
Introduction to Computational Physics, 370, taught

in Spring 2016

Alexander J. Wagner,
Department of Physics, NDSU, Fargo, ND 58108, USA

January 12, 2016

2

Chapter 1

Introduction

About me

I was born 1967 in München, Germany. I studied Physics and Mathematics at the
University of Bielefeld, Germany. My graduate degree is a D.Phil. in theoretical Physics
from Oxford University, U.K. I then worked for two years as a Postdoctoral Researcher
at the Massachusetts Institute of Technology in Cambridge, MA and for an additional
two years at the University of Edinburgh in Scotland, U.K. Since 2002 I have been a
Professor of Physics at North Dakota State University. I am married with two sons (6
& 8) and live with my family in North Fargo.

3

4 CHAPTER 1. INTRODUCTION

Contents

1 Introduction 3

1.1 Approach in this lecture . 6

2 Introduction to Linux 9

2.0.1 Working remotely . 13

3 Writing a report using LATEX 17

4 Introduction to C programming 21

4.1 The bare bones . 21

4.2 A bit more interesting . 24

4.3 And now with a GUI . 27

4.4 C-basics . 34

4.4.1 Variables . 34

4.4.2 Operators . 34

4.4.3 Conditional execution . 35

4.4.4 Functions . 36

4.5 Fractals: Mandelbrot and Julia sets . 36

4.6 Outlook . 43

5 Newtonian dynamics 47

5.1 The falling ball . 48

5.2 A simple oscillator . 52

5.3 Two dimensional projectile motion . 56

5.4 Three dimensional motion . 60

6 Numerical Algorithms 61

6.1 The Euler algorithm . 61

6.2 A second order method . 62

7 Particles in a box and arbitrary graphics 69

5

6 CONTENTS

8 Planetary motion 73
8.1 Adaptive Step Size . 81
8.2 More particles . 87
8.3 Simulating chaotic motion . 97
8.4 Planets with internal structure . 117
8.5 Diffusion of particles in a box . 135

9 Basic Kinetic Theory and Statistical Mechanics 141

10 Monte Carlo 151

11 Lattice Gases 153
11.1 Hardy, de Pazzis, and Pomeau (HPP) . 153
11.2 Frisch, Hasslacher, and Pomeau (FHP) 157

12 The Boltzmann equation 165
12.1 Multi-phase flow . 166
12.2 Including a passive scalar . 166
12.3 Including temperature as a passive scalar 167

A Programming Exercises 169
A.1 Graph library tips . 170
A.2 The Pair correlation function . 171

1.1 Approach in this lecture

In this lecture we will explore, how one can use a computer to aid out understanding of
natural phenomena1. We will start with some very simple discrete phenomena like the
logistic equation (which maybe inspired by population dynamics) and then move on to
continuous problems, like solving Newton’s equations.

Soon we will move on to continuous systems for which we will derive the equivalent
equations of motion to Newton’s equations of motion. This is an area that is close to
my own research interests and I will introduce you to the simple and beautiful world of
lattice Boltzmann, which will allow us to examine even complex phenomena like eddies
and turbulence.

To do this we have to choose a computational platform, and I will introduce you to
the Graphical User Interface that we have developed over the last two decades. You
will download the code from my website at http://www.ndsu.edu/physics/people/
faculty/wagner/graphics_library/.

1This lecture is a work in progress. Your comments and suggestions are always much welcomed,
as are your suggestions for removing misprints from the lecture notes. If you find things boring or
cumbersome, please let me know. Also if they are too challenging or if I am assuming background
material that you do not know, please let me know right away.

http://www.ndsu.edu/physics/people/faculty/wagner/graphics_library/
http://www.ndsu.edu/physics/people/faculty/wagner/graphics_library/

1.1. APPROACH IN THIS LECTURE 7

To use this library you have to write your programs in C2 on a system that provides
the X-Window system. This is done most naturally on a Linux system that (typically)
will be able to compile the example codes without any difficulty. Since Apple have
now switched to a Unix based operating system as well, the same is true about Apple
systems, as long as X and a compiler are installed. On Windows systems it is possible
to use the graphics library as well, using cygwin-X, but I have not tested this on the
new Windows 8. A web search gives some information that cygwin did not work last
April, but there were developers actively on this, so it may have been solved by now.

The class is loosely based on the book “Introduction to Computer Simulation Meth-
ods” by H. Gould, J. Tobochnik, and W. Christian. However we do not use their
codes, or the graphical libraries. Also none of the currently available textbooks cover
lattice Boltzmann methods in any detail yet. So there these lecture notes will cover
the missing material. Another useful reference for lattice Boltzmann methods is the
Practical introduction to lattice Boltzmann methods, as well as Sauro Succi’s book on
lattice Boltzmann.

2That is too strong a statement, some people have used the library with other programming lan-
guages, but this becomes more cumbersome.

http://x.cygwin.com/
http://www.ndsu.edu/fileadmin/physics.ndsu.edu/Wagner/LBbook.pdf

8 CONTENTS

Chapter 2

Introduction to Linux

Some of you may have used different operating systems in the past. Because of their
initial design for multiple processes and multiple users High Performance Computing
environments typically employ some version of Unix. Over the last decades most of
these proprietary Unix flavors have been replaced by the free software version Linux
which is also freely available to you.

If you are not yet familiar with Linux, this course will help you get familiar. There are
many options of how to gain access to Linux or Linux-like environments. You will have
access to the Linux computers in the classroom and you may get a double boot Linux
partition if you have a laptop or a desktop that currently uses the Windows operating
system. A second option for you would be Cygwin-X, but from my earlier experiences
a double boot option should be preferred. If you use a Mac laptop or Desktop you will
find that this is already built on a Unix variety (i.e. the BSD Unix) and you can use a
project called fink to install a large variety of Unix programs.

Once you have installed a Linux variety (Unbutu seems to be an easy to install
flavor) you need to learn the basic terminal commands. First open up a terminal. The
most useful command is likely the manual command. If you remember that there is a
list command called ls, but you don’t remember the specific options you can call

1 $ man l s

This results in a lengthy output giving you all the detailed information about this
command. It starts with

LS(1) User Commands
LS(1)

NAME
4 l s − l i s t d i r e c t o r y content s

SYNOPSIS
l s [OPTION] . . . [FILE] . . .

9

10 CHAPTER 2. INTRODUCTION TO LINUX

9 DESCRIPTION
L i s t in fo rmat ion about the FILEs (the cur r ent d i r e c t o r y

by d e f au l t) . Sort e n t r i e s
a l p h ab e t i c a l l y i f none o f −cftuvSUX nor −−s o r t i s

s p e c i f i e d .

Mandatory arguments to long opt ions are mandatory for
shor t opt i ons too .

14
−a , −−a l l

do not i gno r e e n t r i e s s t a r t i n g with .

−A, −−almost−a l l
19 do not l i s t impl i ed . and . .

−−author
with −l , p r i n t the author o f each f i l e

24 −b , −−escape
p r i n t C−s t y l e e scapes for nongraphic cha r a c t e r s

−−block−s i z e=SIZE
s c a l e s i z e s by SIZE be f o r e p r i n t i n g them . E. g

. , ‘−−block−s i z e=M’ p r i n t s
29 s i z e s in un i t s o f 1 ,048 ,576 bytes . See SIZE

format below .

You can scroll through this listing using the up and down keys as well as the space key.
The description ends with

1 Exit s t a tu s :
0 i f OK,

1 i f minor problems (e . g . , cannot a c c e s s
subd i r e c t o ry) ,

6 2 i f s e r i o u s t r oub l e (e . g . , cannot a c c e s s command−
l i n e argument) .

AUTHOR
Written by Richard M. Stal lman and David MacKenzie .

