low RD dominate at high N stress and that the scaling of soil N significantly controls the
degree of dominance and the performance of seedlings. These results may cast some light
regarding present disagreements as to which plant trait may be optimal in the competition for
soil nutrients.

A generally accepted proposition in ecology is that the spatial variability of soil
resources is one of the major determinants for the coexistence of plant species
in a landscape (Grime 1979; Tilman 1988; Palmer 1992). Theoretical approaches
such as landscape ecology and hierarchical theory have been developed to de-
scribe and analyze the nature and origin of spatial variability and the mechanisms
of species coexistence (Milne 1991, 1992). Landscape ecologists have generally
approached the subject by assuming that environmental variability can be de-
scribed by the shape, number and distribution of homogeneous landscape compo-
nents or ‘‘patches’’ (Palmer 1992). Burrough (1981) and Palmer (1988, 1992), inter
alia, however, have shown that a wide variety of landscape and environmental
variables of interest to ecology and ecological modeling vary continuously in
space and thus can be modeled with the use of the basic mathematical structure
of fractional Brownian motion.

Palmer (1992) used fractal geometry to simulate the spatial variability of contin-
uous soil variables and study how the geometry of this variability (its fractal
dimension) affects plant species coexistence and the plant richness of a landscape.
He recognized, however, that, although the soil variables in question were con-
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tinuous in nature, the simulated landscape had to be homogeneous (and thus
patchlike) at the microsite level (the smallest cell in the simulation). To avoid
employing a patch base model, Palmer (1992) assumed that the microsite is the
scale at which plants can physiologically integrate over the environment. The limi-
tation of this approach, however, is that it assumes that all plants integrate soil
resources over the same area and in the same manner (i.e., all plants have the
same root lateral spread and root density). In nature, however, this is not the
case, as plants do in fact have different root lateral spreads and root densities
(Grime et al. 1988; Boot and Mensink 1990; Campbell et al. 1991). Thus, Palmer
and Dixon (1990) have indicated the need to explore in further detail the ability
of plants to integrate physiologically over an environment as related to their
habitat breadth and the pattern of heterogeneity observed in nature.

The objective of this article is to explore plants’ competitive ability and land-
scape distribution as affected by the interaction between the size and scaling
properties of their root system and the scaling properties of the resources they
use. In the first section, we develop a general theory to explore the relationship
between the root area of plants and their landscape distribution. We accomplish
this by analyzing the probability density function properties of resources that can
be modeled with the use of integrated second-order stationary fractals. We ex-
pand this analysis in the second section by adding the root scaling properties of
plants and use simulation modeling to explore how competition for soil nitrogen
(N) in a fractal environment can affect plant community structure. We modify a
simplified version of the ALLOCATE model (Tilman 1988), making it spatially
explicit for root lateral spread and the scaling of soil mineralizable N.

PLANT ROOT AREA AND THE SCALING OF SOIL RESOURCES

Scaling is a term imbued with many shades of meaning. This ambiguity has
prompted us to define certain terms more precisely as they are used in this article.
We reserve the term scale for the exponent H (the dimension of the Brown zero
set) that characterizes variables with fractal dimensions and defines the degree
and type of spatial dependency. We use the term extent (denoted as A) to signify
the maximum lag distance (space) for which the scaling factor H is operative.
Beyond a distance A, the variables in question are spatially independent (in a
statistical sense). For mathematical simplicity, we analyze only one-dimensional
second-order stationary fractal models (stationary mean and variance), although
the one-dimensional case can be extended to any dimension. The term area (de-
noted as a) will be associated with rectangles that have an infinitesimal width
that, in essence, reduces area to length (double integrals are therefore replaced
with one-dimensional integrals). This convention is also used in the section on
plant competition in which root area is replaced with root lateral spread. Conse-
quently, H is restricted to 0 < H < 1.

To model landscape variables (soil N, soil texture, etc.), we followed the ap-
proach of Urban et al. (1987) and assumed that the value of a particular soil
variable in a landscape, denoted as Y(d), is the result of a combination of spatial
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processes, denoted as X(d), of similar grain but different extent (4’s) and scaling
constants (H’s). Thus, Y(d) has the following characteristics:

Y(d) = fd) + > X(d), ()

i=1

where f(d) is a deterministic function, X,(d) are random variables that have a
normal distribution with £[X;(d)] = 0 and variance[X;(d)] = o? for all i and d, d
signifies any arbitrary point in the landscape, and &[ ] signifies the statistical
expectation. Furthermore, for d; and d, the X;’s have the following spatial rela-
tionships:

d.—d 2H;
E{X(dy) - X(d)P} = 2[%4—‘] of for|d, - d|=4, @
or = 207 otherwise;
_ dy =\
cov[X,(d) X,(dy)] = [1 - (—A—> ]a,. for|d, — d,| = A, )
or = 0 otherwise;
cov[X,(d),X(d)] =0 fori#j ()]
A;<A; fori<j. ©)

Values of H; close to zero indicate spatial independence, whereas values of H;
close to one indicate total spatial dependency. Figure 1 shows an example of
Y(d) for the case of n = 1 and for different values of H, and figure 2A and B
shows examples of the shape of equations (2) and (3) for the case of n = 2. No-
tice in figure 2 that, because of the constraints of equation (5), when the distance
|d, — d,| < A,, the dominant scaling factor is H,, while, when A, < |d, — d,| <
A,, H, dominates.

Organisms in general, and plants in particular, obtain their resources by inte-
grating over a given area. Thus, the effective resource’s variable for a given
organism is not Y but rather the integration of the value of Y over the area or
volume occupied by the organisms. Thus, for our particular analysis we define a
new variable W(d; a) as

d+a d+a i=n
Wda = ¥@) = [ fwdu + Y Z(d; a), ©)
d d i=1
where
d+a
Z(d; a) = f X w)du,
d
where d is a point in the landscape and a is the area over which an organism

operates (e.g., area of the root system). The mean and variance for W(d; a) are
(see App. A for details)
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Fic. 1.—Example of a second-order stationary fractal variable Y(d) (eq. [1]) that consists
of a single spatial process X(d), with f(d) = 6, and var[X(d)] = ¢ = 5.76 for all d. Shown
is the shape of X(d) for three scaling constants H = 0.2, H = 0.5, and H = 0.8.

ewd; ) = [ fudu ™

and
i=n

var[W(d; a)l = > varlZ(d; a)]. ®

i=1

where var[Z,(d; a)] is a function of a, H, and the extent parameter A (App. A).

Fora = A;
2H;
(%)
A; s

. — 2|1 _ ,
var[Z,(d; a)] = a*| 1 GH + DE + 1 of. (8a)
For A; < a < 2A4;
2(a — A) [ (a— A)*Hit!
‘)] = (@ — AY)o? — i e
var[Z(d; a)] = (a* — A})o; 2H T 1 [(2 AT + A, |o?
(8b)

2A_2H,«+2 _ 2(61 _ A~)2Hf+2
+ [(ZA,-—a)a— : ' ]0,-2

AMQH, + 1)QH, + 2)
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Fic. 2.—Distance function (A) and covariance function (B) for a variable that follows a
second-order stationary fractal Y(d) (eq. [1]) with f(d) = 6 for all d’s, and the sum of two
spatial processes X;(d) with oy = o, = 3.16 for all d’s, A; = 50, A, = 200, H, = 0.2, and
H, = 0.8. Shown for comparison are stationary fractal models Y(d) that consist of only one
spatial process X(d), A = 200, 0 = 4.47,and H = 0.2 or H = 0.8.