11 REPORTING BUGS
Report l s bugs to bug−coreut i l s@gnu . org

11

GNU c o r e u t i l s home page : <http ://www. gnu . org / so f tware /
c o r e u t i l s />

General help us ing GNU so f tware : <http ://www. gnu . org /
ge the lp/>

Report l s t r a n s l a t i o n bugs to <http :// t r a n s l a t i o n p r o j e c t
. org /team/>

16
COPYRIGHT

Copyright 2011 Free Software Foundation , Inc .
L i cense GPLv3+: GNU GPL ve r s i on 3

or l a t e r <http :// gnu . org / l i c e n s e s / gpl . html>.
This i s f r e e so f tware : you are f r e e to change and

r e d i s t r i b u t e i t . There i s NO
21 WARRANTY, to the extent permitted by law .

SEE ALSO
The f u l l documentation for l s i s maintained as a

Texinfo manual . I f the i n f o and
l s programs are proper ly i n s t a l l e d at your s i t e , the

command
26

i n f o c o r e u t i l s ’ l s invocat ion ’

should g ive you ac c e s s to the complete manual .

31 GNU c o r e u t i l s 8.12.197−032bb September 2011
LS(1)

And important section is the SEE ALSO section, where you find hints of where else
you may want to look for information. In this case it points you to the very useful
info command, that you can use to learn more about ls. To get back to the command
prompt, type ’q’.

There are a number of important commands you should learn to use a terminal:

l s (l i s t s f i l e s in the cur r ent d i r e c t o r y)
mkdir (makes a new d i r e c t o r y)
rm (d e l e t e s a f i l e , or a d i r e c to ry , or a whole f i l e s y t em . . .)

4 rmdir (d e l e t e s an empty d i r e c t o r y)
cd (changes the cur r ent working d i r e c t o r y)

To learn more about these commands use man. If you are running a program from the
terminal you can use special signals to interrupt or kill the program. In this context the
b̂cdfgijkmprsuy character refers to the ctrl key that needs to be pressed simulatenously
with the other indicated key.

12 CHAPTER 2. INTRODUCTION TO LINUX

ˆZ (i n t e r r up t s program in t e rmina l and r e tu rn s you to command
prompt) ,

bg (sends program to the background) ,
fg (sends program to the foreground) ,
ˆC (k i l l s program)

You can also send a program into the background right away by using the & character
right after the command.

Installing new software (specific to debian and derivatives like unbutu, on a mac you
would use fink for a similar purpose)

apt-cache (shows all installation candidates),

apt-get (installs the program)

A key program you need is an editor which will allow you to edit programs, latex files,
data files, debug programs and much more. In the Unix world there are two key editors
called vi and emacs. My preference is for the editor called emacs. You can search for
versions of emacs available by calling

apt-cache search emacs

which will give you a large number of packages related in some way to emacs. Now
install the editor using something like

1 $ sudo apt−get i n s t a l l emacs

where sudo allows you to execute a command as a super-user on the system. Now you
can enter the editor by typing

$ emacs

Once you are in the editor you can create text files like a program in C or a documen-
tation of your project in LATEX. Please go to the ’Help’ tab and do the emacs tutorial
to start to get familiar with the power of emacs.

To write documentations (like this one) including fancy mathematical formulas (and
all documents) like this one:

∫

∞

0

1

1 + x
= α

∞
∑

n=0

βn

n!
(2.1)

you will need to install LATEXusing something like

$ sudo apt-get install texlive-latex-recommended texlive-latex-recommended-doc

The C-compiler is called gcc and it should be preinstalled on your Linux system. You
can generate C-programs using the editor and compile them with

$ gcc

13

or eventually using the more convenient command

$ make

Additional user programs you will want to install include:

xfig (draw figures),

xmgrace (draw graps from data sets).

2.0.1 Working remotely

One advantage of Linux systems with a fixed IP address is that you can access them
remotely from your home (or anywhere in the world) and run your programs on different
computers. This is particularly useful when you use your program to run for a long time
and/or with a large number of different paramteres. You will all have logins on the
cluster of mini’s in 221.

To working remotely you will use the following programs:

ssh, scp,

vncserver, vncviewer

Let us use an example: you are on your local laptop and you want to access data that
you have left on a mini. You can log into that mini using a secure shell:

$ ssh -X username@mini04.physics.ndsu.nodak.edu

The authenticity of host ’mini04.physics.ndsu.nodak.edu (134.129.87.72)’ can’t be

established.

ECDSA key fingerprint is 31:49:5a:08:c9:57:1c:41:f0:61:23:27:9d:13:98:3a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’mini04.physics.ndsu.nodak.edu,134.129.87.72’ (ECDSA)

to the list of known hosts.

awagner@mini04.physics.ndsu.nodak.edu’s password:

Welcome to Ubuntu 12.04.5 LTS (GNU/Linux 3.2.0-72-generic x86_64)

* Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

username@mini04:~$

14 CHAPTER 2. INTRODUCTION TO LINUX

where ’username’ is your username that Paul provided for you. Now you have a shell on
the remote computer and you can run all the programs that you can run on the remote
computer. The ’-X’ flag enables the xwindow connection that will be able to open up
new windows on your local computer.

Now there are files on this local computer (and you can see them using ls), but
how do you get them to your local computer (and back again)? This is where secure
copy comes in handy. Say I have a file on the mini, prog.c in the directory ./c in your
homedirectory, that I want to have on my local computer. To transfer it you type in a
terminal on your local computer:

$ scp username@mini04 . phys i c s . ndsu . nodak . edu : c/prog . c .

Now you have the file on your local computer in your local directory. Maybe you
debugged your program or you extended it, and now you want to save a copy back at
the remote computer. Do do that you simply do

$ scp prog . c username@mini04 . phys i c s . ndsu . nodak . edu : c/

You can use scp to run a program in the background (remember the ’&’ after the
command) using ssh. However, if the program opens up a window it relies on the
connection between your local and the remote machine remaining open. Sometimes
that is not what you want. This is a situation where a vitrual network client (VNC)
comes in handy.

If you are logged into the computer you want to access (either directly or remotely
via ssh) you first set a password to access the vncserver:

$ vncpasswd

Using password file /home/username/.vnc/passwd

Password:

Verify:

Would you like to enter a view-only password (y/n)? n

Then you start the vncviewer

$ vncserver

New ’X’ desktop is mini04:1

Starting applications specified in /home/username/.vnc/xstartup

Log file is /home/username/.vnc/mini04:1.log

To access the computer via vnc you then simply need to download a package called
vncviewer, then call

$ vncviewer mini05.physics.ndsu.nodak.edu:1

VNC Viewer Free Edition 4.1.1 for X - built Jan 30 2013 16:07:52

15

Figure 2.1: A snapshot of a vncscreen that allows you to use a remote computer as if
you were sitting at it.

16 CHAPTER 2. INTRODUCTION TO LINUX

Copyright (C) 2002-2005 RealVNC Ltd.

See http://www.realvnc.com for information on VNC.

Tue Jan 6 16:59:29 2015

CConn: connected to host mini05.physics.ndsu.nodak.edu port 5901

CConnection: Server supports RFB protocol version 3.8

CConnection: Using RFB protocol version 3.8

Password:

Tue Jan 6 16:59:32 2015

This should then see a window which should look like Figure 2.1. From there you can
control the computer just as if you were sitting at it. Even if you close your vncviewer,
you can to back to what you were doing (or check on the progress of a program you
started) by simply calling vncviewer yourself. Also, more than one person can control
the same vncscreen, if you are sharing a password. (This is most useful if you can also
communicate in another way, say via Skype). We can also display such a screen during
the lecture on the projector.

Chapter 3

Writing a report using LATEX

Most scientific journals, like the Physical Review, prefer to receive submissions in LATEX,
and with good reason. It is the publishing platform that most easily deals with complex
mathematical expressions. If you have never used it before it may take a little getting
used to.

If you are used to a WYSIWYG editor this will look strange to you at first, but you
will get used to it fast enough. Let us write our first LATEXmanuscript:

\documentclass{article}

\begin{document}

Hello World!

\end{document}

Once we have saved this in a file called World.tex we can compile it using the latex
compiler:

$ latex World.tex

This is pdfTeX, Version 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian)

restricted \write18 enabled.

entering extended mode

(./World.tex

LaTeX2e <2011/06/27>

Babel <v3.8m> and hyphenation patterns for english, dumylang, nohyphenation, lo

aded.

(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls

Document Class: article 2007/10/19 v1.4h Standard LaTeX document class

(/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo))

No file World.aux.

[1] (./World.aux))

Output written on World.dvi (1 page, 232 bytes).

Transcript written on World.log.

17

18 CHAPTER 3. WRITING A REPORT USING LATEX

This process generates the file World.dvi, which you can now look at using by calling xdvi
World.dvi. This, unsurprisingly, showes a blank page with the words ”Hello World”.

Now let us do something more interesting. In the next (somewhat compressed)
example we show a full latex document that has a title, an author, some section headings,
a figure, equations and references to equations as well as a bibiliography and some
citations. In short it contains the basic elements you need to write a full paper.

Here we go:

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\title{First Latex document}

\author{Your name here,\\ Department of Physics,\\

North Dakota State University, Fargo ND, USA}

\maketitle % only once you type this will the title appear.

\begin{abstract}

A short demonstration on how to use \LaTeX.

\end{abstract}

\section{Introduction}

\LaTeX is great to set formulas like this one

\begin{equation}

i \hbar \frac{\partial \Psi}{\partial t} =

-\frac{\hbar^2}{2m}\nabla^2 \Psi +V(x) \Psi

\label{Schrodinger}

\end{equation}

You should note that this equation is automatically numbered,

and we can refer back to that number by using:

Eqn. (\ref{Schrodinger}) is known as the Schr\"odinger equation.

(to get the reference right, you will have to call latex twice).

\section{Graphics}

The next important thing you have to lear is to include figures

into your paper. Here is an example:

\begin{figure}

\includegraphics[width=\textwidth]{CalvinHobbesRelativity.eps}

\caption{This is an alternative explanation of the theory of relativity.}

\label{AlternativeRelativity}

\end{figure}

And you can refer to figures in the same way as we see in Fig.

\ref{AlternativeRelativity}. One small caveat: traditional \LaTeX

19

implementation require that you need to use graphics in

encapsulated postscript format. Ideally you will generate

graphics in eps format directly. If you have graphics in a

different format, however, you can install a utility called ’convert’.

You obtain it by installing the package ’imagemagick’.

\section{Conclusion}

Last but not least every self-respecting paper is citing relevant

references\cite{einstein}. These references are provided in the

bibiligraphy. This is either typed in directly, or, more convenitently,

using bibtex.

\bibliography{mybib}{}

\bibliographystyle{plain}

\end{document}

You need to have a second file, called mybib.bib in this case, that contains the
information on the articles you want to cite:

@article{einstein,

author = "Albert Einstein",

title = "{Zur Elektrodynamik bewegter K{\"o}rper}. ({German})

[{On} the electrodynamics of moving bodies]",

journal = "Annalen der Physik",

volume = "322",

number = "10",

pages = "891--921",

year = "1905",

DOI = "http://dx.doi.org/10.1002/andp.19053221004"

}

To compile the latex text you then need to type:

$ latex World2

$ bibtex World2

$ latex World2

The first latex generates a file that tells bibtex which citations are needed, then bibtex
finds those citations and generates a file that is in turn used by latex to include in the
bibiliography.

This is a very short summary of the most important technical aspects you should
know to write scientific papers. In terms of content a paper consists of an abstract that
summarizes the main findings of the paper (i.e. why should you care). This is followed

20 CHAPTER 3. WRITING A REPORT USING LATEX

by the introduction that puts the research into the proper scientific context, and this is
also the place where you would discuss related research. Then you have the main part of
the paper which typically consists of a section setting up the problem and the methods
used to address the problem and a results section that shows your actual results. This is
followed by a conclusion, that will capitulate the main results again and maybe indicate
which new questions were raised by your results.

Chapter 4

Introduction to C programming

We can’t provide a full reference to c-programming here, but I want to give a brief
introduction to the basics of getting a program up, so that you all have a starting point
where you can use other references to improve your knowledge of C.

4.1 The bare bones

We start with the terminal application, which should exist on all suitably installed
operating systems. This terminal will provide you with a prompt, from which you can
call an amazingly large number of programs. Typically the terminal will start you up in
your home-directory. You can examine the contents of your directory using the ls (list)
command. Just type “ls”, followed by the return key and you will see the contents of
your home-directory.

Next we will want to create a new directory, so that you can keep your own work
separate place. Say you want to call this directory “class370”. Type mkdir class370

and the directory will be created. For the name is easiest if you just use simple letters
and numbers as spaces and some characters like %, ? or $ have special meanings and
require extra care if you want to use them in directory names. As a general rule it is
best to avoid them.

Next we want to move into the new directory. Change your directory by typing cd

class370. Now you are in the newly created directory.

Next we need to write our source-code, so we require an editor. My editor of choice
is emacs, but there is a large variety of suitable alternatives. Let us open the editor
with emacs first.c. This will open up an editor in its own window1.

In the editor emacs you can now start to write your first C program. If you are
unfamiliar with emacs I suggest that you go to the “Help” menu and start the emacs
tutorial. Now you can write your first c-code:

1If it opens up in the terminal window, this may be the sign of trouble...

21

22 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

Listing 4.1: first.c

#include <s t d i o . h>

main () {
4 p r i n t f (”Computational Phys ics r u l e s !\n”) ;

}
Next you will have to compile your c-code. In this case you simply type cc first.c

in the terminal window, and you get the executable, which is called “a.out” by default.
To run your program you simply type ./a.out, and your program will do its job and
write out the text you told it to write.

Now occasionally you will do something foolish, and your program will refuse to run
in the way that you intend. Let us include an arbitrary error in our program. We need
to include a little more program, so we copy the source code to firstwrong.c, define three
integers in the new source code and (foolishly) divide by zero:

Listing 4.2: firstwrong.c

#include <s t d i o . h>

main () {
int i , j , k ;

5 i =10;
j =0;
k=i / j ;
p r i n t f (”Computational Phys ics r u l e s ! %i \n” , k) ;

}
When I compile (cc firstwrong.c) there seems to be nothing amiss: the compiler is
quite happy2 and generates a new a.out. However, when I run this code I get an error:

alex$./a.out

Floating point exception

so, not surprisingly, something went wrong. Typically, however, you will have no idea
why something went wrong, and this is where a most powerful tool comes into play: the
debugger. To use the debugger you need to provide ”hooks” in the code. You do this
by compliling the code with the ”-g” flag:

alex$ cc -g firstwrong.c

From within emacs you can then call the debugger with a keystrokes meta-x gdb. It
will then suggest that you run gdb on a.out, which is what you want to do. This will
set you up within emacs with a debugger window, which starts at a prompt where you
type:

2If you do things that are syntactically wrong, the compiler will complain. You will, no doubt,
experience this soon.

4.1. THE BARE BONES 23

(gdb) run

Starting program: /Users/alex/mytex/committee/syllabus/370_13/a.out

Reading symbols for shared libraries +. done

Program received signal EXC_ARITHMETIC, Arithmetic exception.

0x0000000100000eee in main () at firstwrong.c:7

At the same time the screen will split in half and the debugger will show you exactly
where in your program the problem occurred. Now you can examine the relevant vari-
ables with

(gdb) p i

$1 = 10

(gdb) p j

$2 = 0

(gdb) p k

$3 = 32767

(gdb)

and you will probably notice that j has the unfortunate value of ”0”, which caused
the arithmetic exception. Of course this is a silly toy example, but when you run into
problems with your code you will find that a debugger can save your hours of painful
searching.