Fora = 2A;

1

3 1 1
() =242]3 - ;
var[Z(d; a)l = 24, [2 2H, + 1 (1 ToH T 2)] 7

1
+2A,(a — 24A) |:1 - m—l] g;

(80)

A cursory observation of these equations can show that the interrelationship
among the scaling factor H, the area of integration (a), and the var[Z,(-;-)] is
more pronounced for values of a < A;. For large a’s (a > 2A,;) the var[Z,(;")] is
a simple linear function of area (sum of independent random variables) that signi-
fies that organisms with a size greater than 2A; will “‘perceive’’ Z,(d; a) as a
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TABLE 1

VALUES DERIVED FROM A LANDSCAPE IN WHICH THE LANDSCAPE
PATTERN OF SoiL N FoLLows A SECOND-ORDER STATIONARY
FracTAL PATTERN Y(d) WiTH A SINGLE X(d), f(d) = » = 0.4 OR
0.6 mg N FOR ALL d, ¢ = 0.25 AND SCALING VALUES FOR H OF
H = 0.2 AND H = 0.8

H EIW(d; 10)] SD[W(d; 10)] P[W(d; 10) = 5]
2 4 1.85 29
8 4 2.41 34
2 6 1.85 71
8 6 2.41 .66

Note.—See text and eqq. (1)—(3). Here ¢[W(d; 10)] and SD[W(d;
10)] represent the mean and variance for the integrated values of
Y(d) over an area a = 10 (eq. 6); P[W(d; 10) = 5] is the probability
of finding an area a = 10 in which the amount of N is greater or
equal to 5 mg (5 mg of N is the minimum requirement of the plant
discussed in the text).

homogeneous ‘‘patchlike’’ structure. The spatial correlation of W(d,; a) and
W(d,; a) for d; # d, is determined by the covariance functions (cov| ]):

cov[W(d,; a) W(dy; a)] = Z coviZ,(d,; a) Zdy; a)]. )

i=1

The equations for the cov[Z;(d,; a)Z,(d,; a)] are shown in Appendix B.

We use five examples to underscore the relationship between the area of a
plant root system and the scaling of the soil resources it uses. In all five examples,
we assume that soil N is the most limiting factor for plant growth, and its land-
scape pattern follows equation (1). We want to analyze how the area of the root
system interacts with the scaling (H;) and extent (A;) constants that characterize
the landscape distribution of soil N to determine the probability that the plant
will find a suitable habitat for growth.

In examples 1-3 (tables 1-3) the mean soil N in the landscape is a constant
f(d) = w for all d’s, and equation (1) has only one spatial process, X(d), with
scaling H and extent A. Example 1 represents the case of adult plants that have
a fixed size that is less than the extent constant A. In this example we analyze
how the scaling factor H and mean . affect the probability that the plant can find
a suitable habitat for growth in the landscape. The case of @ = 0.4 mg of N
represents a ‘‘poor’’ landscape, because the plant requirements per unit area (0.5
mg of N) are greater than ., while the case w = 0.6 mg N represents a ‘‘rich”
landscape. As table 1 shows, in poor landscapes the probability of a plant finding
a suitable habitat for growth increases with H, while in richer landscapes it de-
creases with H.

Examples 2 and 3 represent the case of growing plants whose root systems are
expanding in area. We analyze how the scaling factor H can affect the probability
that the plant will find a suitable habitat for growth after reaching its full size
contingent on whether the habitat in which the plant originally resides is poor



TABLE 2

CONDITIONAL PROBABILITIES OF FINDING ADEQUATE
RESOURCES FOR A PLANT THAT ExPANDS ITs RooT SySTEM
FROMa = 3T0a = 6

P[W(d; 6) = 6| Wy(d; 3) = wl

Wo(d; 3) H=2 H=238
2 .19 .10
4 81 .90

Note.—Here Wy(d; 3) represents the amount of N (in
mg) found in an area of size a = 3; P[W(d; 6) = 6| Wy(d;
3) = wy] represents the conditional probability that a plant
will find at least 6 mg of N when it expands its root system
from the present area a = 3, where Wy(d; 3) = wy mg of
N, to an area a = 6. The case of Wy(d; 3) = 2 represents
a poor habitat (plant requirements for an area of 3 = 3
mg of N), while Wy(d; 3) = 4 represents a rich habitat.
Also, H = 0.2 and H = 0.8 are the two scaling factors
used. Soil N follows a second-order stationary fractal pat-
tern Y(d) with a single X(d), f(d) = p = 1 mg N for all
d, A = 10, o = 1 (see text and eqq. [1]-[3]). The extent
constantis A = 10; thus the plant root system after expan-
sion remains a = 6 < A.

TABLE 3

CONDITIONAL PROBABILITIES OF FINDING ADEQUATE
RESOURCES FOR A PLANT THAT ExpaNDs ITs RooT SYSTEM
FROM @ = 7 TO a@ = 14 IN SUCH A WAY THAT
A<a<24

P[W(d; 14) = 14|Wy(d; 7) = w,]

Wo(d; 7) H=2 H=28
4 39 41
8 62 .60

Note.—Here Wy(d; 7) represents the amount of N (in
mg) found in an area of size a = 7; P[W(d; 14) = 14| W(d;
7) = wq] represents the conditional probability that the
plant will find at least 14 mg of N when its root system
expands from the present area a = 7, where Wy(d; 7) =
wo mg of N, to an area a = 14. The case of Wy(d; 7) =
4 represents a poor habitat (plant requirements for an area
of 7 = 7 mg of N), while Wy(d; 7) = 8 represents a rich
habitat. Soil N follows a second-order stationary fractal
pattern Y(d) with a single X(d), f(d) = » = 1 mg N for
all d, A = 10, ¢ = 1. The scaling values for H used are
H = 0.2 and H = 0.8 (see text and eqq. [1]-[3]).
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TABLE 4

CoNDITIONAL PROBABILITIES OF FINDING ADEQUATE RESOURCES FOR A
PLANT THAT ExPANDS ITs ROOT AREA FROM @ = §TO @ = 10 IN AN
ENVIRONMENT IN WHICH THE SoiL N FoLLows A SECOND-ORDER
STATIONARY FRACTAL PATTERN Y(d) wiTH Two SPATIAL PROCESSES,
Xd),i=1,2

P[W(d; 10) = 10| Wy(d; 5) = wy]

W,(d; 5) H = 2H =28 H = 8H =2
4 20 26
6 80 74

Note.—The model has two extent constants, A; = 7.5 and A,
= 15, and SD o = o, = 0.4. After expansion the root area of the
plant (a) is such that A; < a < 24, and a < A,. Also, Wy(d; 5)
represents the amount of N (in mg) found in an area of size a = §;
P[W(d; 10) = 10| W,(d; 5) = wy] represents the conditional probabil-
ity that the plant will find at least 10 mg of N when it expands from
the present area a = 5, where Wy(d; 5) = wy mg N, to an area a
= 10. The cases examined represent a poor landscape, with f(d) =
w = 0.4 for all d and Wy(d; 5) = 4, and a rich landscape, f(d) = n
= 0.6 for all d and Wy(d; 5) = 6 (the minimum requirements for
the organism at size a = 5is 5 mg N). We calculated the conditional
probabilities for two combinations of scaling factors: H, = 0.2, H,
= 0.8; and H, = 0.8, H, = 0.2. For more details, see text and eqq.
1-3).

(soil N below plant requirements) or rich (soil N above plant requirements). In
both cases the original area of the root system is less than the extent constant A.
In example 2 the area of the full-size plant (a) remains smaller than the extent
constant A, while in example 3 the root area exceeds it A < a < 2A (App. C
shows how conditional probabilities are calculated). In example 2 the probability
of finding a suitable habitat after root expansion decreases with H when the site
in which the plant is residing is poor, while it increases when it is rich (table 2).
In example 3, however, the results are reversed (table 3).

Example 4 also represents plants that are expanding in size in a landscape in
which the mean soil N is also a constant (f(d) = w for all d’s). The difference,
however, is that equation (1) is now the sum of two spatial processes, X;(d), with
scaling H; and extent A;, i = 1, 2 (A; < A,). The initial root area of the plants is
less than A,, while after expansion to their full size (a) it is such that A, < a <
2A;and a < A,. As in examples 2 and 3, we condition the probabilities of finding
a suitable habitat for growth on the amount of N available for the plant before
expansion (see App. D for details). Table 4 shows the results. In poor original
habitats the probability of finding a suitable habitat on expansion increases when
H, > H,, while for the case of rich original habitats the results are reversed.
Examples 1-4 clearly indicate that both the scaling factors H; as well as the size
of the plant vis-a-vis the extent parameters A; can have a significant impact on the
probability of plants finding suitable habitats for growth and thus their landscape
distribution patterns. This implies that any disturbance that changes H, A, or both
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FiG. 3.—Probability for plants with different root areas to find an adequate site for growth
in a landscape in which soil N follows a second-order stationary fractal pattern Y(d) that
consists of the sum of three spatial processes, X{(d), i = 1, 2, 3 (see text and eqq. [1]-[3])
that have the extent A, SD s, and scaling factors shown in the graph.

can significantly enlarge or restrict the spatial distribution and habitat breadth of
plants. .

In the last example we regard a landscape in which the pattern of soil N is the
result of the sum of three spatial processes, X;(d) (eq. [1]), and the mean soil N
in the landscape, f(d), is no longer a constant. For this landscape pattern of soil
N, we determined which plant size (measured by its root area) has the highest
probability of finding a growth habitat for the different combination of scaling
factors H;, i = 1, ..., 3. The extent and standard deviation constants used are
A; =20,A, = 40, A; = 60, 0, = 2.0, 0, = 2.45, and o5 = 2.82, while f(d) has
the form

fd) =433 for0=d=A,

1.73(d — A)
A2 - A1
f(d) = 6.06e0085@-42)  for A, <d=100.

fd) =433 + forA,<d=A, (10)

Figure 3 shows that, when f(d) is no longer a constant, different combinations
of scaling factors that are dominant at different extents can significantly affect
the landscape distribution of plants with different root areas by affecting their
probability of finding a suitable habitat for growth. These results have implica-
tions in the development of landscape models because they outline a mechanism
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by which disturbances of different sizes may differentially affect the landscape
distribution of a variety of organisms by altering the scaling patterns of soil re-
sources at different extents.

PLANT COMPETITION IN A FRACTAL ENVIRONMENT

In the previous section, we discussed in general theoretical terms how the
interrelationship between plant root area and the scaling of soil resources can
affect the probability distribution of growth habitats. In this section, we use simu-
lation models to explore in more detail the same relationship within the context
of plant competition for soil resources (N in this case). The specific areas of
interest are, first, how the scaling of soil N affects the probability distribution of
growth habitats for plants with two different strategies for scaling of root biomass
to area (we will use Grime’s [1979] root lateral spread concept): (1) large root
lateral spread but low root density and (2) small root lateral spread but high root
density. Second, we will determine how the scaling of N resources plus different
levels of N supply rates (a proxy for the rate of N mineralization) affect the
outcome of competition between the two plants outlined in the first interest area.
Finally, we will study how the interactions among the scaling of soil N, N supply
rates, plant growth rates, biomass allocation to roots, and the scaling of root
biomass to root lateral spread can affect plant community composition.

Model Description

The model we developed was based on a simplified version of the ALLOCATE
model for plant competition developed by Tilman (1988, chaps. 4-8) and modified
so as to include the two parameters of interest: root lateral spread and scaling of
soil N. In this simplified version, the ALLOCATE model consists of the following
set of equations:

dB, rPR;R
7 =8 R+K RESP, (11)
(1 - PR)) ‘
dR i=n
. NSR{S — R - > Bj(1 —PR)va; + PR,-vb,-]}
i=1 P
a (12)
= PR.R
->'B, PRr' i [ya(l — PR,) + vb,PR]],
i=1 ey S
a- PR,»)R K

where B;, PR;, r;, RESP;, va;, and yb, represent total plant biomass, fraction of
plant biomass allocated to roots, maximum growth rate, respiration rate, N con-
tent per unit of leaf biomass, and N content per unit of root biomass for plant i,
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respectively; K, is the half saturation constant for plant N uptake; while S, R, and
NSR represent the total soil N, available soil N, and N supply rate, respectively.
Although Tilman (1988) uses the term respiration, the constant RESP is in reality
a mortality rate. We made two additional modifications to this version of the
ALLOCATE model. First, we did not differentiate between leaf and stem bio-
mass because for simplicity we assumed no differences in the species we mod-
eled. The ALLOCATE model includes competition for light (a shading effect).
This term was not included in the model because our only interest was competi-
tion for soil N. Furthermore, Tilman (1990) has shown that for the first 40 yr N
competition rather than light competition is the major factor controlling succes-
sion in the tall-grass prairie.

The ALLOCATE model does not include either plant spatial dimensions (e.g.,
root lateral spread, root area, or root volume) or soil N scaling properties. We
therefore modified the model to make it spatially explicit. Root lateral spread was
modeled with the use of a simple allometric relationship of the form

RLS, = o,(PR;B)", 13)

where RLS; represents the root lateral spread of plant i, while «; and B; represent
scaling constants. From this equation we can calculate root biomass density
(RBD)) as

RLS, (li(PRiBi)Bi

RLSi>”Bi:|1_Bi ,

a

=a '(PR;B)' P = a_1[<

thus,
RBD, = a’_‘”BiRLSI!/Bi‘l . (14)

With this information we made equation (11) spatially explicit by replacing the
ratio PR;:(1 — PR,) with RBD; and R with the integration of available soil N
over the RLS, of the plant in question:

B

d+RLS;
r(1 — PR, RBD, Jd Ru; H)du

d+RLS; — RESP; |, (15)
RBD, [ 'R(u;fdu + K.RLS,
d

where R(u; t) is available soil N at time ¢ at landscape location u«, while the
interval (d;, d; + RLS,) represents the landscape location of the root system of
the plants in question. Thus, the available N for plant i is the product of root
density multiplied by the available soil N in the (d;, d; + RLS,) interval. In this
equation K; is now the half saturation constant for plant N uptake per unit of
RLS,.