24 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

Problems

4.1.1: Follow all the instructions above, find the terminal, create your directory, call
emacs, write your first very simple C programs, compile them and debug the
incorrect code.

4.1.2: Play with these tools and look at the emacs tutorial and a gdb-debugger tutorials
like this one http://tedlab.mit.edu/~dr/gdbintro.html.

4.2 A bit more interesting

Now let us write a program that actually does something. Let us consider some fluffy
bunnies on a nice gree meadow. Each spring, a pair of bunnies will give birth to a litter
of little bunnies. Depending on the size of the breed the average number per litter can
vary from 2 to 10. Let us call the number of offspring per pair 2b. So how does the
number of rabbits change from season to season? Let us assume that we have N0 rabbits
in year zero. In the next year we will have N1 = N0 +

N0

2
2b = N0(1 + b) rabbits. For all

subsequent years we can write the number of rabbits as

Nt+1 = Nt(1 + b). (4.1)

Now let us extend our program to calculate these numbers directly:

Listing 4.3: bunny1.c

1 #include <s t d i o . h>

int b=1;

int NextGen (int N){
6 return N∗(1+b) ;

}

main () {
int i ,N=2;

11
p r i n t f (”Bunny s imu la t i on .\n year bunnies\n”) ;
p r i n t f (”%i %i \n” ,0 ,N) ;
for (i =1; i <10; i++){

N=NextGen (N) ;
16 p r i n t f (”%i %i \n” , i ,N) ;

http://tedlab.mit.edu/~dr/gdbintro.html

4.2. A BIT MORE INTERESTING 25

}
}
Again we compile and run the code and get the result

3$./a.out

Bunny simulation.

year bunnies

0 2

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8 512

9 1024

Obviously there is something wrong, as the number of bunnies seems to increase without
bound. What we missed is the number of bunnies that die in the time. If this death-
rate were simply a constant we could absorbe it into a modified birth rate. But the
death rate has to depend on the existence of a limit for the carrying capacity of our
meadow for the maximal number of rabbits it can sustain before they start to starve. It
is reasonable to have a death rate that will go to 1 (i.e. all bunnies will die) when the
number of rabbits goes to infinity. So say we have a death rate d = k ∗ (M +N) where
M ≫ 1. This means that for small number of rabbits the death rate will simply be a
constant kM , but for larger number of rabbits, the death rate increases. For this to work
it makes sense either to make a stochastic model (i.e. the death rate gives a probability
for a bunny to die), or we move to an average model, where the number of rabbits now
becomes a floatingpoint number. The interpretation would be something like: if we have
many bunny populations with N0 bunnies the average number of bunnies in the next
year will be N1 bunnies, and now N1 does no longer need to be an integer. Since the
second approach is much simpler, and we are still at the beginning of this course, we
will take the second route. So now our equation for the evolution of the (continuous)
bunny population is

Nt+1 = Nt + bNt − kNt(M +Nt) (4.2)

= Nt(1 + b− kM)− kN2
t (4.3)

Obviously there are only two relevant parameters in this problem, so let us give them a
name a = 1 + b− kM and k. This allows us to write the simple evolution equation

Nt+1 = aNt − kN2
t (4.4)

26 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

We can easily put this into our program (remembering to switch the integer population
to a continuous (i.e. double) population):

Listing 4.4: bunny2.c

#include <s t d i o . h>
2

double a=2,k=0.01;

double NextGen (double N){
return a∗N−k∗N∗N;

7 }

main () {
int i ;
double N=2;

12
p r i n t f (”Bunny s imu la t i on .\n year bunnies\n”) ;
p r i n t f (”%i %5.1 f \n” ,0 ,N) ;
for (i =1; i <10; i++){

N=NextGen (N) ;
17 p r i n t f (”%i %5.1 f \n” , i ,N) ;

}
}
With this program the result looks more reasonable:

$./a.out

Bunny simulation.

year bunnies

0 2.0

1 4.0

2 7.8

3 14.9

4 27.6

5 47.6

6 72.6

7 92.5

8 99.4

9 100.0

We see that the number of bunnies still increases, but now the population appears to
level off, at some sustainable level. Now we can play with the program a bit and we
may wonder what the population evolution looks like if we increase the birth rate, i.e.
the a factor to something larger, maybe a = 3. We then get

4.3. AND NOW WITH A GUI 27

$./a.out

Bunny simulation.

year bunnies

0 2.0

1 6.0

2 17.5

3 49.5

4 124.0

5 218.2

6 178.4

7 216.9

8 180.2

9 215.9

This is interesting, the bunny population no longer simply converges to a large number
but it seems to oscillate. We need to explore the program for different parameters.

It is at about this point that you start to run out of patience. Firstly you will want
some graphical representation of our results, secondly it is cumbersome to re-compile
your program any time you want to look at a new paramter value. This is why we want
to put a graphical user interface on our program so that we can freely manipulate the
program and get immediate feedback on the results.

4.3 And now with a GUI

Puting on a GUI will complicate the program, but the effort is well worth while, as we
will see in a moment. Let us think what we need to do: we need a data structure to
display, i.e. the populations at different times. We will need to actually save this data,
so that it can be displayed.

Secondly we want to control our parameters a and k and we want to be able to
change them, and lastly we want to be able to stop the program, reinitialize it and to
start it afresh. A code that does this looks like this:

Listing 4.5: bunnyGUI.c

1 #include <s t d i o . h>
#include <mygraph . h>

double a=3,k=0.01;
double n [1 0 0] ;

6 int s i z e =100 ,bunnyreq=0;
double n0=2;

double NextGen (double N){
return a∗N−k∗N∗N;

28 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

11 }

void GetPopulationGraph () {
int i ;
n [0]=n0 ;

16 for (i =1; i <100; i++){
n [i]=NextGen (n [i −1]) ;

}
}

21 main () {
int i , done=0;
double N=2;

DefineGraphN R (”Bunny/ year ” ,n,& s i z e ,&bunnyreq) ;
26 StartMenu (”Bunny Program” ,1) ;

DefineDouble (”a” ,&a) ;
DefineDouble (”k” ,&k) ;
DefineDouble (”n0” ,&n0) ;
DefineGraph (curve2d , ”Bunny Graph”) ;

31 Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

Events (1) ;
DrawGraphs () ;

36 s l e e p (1) ;
i f (bunnyreq){

bunnyreq=0;
GetPopulationGraph () ;

}
41 else s l e e p (0) ;

}
}
To compile the code first you need to install the graphics library on your system, by fol-
lowing the instructions on http://www.ndsu.edu/physics/people/faculty/wagner/

graphics_library/. When you now want to compile the code you need to include some
direcives that tells the compiler where to find the new library and you need to tell it to
link the library graph as well as the system library x11 and the math library:

$ cc -I ~/include -L ~/lib bunnyGUI.c -lgraph -lm -lX11

which should work, if all the libraries were installed correctly. Remember that some
systems are picky about the order in which they like the libraries to be listed.

http://www.ndsu.edu/physics/people/faculty/wagner/graphics_library/
http://www.ndsu.edu/physics/people/faculty/wagner/graphics_library/

4.3. AND NOW WITH A GUI 29

Figure 4.1: Screenshot of your first program with a graphical user interface. The top
left window is the main window. The window of the right appeared after you clicked
on ”Bunny Graph”. The bottom left window allows you to control how the graph is
displayed and poped up after you right-clicked the ”Bunny/year” button.