The equation for the change with time of available soil N per unit area for all
points in the landscape was constructed from equation (12) by replacing S with
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TABLE 5

PLANT PARAMETERS USED IN THE SIMULATION MODEL

Sp RLS r PR Biom a B K RESP Ya Yo
1 8.76 .36 17 25 1 1.5 41.0 .007 .1 .059
2 34.02 .25 42 25 1 1.5 8.0 .007 .1 .059
3 59.55 17 .61 25 1 1.5 2.0 .007 .1 .059
4 86.11 .10 .78 25 1 1.5 3 .007 .1 .059
5 97.96 .07 .85 25 1 1.5 1 .007 .1 .059
6 4.25 .36 17 25 1 1.0 41.0 .007 .1 .059
7 10.50 .25 42 25 1 1.0 8.0 .007 .1 .059
8 15.25 17 .61 25 1 1.0 2.0 .007 .1 .059
9 19.50 .10 78 25 1 1.0 3 .007 .1 .059

10 21.25 .07 .85 25 1 1.0 1 .007 .1 .059
11 2.38 .36 17 25 1 .6 41.0 .007 .1 .059

12 4.10 .25 42 25 1 .6 8.0 .007 .1 .059

13 5.13 17 .61 25 1 .6 2.0 .007 .1 .059
14 5.94 .10 .78 25 1 .6 3 .007 .1 .059
15 6.26 .07 .85 25 1 .6 1 .007 .1 .059

Note.—For details on how these parameters were calculated, see App. E. Here RLS represents
root lateral spread (sensu Grime 1979); r is the daily growth rate; PR is the proportion of biomass
allocated to roots. Biom is the maximum biomass that each plant can attain; K is the half saturation
constant for N uptake; RESP is the daily respiration rate; vy, and +y, represent the crude protein — N
content per unit of biomass of leaves and roots.

S(u) (where S[u] is the total amount of soil N at location « in the landscape), R
with R(u; t), and B; by B, per unit of RLS,. The equation is

%R(u;t) = NSR[S(4) — R(u; D]

i=n

Bi
— NSR[ £ EL_SI ('Ya,(l - PRI) + 'YbiPRi)I(d,,d,-+RLS,-)(u)] (16)

d;+RLS;
= g r,-(l—PR,-)RBD,-L. R(u; f)du

- Z RLiS~ RIS, (va,(1 —PR) + ybiPRi)I(d[,dﬁRLS,‘)(u) )
= i | RBD, f R(u; ) du + K,RLS,
4

where d; is the location of the plant i in the landscape and the indicator function
Ion1)(u) is one when u belongs to the interval INT and zero otherwise. In this
case, INT is the interval (d;, d; + RLS)).

Model Parameters

Total soil N in the landscape (S[u]) was modeled by equation (1) with the use
of a single spatial process, X(d), with an extent constant A = 300 cm, f(«) = 6,
and var(X[u]) = 5.76 for all u’s. The scaling effects were investigated with the
use of two scaling parameters: H = 0.2 and H = 0.8. We used three nutrient
supply rates: 0.001529, 0.000343, and 0.000092, which represent the maximum,
average, and minimum N supply rates, respectively, needed to sustain adult
plants in the absence of inter- or intraspecific competition (table 5). Because the
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model involves both inter- and intraspecies competition, these NSRs represent
different levels of N supply stress.

Parameters for all the plants used in the different model runs are shown in
table 5. The values for the r;, PR;, and K; were selected to have as close a
resemblance as possible to the available experimental data (see App. E for de-
tails). We selected three different B values to scale root biomass to RLS (B =
0.6, 1, 1.5 with o; = 1 for all i’s). This resulted in root lateral spreads ranging
from 2.38 cm (B3 = 0.6, PR = 0.17) to 97.96 cm (B = 1.5, PR = 0.85) and root
densities ranging from3.4gcm~' (B = 0.6, PR = 0.85)t00.22gcm™ ' (B = 1.5,
PR = 0.85). The maximum attainable biomass was the same for all species. In
all cases the maximum root lateral spread was less than the extent constant A.

For objectives 1 and 2, we simulated 1,000 individual patches with 150 plants
per patch (75 for each plant for objective 2). The patches were simulated in groups
of five for 1,000 d and repeated 200 times. For each simulation, only the central
patch was sampled to avoid edge effects. In the case of objective 1, we sampled
the central plant of the central patch.

For objective 3, we modeled nine contiguous patches with a total of 150 plants
per patch (10 for each of the 15 species randomly located within the patch).
Simulations were run for 1,000 d and repeated 100 times. Only the central patch
for each run was sampled at the end of each simulation for statistical analysis to
avoid edge effects. Two simulation strategies were used: the first provided an
unlimited supply of N until all plants reached their full (adult) biomass and was
followed by the impositions of the different N supply constraints (NSRs) for 1,000
d; in the second strategy, all plants were started as seedlings (seedlings are plants
with a biomass equal to 10% of the adult biomass) and the N supply constraints
were applied at the start. These two strategies were designed to study whether
soil N scaling factors combined with N supply rates have different impacts when
applied to already established communities as opposed to a situation in which
the adult vegetation has been removed and plants are reestablishing via seedlings.
We used the second strategy to explore in further detail the problem of root
expansion discussed in example 2 (table 2) of the previous section with the addi-
tion of root density and within the context of intra- and interspecific competition.

Model Results

Probability distribution of growth habitats for plants with two different scalings
of root biomass to root lateral spread.—We used two plants for comparison:
species 2 and 12 of table 5. These plants have the same r, RESP, PR, K, and «
but differ in their scaling of root biomass to root lateral spread. Species 2 has a
B, = 1.5, which results in a root lateral spread of 34 cm and a root density of
0.31 g cm™!. Species 12 has a B,, = 0.6, which results in a root lateral spread of
4 cm and a root density of 2.6 g cm™~!. The plants were grown in monocultures
(no interspecific competition) and were supplied with unlimited N until they
reached their full size, after which the N supply rate was reduced for 1,000 d to
NSR = 0.000343 (average level). At the end of the 200 simulations, we deter-
mined the percentage of patches at which the central plant biomass was at least
80% of the full-size plant (thereafter referred to as adult plants).
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Fic. 4.—Percentage of patches with adult plants (biomass = 80% of maximum biomass)
after a 1,000-d simulation (monoculture, no interspecific competition) for two species with
different root lateral spreads (RLS) and root densities (RD): species 12 (table S) with RLS
= 4 cm and RD = 2.6 g cm™! and species 2 (table 5) with RLS = 34 cm and RD = 0.31 g
cm~!. Total soil N followed a second-order stationary fractal model Y(d) (eq. [1]) that
consists of only one spatial process X(d) with A = 300 cm, f(d) = 6 for all d, o = 2.4, and
H = 0.2 or H = 0.8. The N supply rate used was NSR = 0.000365 (see text for more
details). Two asterisks represent significant differences (within each species) between H =
0.2and H = 0.8 at P < .01.

Figure 4 shows the results. The scaling of soil N had indeed a significant impact
in the percentage of patches with adult plants (an index of the ability of plants to
withstand the imposition of a nutrient supply stress). Species 2, with its extensive
root system and low root density, had a significantly higher (P < .01) percentage
of adult plants at soil N scaling of H = 0.8 than at H = 0.2 (36% vs. 23%). The
results were the contrary for species 12 characterized by a small root lateral
spread, high-density root system. The percentage of adults was 54% for H = 0.2
and 37% for H = 0.8 (P < .01).

The results for species 2 (B = 1.5) can be explained directly by the increase
in the coefficient of variation (C.V.) for S(u) when H changes from 0.2 to 0.8. In
a nutrient-poor environment a large C.V. results in an increase in the probability
of finding adequate growth habitats. For species 12 (B = 0.6), however, the
explanation cannot be extrapolated from the changes in C.V. since the C.V. does
not significantly change with the changes of H. This leaves us with only a heuristic
explanation. Plants with small-root lateral spread but high root densities may be
able to exploit the ‘‘cracks’’ (high peaks and valleys) that characterize the pattern
of soil resources at low H values (see fig. 1).

Competition between plants with an extensive low-density root system versus
plants with a small high-density root system.—To explore this objective, we ran
competition simulations between plants 2 and 12 and 5 and 12. We used the case
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Fic. 5.—Average percentage composition of 200 patches after a 1,000-d simulation of
intra- and interspecific competition among three species with different root lateral spreads
(RLS) and root densities (RD): species 12 (table 5) with RLS = 4 cmand RD = 2.6 gcm™!,
species 2 (table 5) with RLS = 34 cm and RD = 0.31 g cm~!, and species 5 (table 5) with
RLS = 98 cm and RD = 0.26 g cm ™. Total soil N followed a second-order stationary fractal
model Y(d) (eq. [1]) that consists of only one spatial process X(d) with A = 300 cm, f(d)
= 6 for all d, o = 2.4, and H = 0.2 or H = 0.8. The species were grown under three
different N supply rates: high (NSR = 0.001529), average (NSR = 0.000343), and low (NSR
= 0.000092); see text for more details. A, Results of competition between species 12 and
species 2; B, results of competition between species 12 and species 5. Two asterisks represent
significant differences between plants with RLS of 4 cm and RLS of 34 cm or plants with
RLS of 4 cm and RLS of 98 cm at P < .01; ns = no difference.

of plant 5 versus 12 to analyze the combined effects of the allometric root scaling
constant B and biomass allocation to roots on species competition. All simulations
were given an unlimited supply of N until they reached adult size and then were
grown for 1,000 d with three N supply rates: high (NSR = 0.001529), average
(NSR = 0.000343), and low (NSR = 0.000092).

Figure 5A and B shows the results. The interplay between NSR and scaling of
soil N complicates the picture that emerged from the previous single-species
model. At high NSR species 12 (B = 0.6) was always dominant (P < .01), but
its dominance declined from an average of 69% to an average of 54% when the
biomass allocation to roots of the competing species (B = 1.5) increased from
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0.42 to 0.85 (fig. SA vs. B). On the average, species 12 composition was signifi-
cantly higher (P < .01) under a soil mineralizable N scaling of H = 0.2 than
under H = 0.8 (50% vs. 38% when competing with species 2 and 25% vs. 22%
when competing with species 5). At low N, NSR species 2 and 5 were the domi-
nants (P < .01), and, on the average (for all NSR), their percentage in the commu-
nity was higher (P < .01) under H = 0.8 than under H = 0.2 (60% vs. 48% for
species 2 and 77% vs. 74% for species 95).

In addition to the interplay among 8, NSR, and H, these results also suggest
two other patterns. First, there is a positive relationship between root scaling
patterns and biomass allocation to roots. In general, the results suggest that, in
order to compete effectively for soil resources at all N supply levels, species with
a root allometric scaling factor of B > 1 must also allocate substantial amounts
of biomass to their root system. Second, our results indicate an ability to substi-
tute root density (B < 1) for biomass allocation to roots (high PR) at the high end
of the N supply scale (lower N stress).

Competition among plants that differ in growth rate, root biomass, and the
scaling of biomass to root lateral spread.—In this set of simulations, we used
all 15 species shown in table 5. We first looked at the case in which nutrient
supply constraints are imposed in a mature community in which all species have
reached adult size. As in the case of the two-species model, plant community
composition was affected by the N supply rates, the scaling of soil N, and the
root lateral spread of the different plants (fig. 6). Plants with a root lateral spread
of less than 10 cm had a significant (P < .01) decline in community composition
when progressive nutrient stresses were applied: from a high of 34% in the high
NSR to a low of 9% in the low NSR. Furthermore, the change in the scaling of soil
N from H = 0.2 to H = 0.8 significantly (P < .01) decreased their composition at
average and low NSR (—26% and —31%, respectively). Plants with root lateral
spread greater than 25 cm showed a different behavior. Their composition was
unaffected by changes in NSR (P > .05), but at the lower NSR a change in the
soil N scaling resulted in a significant (P < .01) increase in their composition
(+13%). Finally, plants with root lateral spread in the 10-25-cm range signifi-
cantly increased their composition when NSR was changed from high to average
(P < .01) but were unaffected by changes in the scaling of soil N. This could
result from the fact that all the plants in this category have B = 1, which means
that root density is unaffected by root lateral spread.

While average responses are shown in figure 6, there were also variations in
the responses of the different species within each group. At that level, species
have a similar response to the ALLOCATE model; that is, dominance was corre-
lated with biomass allocation to the root system (PR). For example, while at the
low NSR plants with a root lateral spread of less than 10 cm declined in aggregate
by —31% when H was changed from 0.2 to 0.8, the decline was —55% for plants
with a PR = 0.42 (root density = 2.56 g cm™!) and —23% for plants with a PR
= (.78 (root density = 3.28 gcm™}).

We also examined the case of nutrient supply constraints applied to seedlings
growing (and thus expanding in size) in a fractal environment. While species
composition at high NSR was similar in both adult- and seedling-based models
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Fic. 6.—The results of 1,000 d of intra- and interspecific competition in an established
community (all adult plants) composed of the 15 plants shown in table 5 and growing in an
environment in which total soil N followed a second-order stationary fractal model Y(d) (eq.
[1]) that consists of only one spatial process X(d) with A = 300 cm, f(d) = 6 for all d, &

= 2.4,and H = 0.2 or H = 0.8. All plants were first provided with an unlimited supply of

N until they reached their full (adult) biomass; this was followed by the imposition of three
different N supply constraints (NSRs) for 1,000 d: high (NSR = 0.001529), average (NSR

= 0.000343), and low (NSR = 0.000092); see text for more details. The left side of the graph

shows percentage composition of groups of plants with three distinct root lateral spreads.
The right side of the graph shows the percentage change in composition when the scaling
of total soil N is changed from H = 0.2 to H = 0.8. Two asterisks represent significant
differences between H = 0.2 and H = 0.8 at P < .01; ns = no difference.
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(figs. 6 and 7), at the lower end of NSR the results were not symmetric. In the
adult-based model, species with a root lateral spread of less than 10 cm decreased
their composition to an average of 12% for the average and low NSR, while in
the seedling-based model the average value was 29%. The opposite was true for
species with a 10 < RLS < 25 cm: in the adult model the average species composi-
tion at average and low NSR was 50% versus 43% in the seedling-based model.
For species with RLS > 25 cm, there was a smaller change in species composition
between adult and seedling models: an average of 30% for average and low NSR
in the adult models to 25% in the seedling-based model. This difference in behav-
ior resulted from the interplay among the conditional distribution of growth habi-
tats associated with organisms that are expanding in a fractal environment (see
table 2) and the differences in root densities. Because of intra- and interspecific
competition for soil available N, all NSR rates in the model represent different
levels of N stress, which indicates that many seedlings will be surrounded by
areas with NSR that are lower than plant requirements. This means the ‘N
obstacle’’ that a plant needs to overcome will be higher for plants that must
expand over large areas. Conversely, because plants with high RLS capture re-
sources over large areas the requirements of N per unit area decline.

SUMMARY AND CONCLUSIONS

In the first part of this article, we explored in general theoretical terms the
interaction between the root area of a plant and the scaling (H) of soil N and
how this interaction may affect the landscape distribution of plants. First, we
considered a landscape in which soil N can be modeled with the use of only one
scaling (H) and extent constant (A) and in which the mean for soil N is a fixed
constant (f[d] = p for all d; see eq. [1]).

For an adult plant with a fixed root area inhabiting a poor landscape (average
resources below plant requirements), the probability of finding a suitable habitat
increases with the scaling factor H, while in ticher landscapes the results are the
opposite: the probabilities of finding a suitable habitat decreased with H (table
1). These results strongly indicate that a small change in the scaling of soil N can
significantly affect the spatial distribution of plants and thus landscape patchiness.