30 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

When you run the program, now a window will appear. This is shown in Figure 4.1.
What get first is a window that showes the variables you wanted to see. When you klick
on one of these windows you can change the numerical value of these parameters. To
see the graphics you have to first click on the “Bunny Graph” button you defined. You
then see a graphics window which at first shows nothing but some menus on the left.
There you have to select the (for now single) available data button “Bunny/year”. Once
you have done that you will see a wiggly line, representing the data of the bunnys for
each year where we calculated their population. You can change the appearance of the
graph by right-clicking the “Bunny/year” button. If you do that another menu appears
that lets you change the color, linstyle and a symbol for the data points. This is the
situation that you see in Figure 4.1.

Now you can change the parameters, say the value of a and examine how the graph
changes. You will notice that for smaller values for a the number of bunnies converges
to a limiting value, but for a larger value you will get at first two and then a dizzying
variety of values.

Now it would be nice to show these final values change as a function of the parameter
a. To do that we need to do a parameter-sweep where we change the parameter a from,
say, 1 to 4 and record the values that the bunny populations take. The easiest way
of doing this is to initialize the simulation with some value and then let it run for a
number of iterations, maybe 1000 or so, and then record the next, say, 50 values. This
data would be written into another array, this time a two dimensional one that includes
the a value as the first dimension and the n values as the second dimension. Such a
could may look like this:

Listing 4.6: bunnyGUI2.c

#include <s t d i o . h>
2 #include <mygraph . h>

double a=3,k=0.01;
double n [1 0 0] ;
int s i z e =100 ,bunnyreq=0;

7
double sw [2 0 0 0 0 0] [2] , amin=1,amax=4;
int s i z e 2 =200000 , sweep2req=0;
int s i z e 2 r =0;
double n0=2;

12
double NextGen (double N){

return a∗N−k∗N∗N;
}

17 void GetPopulationGraph () {
int i ;

4.3. AND NOW WITH A GUI 31

n [0]=n0 ;
for (i =1; i <100; i++){

n [i]=NextGen (n [i −1]) ;
22 }

}

void GetPopulationSweep () {
int i , j ;

27 double m;

s i z e 2 r =0;
for (j =0; j<s i z e 2 /500 ; j++){

a=amin+j /(s i z e 2 /500.0−1.0) ∗(amax−amin) ;
32 m=n0 ;

for (i =1; i <1000; i++){
m=NextGen (m) ;

}
for (i =0; i <500; i++) {

37 m=NextGen (m) ;
sw [s i z e 2 r] [0]= a ;
sw [s i z e 2 r] [1]=m;
s i z e 2 r++;

}
42 /∗ We put t h e s e in here to keep the program re spons i v e

wh i l e the sweep i s t a k ing p lace , and so t ha t we can see
the data deve lop ∗/

Events (1) ;
DrawGraphs () ;

}
}

47
main () {

int i , done=0;
double N=2;

52 DefineGraphN R (”Bunny/ year ” ,n,& s i z e ,&bunnyreq) ;
DefineGraphN RxR (”Bunny/a” ,&(sw [0] [0]) ,& s i z e 2 r ,& sweep2req) ;
StartMenu (”Bunny Program” ,1) ;
DefineDouble (”a” ,&a) ;
DefineDouble (”k” ,&k) ;

57 DefineDouble (”n0” ,&n0) ;
DefineGraph (curve2d , ”Bunny Graph”) ;

32 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

DefineDouble (”amin” ,&amin) ;
DefineDouble (”amax” ,&amax) ;
Def ineFunct ion (” Fina l s t a t e s ” ,&GetPopulationSweep) ;

62 Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

Events (1) ;
DrawGraphs () ;

67 s l e e p (1) ;
i f (bunnyreq){

bunnyreq=0;
GetPopulationGraph () ;

}
72 else s l e e p (0) ;

}
}
We have now defined a new function GetPopulationSweep and two new variables amin
and amax. We included both the parameters and the function in the menu, and you can
call the function by clicking on the menu window.

Running the program provides some rather spectecular results, which are shown in
Figure 4.2. The get the graphs to look this way you have to alter the display options by
right-clicking the Bunny/a menu button. Then you get the same menu shown in Figure
4.1. I choose LineType=0, Shape=4, Size=0.3, Fill off for the graphs shown in Figure
4.2. To output these graphs there is a print button in the graphics video. Leftclicking
on the print button you get another menu. For the output I had to alter the height
to 0.7 to change the aspect ratio and I choose Landscape off. When you hit the final
print button an eps file with the name graph3d 000.eps is created. Subsequent prints
increase the number, so you have an electronic record of the graphs you printed.

Finally we should now consider the Control button on the top left of the graphics
window. When you click this button you can see that the standard choice is for the
graphics to self adapt. However, sometimes we want to be able to zoom into a section
of the graphics. In this case we can select the x and y values between which we want to
view the graphics.

Problems

4.3.1: Show the smaller section between x ∈ (3.853, 3, 8542) and y ∈ (52, 53), still for
k = 0.01, and printout the result as an eps file, using the print function.

4.3.2: Show analytically how you expect the results to behave for different values of
k. Show that your analysis is correct by numerically verifying it.

4.3. AND NOW WITH A GUI 33

1.0 1.5 2.0 2.5 3.0 3.5 4.0
X /

0

100

200

300

400

Y /

1.0 1.5 2.0 2.5 3.0 3.5 4.0
X /

0

100

200

300

400

Y /

1.0 1.5 2.0 2.5 3.0 3.5 4.0
X /

0

100

200

300

400

Y /

(a) a ∈ (1.0, 4.0)

2.8 3.0 3.2 3.4 3.6 3.8 4.0
X /

0

100

200

300

400

Y /

2.8 3.0 3.2 3.4 3.6 3.8 4.0
X /

0

100

200

300

400

Y /

2.8 3.0 3.2 3.4 3.6 3.8 4.0
X /

0

100

200

300

400

Y /

(b) a ∈ (2.8, 4.0)

3.40 3.45 3.50 3.55 3.60 3.65 3.70
X /

100

150

200

250

300

Y /

3.40 3.45 3.50 3.55 3.60 3.65 3.70
X /

100

150

200

250

300

Y /

3.40 3.45 3.50 3.55 3.60 3.65 3.70
X /

100

150

200

250

300

Y /

(c) a ∈ (3.4, 3.7)

3.6263.6283.6303.6323.6343.6363.6383.640
X /

150

200

250

300
Y /

3.6263.6283.6303.6323.6343.6363.6383.640
X /

150

200

250

300
Y /

3.6263.6283.6303.6323.6343.6363.6383.640
X /

150

200

250

300
Y /

(d) a ∈ (3.626, 3.640)

Figure 4.2: The final 500 population densities for different parameters a. These graphs
are also known as bifurkation diagrams.

34 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

4.3.3: More details on these kinds of problems can be found in chapter 6 of the book.
They are mathematically known as one-dimensional maps. Alter the program and
examine the behavior of a “bunny function” of ni+1 = n exp[a(1− n)].

4.4 C-basics

We conclude this section with a brief overview of the most important features of the
c-programing language.

4.4.1 Variables

C requires you to define all variables before you are able to use them. You define them
to be of a a specific type. The two most important types are integer variables declared
as int and numerical representations of real numbers, e.g. variables of type double.
Other important variable types are pointers, and we will discuss them shortely.
Examples

int i,j; /* defines two integers */

double d,r; /* defines two doubles */

Another important feature here is the comment. Anything enclosed between /* and */

will be ignored by the compiler and should be used to put comments in the code.
Sometimes you will want to refer not to the value of the variable, but to its address

in memory. This is achieved by using the address operator.
Example

double x=1,*p;// Now x is a double and p is a pointer to a double.

p= &x; // the & operator gives the address of a variable.

*p=2; // the * operator references a pointer, so *p is a double

printf("%f, %f",x,*p); // both are 2 now.