For seedlings whose root systems are expanding in area, the results depended
heavily on whether, as it expands, the root area remains smaller than the extent
constant (A), or it expands beyond it. When plant root area remained within the
bounds of the extent constant A (table 2), the results were opposite to the ones
found for the case of adults (table 1). If the organism was originally residing in a
poor site, its probability of finding a suitable habitat after root expansion was
inversely related to the scaling factor H (the opposite was true for rich original
habitats). These results indicate that population level response to changes in the
scaling and total pools of landscape resources may depend heavily on the mixture
of organism sizes (seedling vs. adult plants in our case).

The response pattern was different when the plant root area after expansion
exceeded the extent constant A (table 3). In this case, only small differences were
found between H values. There are, however, interesting comparisons to be made
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Fic. 7.—The results of 1,000 d of intra- and interspecific competition in a community of
seedlings composed of the 15 plants shown in table 5 and growing in an environment in
which total soil N followed a second-order stationary fractal model Y(d) (eq. [1]) that consists
of only one spatial process X(d), with A = 300 cm, f(d) = 6 foralld, 0 = 2.4, and H =
0.2 or H = 0.8. The seedlings were subjected to three different N supply constraints (NSRs)
and allowed to grow for 1,000 d: high (NSR = 0.001529), average (NSR = 0.000343), and
low (NSR = 0.000092) (see text for more details). The left side of the graph shows percentage
composition of groups of plants with three distinct root lateral spreads. The right side of the
graph shows the percentage change in composition when the scaling of total soil N is changed
from H = 0.2 to H = 0.8. Two asterisks represent significant differences between H = 0.2
and H = 0.8 at P < .01; ns = no difference.
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between plants with root area (a) that is less than the extent constant A and
plants with A < a < 2A. If a plant originally resides in a poor site, the ability to
expand its root system beyond the extent constant A becomes a significant advan-
tage because it increases the probability of finding suitable habitats for growth
(0.39 vs. 0.19 for H = 0.2 and 0.41 vs. 0.10 for H = 0.8; tables 2 and 3). If the
organism, however, originally resides in a rich site, the size of the extent constant
A may indeed become a barrier for expansion (0.81 vs. 0.62 for H = 0.2 and 0.90
vs. 0.60 for H = 0.8; tables 2, 3). These differences need to be taken into account
when analyzing the landscape effect of disturbances that break the extent of the
spatial autocorrelation of soil variables.

We then expanded our theoretical analysis to the case in which the mean of
soil N in the landscape is no longer a constant and in which the pattern of soil N
is the result of the sum of three spatial processes, X;(d) (eq. [1]), with a combina-
tion of different scaling constants, H;. We used this model to determine whether
there is an optimal root area for plants that have the same soil N requirements
but inhabit landscapes with different combinations of scaling constants (H;, i =
1, . .., 3). We found that the optimal root area for a plant to succeed may in
fact be significantly influenced by the combination of scaling constants of the
different spatial processes (fig. 3). These results have implications in the develop-
ment of models designed to predict which organisms may be more susceptible to
disturbances that alter the value of the scaling constants that control the land-
scape patterns of soil resources at different extents.

We analyzed the effect of resource scaling in plant species competition by
making the ALLOCATE model (Tilman 1988) spatially explicit. Soil N was mod-
eled with the use of second-order stationary fractals, and plants were spatially
dimensioned with the use of the root lateral spread concept (Grime 1979). We
derived the following conclusions from the analysis of model outputs: First, in
monocultures, adult plants with low RLS but high root densities are better suited
to withstand a nutrient stress (N in this case) than plants with a high RLS and
low root densities when the scaling of soil N is low: H < 0.5 (fig. 4). For
H > 0.5, however, the results were exactly the reverse (fig. 4).

Second, in the presence of intra- and interspecific competition (fig. 5), plants
with low RLS and high root density were dominant only under low nutrient stress,
but their dominance was significantly reduced when the scaling factor H was near
one. At high N, stress conditions plants with large RLS and low root densities
were dominant, and their dominance was magnified when the scaling factor H
was near one. These two results may cast some light on the theoretical dispute
between Tilman (1982, 1988) and Grime (1979) as to which plant trait may be
optimal in the competition for soil nutrients: the ability to capture nutrients rap-
idly, which in our context would be associated with high root density, or the
ability to withstand low nutrient supply rates, which in our context would be
associated with high RLS.

Finally, we also ran large-scale simulations involving species with different
RLS, biomass allocation to roots, root densities, and growth rates (table 5) that
were competing in a landscape characterized by different soil N scaling properties
and NSR. The general trends of the results of the two species model discussed



1046 THE AMERICAN NATURALIST

above were also observed in a multispecies model, with an added role played by
the allocation of biomass to roots (see figs. 6 and 7). The results were also heavily
dependent on whether the nutrient stress was applied to adult plants or seedlings.
Seedlings of plants with low RLS and high root density do much better when
competing with seedlings of plants with high RLS and low root density than
adults competing with adults (figs. 6, 7). This interplay between plant traits, age,
and the scaling of soil resources may add another tier of explanation to the obser-
vation that species that are dominant as adults and that sometimes tend to become
even more dominant when nutrient or water stress is applied cannot successfully
compete as seedlings in secondary succession. A typical example is the case of
Bouteloua gracilis in the short-grass prairie, a plant with a large root system and
large allocation of biomass to roots (Redente et al. 1990) that is dominant in
undisturbed communities but has a low probability for establishment in disturbed
areas in which the surface vegetation has been removed (Coffin and Lauenroth
1990). Coffin and Lauenroth (1990) have related these low establishment probabil-
ities to the presence or absence of optimal growing conditions (in particular,
sequence of rainfall events) and the physiological and morphological characteris-
tics of B. gracilis, and they have developed detailed and complex models to
account for the observed patterns. Our results relating biomass allocation to
roots, RLS, root density, and the scaling of soil resources to the ability of seed-
lings versus adults to compete can add a complementary and certainly more
parsimonious explanation to the phenomenon.
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APPENDIX A

MEAN, VARIANCE, AND PROBABILITY DENSITY FUNCTION OF THE INTEGRATED FRACTAL PROCESS
Z(d; a) DescriBED BY EQUATION (6) OF THE TEXT

Since X(d) is a Gaussian process, then Z(d; a) is also a Gaussian process. To establish
that, we need to remember that W, . . . , W, have a joint normal distribution if they can
be represented as

m
Wi=> aU;, i=1,....n,
j=1
where U;, j = 1, .. ., m are independent and normally distributed random variables. It
follows then that any set of partial sums of W, . . . , W, are also jointly normal. Now

Z(d; a) can be written as a limit of a sum: Define
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A,,x=% withx, =d + kA,x fork=1,2,...,n

Then

J X(u)du ~ lim Z XA, x.

n—o
Thus it will also be normally distributed.
To characterize Z(d; a), we need only to determine its mean and variance. First, Z(d;

a) is a Gaussian process, which means we can use Lebesgue’s theorem of dominated
convergence (Shiryayev 1984, p. 185) to interchange expectation and integration. Mean:

d+a d+a
¢Z(d; a)] = E[L X(u)du] = L EX(w)ldu = 0.

Variance:

var[Z(d; a)] = cov[Z(d; a)Z(d; a)] = cov [ jd‘““ X(w)du L‘”“ X(s) ds]

- f:“ f:” CcovIX(u) X (s)]ds du

_ J~d+a[d+a|: _ < sl) ]021 ds du
(lu—s|=A) s

where I, _=4) = 1 when |u — 5| < A and 0 otherwise. That generates three cases. First,
a<A:

2H
] _ d+a rd+a _ |M — sl) jl 2 _ 2[ _ a*t ] )
varizd; @l = [ | [1 ( A ocduds = a\ - e H s D D]

Second, A = a = 2A:

2H
d+a—-A s+A —
var[Z(d; a)] = L " L+ [1 - <|—MA—S|> ]ozduds
2H
d+A d+a : |u - S|> )
* d+a—AL [1 < A ]U duds
d+a rd+a — sl H 2
f f - o‘duds .
d+A

(@ - Ao o¥a - A) (a — Ay
var[Z(d; a)] = 2 2H + 1 [A * AHQH + 2)]

2H+2 _ — 2H+2
02[ QA - aya - 2,42 2a - A) ]
AMQH + 1)Q2H +2)

(a2 _ AZ) (a _ A) (a _ A)2H+1
+ "2{ 2 2H+ 1 [A T AHoH + 2)]}

Thus,
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and

_ _ 2H+1
var[Z(d; a)] = 02{ (@ - A% - 22(?1 :) [A " /(aiﬂ(z/;} + 2)]}

2H+2 __ _ 2H+2
UZ[QA_a)a_ZA 2(a — A) ]

AHQH + 1)2H + 2)
Finally, a > 2A:

2H
var[Z(d, a)] = J’dM J’HA [1 (lu - s|) ]czduds
2H
d+a— AJ.H-A[ ( S|> ]0-2duds
d+A

2H
d d+a
T [ <|u s|> ]czduds.
d+a—-A7Js—A
Thus,

3 1 1
CV = g242] 3
var[Z(d; a)] = o*A [2 2H + 1 (1 Tt 2)]

1 3 1 1
2 B 2422 _
+ 240%(a ZA)[I 2H+1]+GA[2 2H+1<1+2H+2>]

and

3 1 1 1
7(d: )] = 252A2| 2 — 24(q — 2A -
varlZ(d; a)l = 20 [2 2H + 1(1 Y IE T 2)] +207°A@ =2 )[1 2H + 1]'

APPENDIX B
COVARIANCE BETWEEN Z(s; a) AND Z(d; a) WHERE s < d

The cov(Z[s; al, Z[d; a]) is calculated using an approach similar to the one used to
estimate the var(Z[d; a]) in Appendix A. What changes, however, is the limits of integra-
tions. The cov(Z[s; al, Z[d; a]) is calculated as follows:

cov[Z(s, a), Z(d; a)] = cov [J;Ha Xu)du Ld+a X(y)dy]

= Ld+a fﬁa cov[X(y) X(u)]ldudy

_ J;d+aJ'x+a[ <Iu “)’|> i|0'21(|u—y|53)dudy’

where the indicator function I is as defined in Appendix A. The bounds imposed in the
limits of integration (I(j,_, =4y = 1) generate six distinct cases, with the integrals to be
solved being of the general form

. 2H
covIZ(s: @), Z(d: a)] = J'Iu-hmxtl J'ul(y) [1 _ (Il-_)’_l) ] o-zdudy

dimit, J1,(9) A

+ + J'u-limitn Jm”(y) [1 <|u _ y|>2H] 2 dnd
Himit, 91,0 A oaunay-
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Here [-limit; and w-limit;, i = 1, ..., n, are lower and upper limits for y within the interval
0 to a, and /;(y) and u,(y) are functions of y of the form [(y) = y — Aand u,(y) =y +
A, with the constraint that (d — s) = [;(y) and u(y) = (d — s + a). The limits of integration
depend on the |d — s|, the size of the area (a), and the extent (4). The six cases are, first,
|d — s + a| < A. There is only one integral to solve with the limits of integration:

Osy=a and [[())=Wd-s)=u=u(y)=d—-s+a).

The covariance then is

cov[Z(s; a), Z(d; a)] = 02{a2 [(d—s+ a2+ d-s - a" - 2d - s)2H+2]}

AMQH + )QH + 2)

The second caseis(d — s) = A <(d — s + a) and 2(d — 5) = a = 2A. There are three
integrals to solve, with the limits of integration as

Osy=sd-s+a—-A and [[())=d-s)=u=u;(y)=y+A;
d—s+ta—-A=sysd-s+A and L(y)=d-s)=u=su)(y)=d—-s+a;
and
d—s+A=y=a and L(y)=y—-A=u=su;(y)=d-s+a.

The covariance then is

2
cov[Z(s;a),Z(d; a)] = @ {“ - Az[ m]}
s 2 2d— 9 ]
+oid =) [AZH(zH TDeH+D |

(@ —A)
02[0(2A —a)—ZAZH+ 1].

The third case is (d — s) = A =(d — s + a),2(d — s) = a, and 2A < a. There are
three integrals to solve, with the limits of integration as

O0sy=sd-s5s+A and [[(y))=d—-9)=u=su(y)=y+A;
d—s+A=sy=d—-s+a—-A and L(yY)=y—-Asu=su,(y)=y +A4;
d—s+a—-A=<y=a and L(y)=y—-A=su=su(y)=d-s+a.
The covariance then is

cov[Z(s; a), Z(d; a)] =

- — — —_ 2
0‘2[(d—s+a+A)(s—d+A)+(d s+ta—A? d-s A)]

2 2

B GZ{A(d —sta-4) [(a — A2 —(d - s)ﬂM] AA +s - d)}
2H + 1 AMQH + 1)QH + 2) 2H + 1

A2H+2 _ (d _ s)2H+2 :| [ 1 ]}
— 2 _ _ e
g {[A“”(ZH Y ) Rl Ry [

The fourth caseis(d — s) =A=({d — s + a),a =2(d — s), and a = 2A. There are
two integrals to solve, with the limits of integration as

Osy=s(d-s+a—-A) and [[()=d-9s)=u=u|(y) =+ A)
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and
d-s+a—-A)=y=a and L(Y)=Wd-9)=u=su(y)=Wd-s+a).

The covariance then is

: o a|ad d-s—-A? Ad-s+a-A) B
cov[Z(s,a),Z(d,a)]—(rl:2 > SH 1 + a(s d+A)]

_ 02[A2H+2 + (d — 5 — a)2H+2 _ 2(d _ s)2H+2:]
AMQH + 1)QH + 2) '

The fifth case is 0 = A = (d — s) and (d — s + A) = a. There are two integrals to
solve, with the limits of integration as

d-—s—-A)=sy=sd-s+A) and [|(y)=Ud-s)=su=su(y)=(y+A4)
and
d-s+A)=y=a and L) =(-A)=su=su(y)=(y+A4A).

The covariance then is

cov[Z(s; a), Z(d; a)] = 2A(a — d + s)(l 2

1
_2H+1))‘r

Finally, the sixthcaseis0=A<(d —s)and(d — s — A)=<=a=(d — s + A). There
is only one integral to solve, with the limits of integration as

d-s—A)=sy=a and [|())=d—-s)=u=su(y) =y + A).
The covariance then is

cov[Z(s; a), Z(d; a)] =

[(A d+s)a—-d+s+4)+% —(d_S_A)Z_A(a—d+s+A)]

2 2 QH + 1)

l: (d — s — a)?H+? :I
(2H + 1)(2H +2) Az”(2H + DQH + 2)

APPENDIX C
CoNDITIONAL PROBABILITIES FOR W(d; a) As DEFINED IN EQUATION (6)

As shown in Appendix A, Z(s; a), and thus W(s; a), has a normal distribution. This
signifies that W(s, a) and W(d; a) (s < d) have a joint multivariate normal distribution. If
we define W, = W(s; a) and W, = W(d; a), then the parameters of the multivariate
distribution are

s+a d+a
v = f faydu and py, = [d fw)du
oy, = var[W(s; a)l; o}, = var[W(d; a)]

_ cov[W(s; a), W(d; a)]
\Vvar[W(s; @)l VVvarlW(d; a)]
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The conditional distribution of W(d; a) given W(s, a) = w, is univariate normal, with
the following parameters (Mood et al. 1974, p. 167):

POw.