4.4.2 Operators

The variables can be operated on with a variety of operators and they can be re-assigned
through assignments. Assignments are done with the = operator. The basic mathemat-
ical operators +,-,*,/ can be used on variables of type int and double.
Examples

i=j+4;

d=r*15;

In C it is possible to simplyfy these expressions above to

4.4. C-BASICS 35

i+=4;

d*=15;

Caution
A common source of errors are integer divisions. In particular you will find that in
an integer division 1/10 = 0, which leads to the unexpected result (1/10)*10 = 0. To
avoid integer arithmetic where it is not appropriate it is necessary to indicate to the
C-compiler that you want it to do real operations: (1/10.)*10 = 10, as expected. When
you are using variables, you can indicate that you want real operations by starting the
calculation by multiplying with 1.0 as in

(i/j)*j /* != i in general */

1.0*(i/j)*j /* = i ! */

Another important set of operators in C are comparison operators. To check equality
use the == operator, to check for inequality use the != operator. Two other important
comparison operators are < and >.

There are many more operators available in C. Please consult a C reference book for
a complete list.

4.4.3 Conditional execution

The real power of computation comes from re-using parts of code. The simples example
is re-running a bit of code with different values of the variables by usign for or while
loops. The syntax of a for loop in C is for (initialization; break condition;

incrementor);

Example

for (i=0;i<100;i++){

r=rmin+i/99. *(rmax-rmin);

printf("%f*%f = %f",r,r,r*r);

}

However, C is quite flexible and you don’t actually need the integer here. Instead you
could write

for (r=rmin;r<=rmax;r+=(rmax-rmin)/99){

printf("%f*%f = %f",r,r,r*r);

}

A while loop is executed while the condition remains true, so we can write the same
statement above as:

r=rmin;

while (r<=rmax){

printf("%f*%f = %f",r,r,r*r);

r+= (rmax-rmin)/99;

}

36 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

4.4.4 Functions

It would be cumbersome to write all the programing code in a single block of text. The
power of programing lies in reusing bits of code in different circumstances. This power
is realized by defining functions. It is good programing style to pass all the variables
that the function needs to it through the arguments. It is important to realize that any
arguments that the function receives are put on a stack (i.e. a different part of memory)
and if you alter the arguments in the function, it has no effect on the parameter that
you passed the function.
Example

double f(double x){

x=2*x;

return x*x;

}

main(){

double x=1,y;

y = f(x); // now y=4 and x=1. Note that x is unchanged.

}

If you need for a function to change the content of one of the parameters, then you have
to pass no the parameter but the address of the parameter. Example

double f(double *x){

x=2 *x;

return *x * *x;

}

main(){

double x=1,y;

y = f(&x); // now y=4 and x=2. Note that x has changed.

}

4.5 Fractals: Mandelbrot and Julia sets

We are now considering a similar series of the kind

xn+1 = x2
n + c (4.5)

For c = 0 we know that all series with initial values with x0 > 1 will diverge and all
series with initials values with xn < 0 converge to zero. But what if c 6= 0? To make

4.5. FRACTALS: MANDELBROT AND JULIA SETS 37

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1
y

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1
y

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
x

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1
y

0.10 0.11 0.12 0.13 0.14
x

0.09

0.10

0.11

0.12

0.13

0.14
y

0.10 0.11 0.12 0.13 0.14
x

0.09

0.10

0.11

0.12

0.13

0.14
y

0.10 0.11 0.12 0.13 0.14
x

0.09

0.10

0.11

0.12

0.13

0.14
y

Figure 4.3: Examples of the graphical method of understanding sequences.

this question simpler we will look at the situation of x0 = 0. So our series values will be

x0 = 0 (4.6)

x1 = c (4.7)

x2 = c+ c2 (4.8)

x3 = c+ (c2 + c)2 (4.9)

... (4.10)

We know that the series of 1/n does not converge, whereas the series of 1/n2 does
converge.

There is actually a very nice way of visualizing the evolution of such a sequence. For
your sequence

xn+1 = f(xn) (4.11)

you can draw a graph of y = f(x) and the diagonal y = x. Then you start from your
initial value x0, advance vertically to the function and find the value of f(x0). Then you
draw a horizontal line from to the diagonal y = x, which will give you your new x value.
Then you draw another vertical line to the function, and this procedure graphically
represents the effect of the sequence of equation (4.11).

An example for this is shown in Figure 4.3. Fixed points are given by the points
where the graphs for y = f(x) and y = x interesect. These fixed points can be stable
(as the ones shown in the figure), or unstable. (It is easy to see that fixedpoints are
unstable is |f ′(x)| > 1).

This is the program I used to generage the sequences here:

38 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

Listing 4.7: sequence.c

1 #include<mygraph . h>
#include <un i s td . h>
#include<math . h>

#define N 100
6 #define Nf 100

typedef struct xy {double x ; double y ;} xy ;

double c=0,d=1,x0=0,xmin=−1,xmax=1;
11 xy gr [2∗N] , f f [Nf] , xx [2] ;

int done , i t e r a t i o n =5, i t 2 =10, ge tg r=0, getxx=0, g e t f f =0,Nff=Nf , two
=2; ;

double (∗ f) (double) ;

16 double f 2 (double x){
return d∗x∗x+c ;

}
void s e t f 2 () { f=&f2 ; }
double f s i n (double x){

21 return d∗ s i n (x)+c ;
}
void s e t f s i n () { f=&f s i n ; }
void se tx0 () { x0=gr [(i t e r a t i o n −1) ∗ 2] . y ; }

26 void GetGraph () {
i f (ge tg r){

ge tg r =0;
double x=x0 ;
for (int i =0; i<i t e r a t i o n ; i++){

31 gr [2∗ i] . x=x ;
x=f (x) ;
gr [2∗ i] . y=x ;
gr [2∗ i +1] . x=x ;
gr [2∗ i +1] . y=x ;

36 }
}
i f (getxx){

getxx=0;
xx [0] . x=xx [0] . y=xmin ;

4.5. FRACTALS: MANDELBROT AND JULIA SETS 39

41 xx [1] . x=xx [1] . y=xmax ;
}
i f (g e t f f){

g e t f f =0;
for (int i =0; i<Nf ; i++){

46 double x=xmin+i ∗(xmax−xmin) /(Nf−1) ;
f f [i] . x=x ;
f f [i] . y=f (x) ;

}
}

51 }

void GUI() {
DefineGraphN RxR (”y=x”,&xx [0] . x,&two ,&getxx) ;
DefineGraphN RxR (”y=f (x) ” ,& f f [0] . x,&Nff ,& g e t f f) ;

56 SetDefaultShape (1) ;
SetDe fau l tCo lor (2) ;
DefineGraphN RxR (”x n+1=f (x n) ” ,&gr [0] . x,& i t2 ,& getg r) ;
StartMenu (”Sequence V i s u l i z a t i o n ” ,1) ;
DefineDouble (”c” ,&c) ;

61 DefineDouble (”d” ,&d) ;
DefineDouble (”x0” ,&x0) ;
DefineMod (”number o f i t e r a t i o n s ” ,& i t e r a t i o n ,N) ;
Def ineFunct ion (”y=d∗xˆ2+c” ,& s e t f 2) ;
Def ineFunct ion (”y=d∗ s i n (x)+c” ,& s e t f s i n) ;

66 Def ineFunct ion (”Set x0 to l a s t ” ,& setx0) ;
DefineDouble (”xmin” ,&xmin) ;
DefineDouble (”xmax” ,&xmax) ;
DefineGraph (curve2d , ”Graph”) ;
Def ineBool (”done” ,&done) ;

71 EndMenu() ;
}

int main () {
s e t f 2 () ;

76 GUI() ;
while (! done){

Events (1) ;
i t 2=i t e r a t i o n ∗2 ;
GetGraph () ;

81 DrawGraphs () ;
s l e e p (1) ;

40 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

Figure 4.4: A Mandelbrot set around the origin c = 0 with a scale factor of 5 and a
cutoff radius |xn| > 10 and the corresponding Julia set with a scale factor of 3.

}
}

Sequences can either converge to a fixed point or a limit cycle, they can fail to
converge but remain bounded in a chaotic thajectory, or they can diverge (i.e. grow
without limit). For many of these functions it turns out the range of convergence has
a tortuous “fractal” boundary. An example for our simple quadratic (interpreting the
numbers all as complex values, gives rise to the famous Mandelbrot and Julia sets shown
in Figure 4.4.

Now to another computational subject: How do we generate this graphics? Firstly,
we should note that C allows for complex variables, which makes the coding easy in this
case.

The following is a listing of the complete code that I wrote to generate the images
in the following figures:

Listing 4.8: Mandelbrot.c

1 /∗ a shor t program tha t shows how one ana l y z e s the convergence
f o r the s imple i t e r a t i o n f (n+1)=f (n)ˆ2+c . There are two
que s t i on s on may cons ider : s t a r t i n g wi th f (0) =0 where does
t h i s s e r i e s l ead f o r d i f f e r e n t va l u e s o f c and g iven a va lue
o f c , where does the s e r i e s move to f o r d i f f e r e n t va l u e s o f
f (0) ? ∗/

#include <s t d i o . h>

4.5. FRACTALS: MANDELBROT AND JULIA SETS 41

#include <complex . h>
#include <mygraph . h>

6 #define f s i z e 1000
double f i e l d [f s i z e] [f s i z e] ;
int hund=f s i z e , MaxIt=100;
double Far=10;
complex C0=0,D=0;

11 double ReC=0,ImC=0,ReD=0,ImD=0,mscale=5, j s c a l e =5;
double f 0 =0, f fmin=−1,ffmax=1, f imin=−1,fimax=+1;
complex (∗ f) (complex , complex) ;

complex f2 (complex x , complex C){
16 return x∗x+C;

}

complex fpow (complex x , complex C){
return D∗ c s i n (x)+C;

21 }
void set fpow () { f=&fpow ;}

complex f3 (complex x , complex C){
return x∗x∗x+C∗x∗x+D;

26 }

complex f 3 2 (complex x , complex C){
return x∗x∗x+D∗x∗x+C;

}
31

void s e t f 2 () {
f=&f2 ;

}
void s e t f 3 () {

36 f=&f3 ;
}
void s e t f 3 2 () {

f=&f3 2 ;
}

41
void MB() {

complex X,C;

for (int i =0; i<hund ; i++)

42 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

46 for (int j =0; j<hund ; j++){
C= ReC+mscale /hund∗(−hund/2+ i)+(ImC+mscale /hund∗(−hund/2+

j))∗ I ;
X=0;
for (int i t =0; (i t<MaxIt)&&(cabs (X)<Far) ; i t++) X=f (X,C) ;
f i e l d [i] [j]= cabs (X) ;

51 }
}

void Ju l i a () {
complex X,C;

56
for (int i =0; i<hund ; i++)

for (int j =0; j<hund ; j++){
C=ReC+ImC∗ I ;
X= j s c a l e /hund∗(−hund/2+ i)+j s c a l e /hund∗(−hund/2+ j)∗ I ;

61 for (int i t =0; (i t<MaxIt)&&(cabs (X)<Far) ; i t++) X=f (X,C) ;
f i e l d [i] [j]= cabs (X) ;

}
}

66 main () {
int done=0;
s e t f 2 () ;
DefineGraphNxN R(” F i e ld ” ,& f i e l d [0] [0] , & hund,&hund ,NULL) ;
StartMenu (”Mandelbrot” ,1) ;

71 DefineDouble (”Re(C) ” ,&ReC) ;
DefineDouble (”Im(C) ” ,&ImC) ;
DefineDouble (”Re(D) ” ,&ReD) ;
DefineDouble (”Im(D) ” ,&ImD) ;
DefineDouble (” s c a l e M”,&mscale) ;

76 DefineDouble (” s c a l e J” ,& j s c a l e) ;
De f ine In t (”MaxIt” ,&MaxIt) ;
DefineDouble (”Far” ,&Far) ;
De f ine In t (”hund” ,&hund) ;
Def ineFunct ion (”MB”,&MB) ;

81 Def ineFunct ion (” Ju l i a ” ,& Ju l i a) ;
DefineGraph (contour2d , ” F i e ld ”) ;
Def ineFunct ion (”xˆ2+c” ,& s e t f 2) ;
Def ineFunct ion (”xˆ3+c” ,& s e t f 3) ;
Def ineFunct ion (”xˆ3+cxˆ2” ,& s e t f 3 2) ;

86 Def ineFunct ion (”xˆc+c” ,& set fpow) ;

4.6. OUTLOOK 43

Def ineBool (”Done” ,&done) ;
EndMenu() ;
while (done==0){

Events (1) ;
91 DrawGraphs () ;

D=ReD+ImD∗ I ;
}

}
What this code does it iterates the above equation and checks if the value of the

numbers is diverging, i.e. if it is larger than some value Far. If that is the case, then
the iteration is aborted, and a value corresponding to |xn| is returned. Otherwise we
iterate until some maximum number of iterations and conclude that the numbers are
not diverging. Again we return the number |xn|. For a Julia set we continue this for
different initial values x0 and record the resulting values in the array tfield[][]. For
a Mandelbrot set we do this for different values of the constant C, but with the initial
condition x0 = 0.

These convergence sets are not limited to the quadratic equation of course. Almost
any non-linear equation will do. Two additional equations that I have considered in the
code above are

xn+1 = x2
n + C (4.12)

xn+1 = x3
n + Cx2

n +D (4.13)

xn+1 = x3
n +Dx2

n + C (4.14)

where D is now some arbitrary complex constant that we can set in the program.
One important feature of these fractals is that they remain selfsimilar at all smaller
lengthscales. This is illustrated in Fig. 4.7.

Problems

4.5.1: Write your own code to generate Julia and Mandelbrot sets.

4.5.2: Now select some non-linear function of your choice, and consider the convere-
gence of the series. Make sure that both converging and non-converging solutions
exist.

4.6 Outlook

This ends out brief introduction to programming in C. We will encounter many different
kinds of graphs and numerical representations in later chapters. The objects that we

44 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

Figure 4.5: A Mandelbrot set around the value c = 0.386 + 0.569i with a scale factor of
0.005. The two graphs show a different cutoff radius for determining the divergence of
the series of |xn| > 10 and |xn| > 1.2. In the line below the corresponding Julia set are
shown.

4.6. OUTLOOK 45

Figure 4.6: A Mandelbrot set around the value c = −0.51 + 0.569i with a scale factor
of 0.13 and a cutoff radius |xn| > 2 and the corresponding Julia set.

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

100

200

300

400

500

600

700

800

Figure 4.7: Zooming into a small section of a Mandelbrot-like set.

46 CHAPTER 4. INTRODUCTION TO C PROGRAMMING

encountered in Figure 4.2 are known as fractals. Such objects have the property of being
self-similar, i.e. when you zoom into the bifurcation diagram you can discover many
shapes that look very similar to the large picture. In the next chapter we will consider a
subject that should be very near and dear to your hearts: Newtonian dynamics, which
you have already carefully studied in your first year at NDSU.