2
MW, | Wy=wg) = MWw, T (hw, = wo)
1

Ow
and

2 — 2 2
OtwyIW,=wp = Tw,(1 = p%).

APPENDIX D

CONDITIONAL DISTRIBUTION ASSOCIATED WITH DOUBLING THE S1ZE AND CROSSING EXTENT
BoUNDARIES (TABLES 3 AND 4)

Assume a situation in which the variable of interest has a second-order stationary fractal
structure of the following form (for the case of only one spatial process X,(d) = 0V d):

Y(d) = f(d) + X;(d) + X,(d) H,#H, and 2A,<A,.

Furthermore, assume that the process in question (W[-;-]) integrates over an area of
size = a[W(d; a)] such that 0.5A; < a < A,. Let us assume that the process W(-;-) doubles
in size: W(s; a'), a’ = 2a and thus A; < a’ < A,. We want to calculate the conditional
probability of W(s; a') given W(s; a) = wy.

We can construct W(s; a’) as W(s; a’) = W(s, a) + W(s + a, a), that is, as the sum
of two nonoverlapping W(-;-) variables. As a consequence,

P[W(s; a’) = w|W(s; a) = wyl = P[W(s; a) + W(s + a; a) = w|W(s; a) = wgl,
SO
P[W(s; a’) = w|W(s; a) = wol = P[W(d; a) =w — wy| W(s; a) = wyl,

where d = s + a. Using the equations for the multivariate normal distributions, the values
for A, A,, a, and a’ in question, we have

s+a d+a
Pw, = f fwdu and py, = L fw)du
oy, = var[W(s; a)] = var[W(d; a)] = o}y, = a*(o} + ¢3)

olqHh+? ol +?

T ATQH, + DH, + 1) AYRQH, + D(H, + 1)

Given that A; < a' < 24, < A,, we can use the covariance equations from Appendix B
for H, and H, and the fact that in our case d — s = a. Therefore,

cov[W(s; a), W(d; a)] = U%[fh(z“ - %) —a’- (2;1-;1 Ij-l)lAl]

A%H1+2 — 2(,12H1+2
B [A%Iﬂ(zHl + 1)QH, + 2)]

of

a1y )

T AYLQH, + )(H, + 1)
Thus,

_ cov[W(s; d), W(d; a)]
- var[W(s; a)] )
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With these values we can calculate the conditional mean and variance of W, given W, =
wy, using the equations for the conditional distribution shown in Appendix C. With that,
then, we can calculate the appropriate probabilities.

APPENDIX E
EsTIMATION OF THE r, PR, AND K PARAMETERS USED IN THE SPECIES COMPETITION MODEL

We selected values for the r (maximum rate of growth), PR (fraction of biomass allocated
to roots and rhizomes), and K (half saturation constant) parameters that have a close
resemblance with the available experimental data. In order to do that we proceeded as
follows.
~ First, we selected PR values that followed the patterns of root plus rhizome biomass
allocation of the five species (Agrostis scabra, Agropyron repens, Poa pratensis, Schiza-
chyrium scoparium, and Andropogon gerardii) shown in table 1 of Tilman and Wedin
(1991). The PR values selected for the simulations run in the main text were 0.17, 0.42,
0.61, 0.78, and 0.8S.

Second, the r values for the model were generated as follows. We first assumed for
simplicity that the aboveground biomass of plants was composed entirely of leaves. This
assumption is reasonable because the objective of this model is not to test the effects of
leaf-to-shoot ratios in plant growth. We subsequently ran a regression between the (1 —
LF) = PR and weekly RGR,,, data shown in figure 4.7 of Tilman (1988) and rescaled the
RGR,,, from weekly to daily values (LF is biomass allocation to leaves, and RGR,,, is
maximum growth rate). The resulting equation is

r = 0.4276 — 0.419*PR.

The corresponding r values for the PR values used in the simulations (see above) are 0.36,
0.25, 0.17, 0.1, and 0.07.

Third, to estimate the K values associated with each pair of », PR values, we used the
following approach. We began by rescaling the X- and Y-axes of the data presented in
figure 4A of Tilman (1990) that relate the equilibrium concentration of NO; — N in soil
solution under a monoculture (R*) of the five species discussed above (Y-axis) to their
respective root biomass (X-axis). We rescaled R* by dividing each R* by RX,,, thus
generating relative R* (RR¥) in the 0-1 range. The X-axis was rescaled to relative values
by replacing the root biomass with the corresponding PR values for the species in question
(table 1 of Tilman and Wedin 1991).

We then ran a regression between the RR* and PR. The resulting equation was

RR* = 0.5* exp(0.185 — 3.466* PR) r? = 0.92.

Now the equivalent for R* in equation (15) of the text was derived as follows. First we
solved equation (15) for the total amount of resources needed at equilibrium:

. d+RLS;
B, r(l = PR))o; VBRLS ! L R(u; f)du
=B — — RESP, | =0
] VBRLS!! f R(; f)du + K,RLS,
d
d+RLS,-R J K;RLS?~!/Riq /B RESP;
J Wi du = — PRy —RESP,

Now, the R* discussed above is a dimensionless value because it corresponds to the
equilibrium solution for the ALLOCATE model, which (see main text) is itself dimen-
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sionless. To calculate a comparable R* value for equation (15), we first need to take the
partial derivative with respect to root lateral spread of the resources equilibrium equation

K,.<2 - i) RLS!-VBiq /& RESP

1

r(l — PR, — RESP,

d
ORLS;

[ R(u; t)du] = R*(u; 1) =
RLS;

Therefore, R*(u, t) is both a function and B; and root lateral spread (RLS;) for species
i. Now, when B; = 1 root lateral spread is directly proportional to root biomass; this
indicates, for example, that the root lateral spread of a plant with a biomass of two is
equal to the root lateral spread of two plants with biomasses of one, respectively. The
concentration of root biomass per unit area is a constant, and the nutrient requirements
per unit area are therefore independent from area. Thus, the case B; = 1 is the closest
equivalent to the R* of the ALLOCATE model. Therefore, given the fact that we used «;
= 1 for all i’s, we have that

K;RESP;
ri(1 — PR;) — RESP;
If we fix the K for the species with the highest PR to an arbitrary value K ,, (where n0

is the index for the species with the highest PR), we can then create the following set of
equalities:

R} K;RESP,  r,(1 — PR, — RESP,, RR}  e0185-3.466PR,

R*u; 1) = R* =

Bi=1l,a;=1Vi.

R%,  r{l — PR, — RESP, Ko RESP,, RRY,  O185-3466PR "

Thus,
K - e0185-3468PR; (1.(1 — PR;) — RESP,)K ,,RESP,,
7 g0.185-3.468PR,0 (r,.(1 — PR,o) — RESP,;)RESP;

In the simulations run in this article, we chose a constant RESP; = 0.007 for all i’s and
a K,, = 0.1; for computational purposes, we rescaled all the other values of K by half.
Thus, in our particular case,

K, =0.1

0.185-3.468PR; (»(] — PR.) — RESP.) K
K= 0.5 (i ) K0 for i no.
£0185-3468PR (r, (1 — PR,,0) — RESP,)
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