Chapter 5

Newtonian dynamics

The bedrock of our understanding of how things move are Newton’s equations which
were discovered in the 18th century by Sir Isaac Newton. The law you have studied
most is Newton’s second law stating

d2x

dt2
=

F

m
(5.1)

which describes how a point-particle of mass m, located at position x, which is exposed
to the force F will move. However, since this is a second order differential equation, you
also need to know the initial velocity

v =
dx

dt
. (5.2)

To address such a problem numerically, it is much nicer, if it is transformed into a system
of first order differential equations:

v =
dx

dt
(5.3)

F

m
=

dv

dt
(5.4)

To represent such a problem on a computer we need to discretize it. That is we need
to find a way of transforming our equation into a discrete equation, much like equation
(4.1). We do this, again just as in the bunny problem, by making the time evolution
discrete. We say that there is some finite time-step ∆t by which we will advance our
simulation. We then use a Taylor expansion (which we truncate) to get an expression
for the quantity in question at a later time. Let us assume that we know the position
and velocity at time t. At time t+∆t we then have:

v(t+ δt) = v(t) +
dv(t)

dt
∆t+O(∆t2) (5.5)

= v(t) +
F

m
∆t+O(∆t2) (5.6)

47

48 CHAPTER 5. NEWTONIAN DYNAMICS

and similarly

x(t+ δt) = x(t) +
dx(t)

dt
∆t+O(∆t2) (5.7)

= x(t) + v∆t+O(∆t2) (5.8)

where the symbol O(∆tn) means that there are terms which are multiplied by ∆tn and
higher powers that have been suppressed. If we now make the assumption that ∆t ≪ 1
we may hope that we can simply neglect the O(∆t2) terms. If we do that we arrive at
the Euler algorithm:

x(t+∆t) = x(t) + v(t)∆t (5.9)

v(t+∆t) = v(t) +
F

m
∆t (5.10)

This is a very robust, if somewhat inaccurate, method of discretizing differential equa-
tions. (We will learn about better methods later on).

5.1 The falling ball

When we are faced with the challenging problem of developing a new solution method
(i.e. a numerical one) for Newton’s equation, we are well advised to start with the
simplest problem we can think of. And if this problem has an analytical solution, this
will allow us to verify our new method. So we will start with the well worn problem of
the falling ball. This is a problem with only one space dimension.

We set up the problem of a ball falling in the standard gravitational field. So the
force will be F = mg and we want to find h(t). We all know the theoretical solution
h(t) = 1

2
gt2. To analyze the problem let us look at a ball falling for 1s, and numerically

resolve this for a number of different time intervals, say ∆t ∈ (0.1, 0.01, 0.001), and then
we want to compare this to the analytical solution.

This is a numerical implementation of this problem:

Listing 5.1: Newton1.c

1 #include <s t d i o . h>
#include <mygraph . h>
#include <math . h>

typedef struct part {double x ; double v ;} part ;
6 typedef struct TX {double t ; double x ;} TX;

double a=3,k=0.01;
TX xth [1 0 0] , x1 [1 1] , x2 [1 0 1] , x3 [1 0 0 1] ;
int s i z e t h =100 , s i z e 1 =11, s i z e 2 =101 , s i z e 3 =1001;

5.1. THE FALLING BALL 49

11 double tmin=0,tmax=1,g=9.81;
double F(part v){

return g ;
}

16 double I t e r a t e (part ∗v , double Dt){
v−>x+=v−>v∗Dt ;
v−>v+=F(∗v)∗Dt ;

}

21 void GetTrajectory (TX x [] , int N, double Dt){
int i ;
part v ;
x [0] . t=tmin ; // t 0 = tmin
x [0] . x=v . x=0; // x 0 = 0

26 v . v=0; // v 0 = 0
for (i =1; i<N; i++){

I t e r a t e (&v , Dt) ;
x [i] . t=x [i −1] . t+Dt ;
x [i] . x=v . x ;

31 }
}

void Tra j e c t o r i e s () {
int i ;

36 double Dt ;

Dt=(tmax−tmin) /(s i z e th −1) ;
for (i =0; i<s i z e t h ; i++) {

xth [i] . t=tmin+i ∗Dt ;
41 xth [i] . x=0.5∗g∗pow(xth [i] . t , 2) ;

}
Dt=(tmax−tmin) /(s i z e1 −1) ;
GetTrajectory (x1 , s i z e1 , Dt) ;
Dt=(tmax−tmin) /(s i z e2 −1) ;

46 GetTrajectory (x2 , s i z e2 , Dt) ;
Dt=(tmax−tmin) /(s i z e3 −1) ;
GetTrajectory (x3 , s i z e3 , Dt) ;

}

51 main () {
int i , done=0;

50 CHAPTER 5. NEWTONIAN DYNAMICS

double N=2;

DefineGraphN RxR (” theory ” ,&(xth [0] . t) ,& s i z e th ,NULL) ;
56 DefineGraphN RxR (”x 10” ,&(x1 [0] . t) ,& s i z e1 ,NULL) ;

DefineGraphN RxR (”x 100” ,&(x2 [0] . t) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”x 1000” ,&(x3 [0] . t) ,& s i z e3 ,NULL) ;
StartMenu (” Fa l l i n g ob j e c t ” ,1) ;
DefineGraph (curve2d , ”Graph”) ;

61 DefineDouble (”tmin” ,&tmin) ;
DefineDouble (”tmax” ,&tmax) ;
Def ineFunct ion (”Get T r a j e c t o r i e s ” ,&Tr a j e c t o r i e s) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;

66 while (! done){
Events (1) ;
DrawGraphs () ;
s l e e p (1) ;

}
71 }

When we run this code we can compare the results for different values of the discretiza-
tion. We notice that the results converge to a common curve for small time step ∆t.
The real test, of course, is to make sure that the curve the algorithm is converging to
is actually the correct one. Therefore we also compare the numerical results with the
analytical solution.

This is done in Figure 5.1. We see that for ∆t = 0.04s there is still a noticable
deviation from the theoretical results. For ∆t = 0.02 the difference becomes small and
for ∆t = 0.01 the result is nearly indistinguishable from the anlytical solution, at least
as far as the graphical resolution here is concerned.

To get a better grasp on the convergence it would be helpful to examine a measure
of the error and how this error diminishes as ∆t is decreased. We simply measure

error = h∆t(t)− h(t) (5.11)

The results of this measurement are shown in Figure 5.2. We see that as we decrease
the timestep ∆t by a factor of two, the error also decreases by a factor of two. Mathe-
matically this is called linear convergence.

At first one might think that this is quite sufficient. For the simple example of a
falling ball we would find it easy to set the timestep ∆t small enough to follow the ball
quite a distance.

For long term simulations, however, this may not be good enough. If we follow the
total energy of the system

E(t)

m
=

1

2
v(t)2 − h(t)g (5.12)

5.1. THE FALLING BALL 51

0.0 0.2 0.4 0.6 0.8 1.0
time

0

1

2

3

4

5

height

0.0 0.2 0.4 0.6 0.8 1.0
time

0

1

2

3

4

5

height

0.0 0.2 0.4 0.6 0.8 1.0
time

0

1

2

3

4

5

height

Figure 5.1: The numerical solutuion of the position of our particle as a function of time
simulated with the Euler method using two different timesteps of 0.1 and 0.01, compared
to the analytical solution.

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.20

-0.15

-0.10

-0.05

0.00
error

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.20

-0.15

-0.10

-0.05

0.00
error

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.20

-0.15

-0.10

-0.05

0.00
error

Figure 5.2: Error for the different discretizations of 25,50, and 100 points.

52 CHAPTER 5. NEWTONIAN DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0
time

0.0

0.5

1.0

1.5

2.0
Energy

0.0 0.2 0.4 0.6 0.8 1.0
time

0.0

0.5

1.0

1.5

2.0
Energy

0.0 0.2 0.4 0.6 0.8 1.0
time

0.0

0.5

1.0

1.5

2.0
Energy

Figure 5.3: Total energy for the different discretizations of 25,50, and 100 points.

(which should be a constant) we find the results of Figure 5.3. For all these discretiza-
tions the energy continues to increase. We can reduce the rate of energy increase by
decreasing the timestep ∆t, but if we want to follow a system for a long time, this is go-
ing to cause some trouble. Also the regularity with which the energy increases, suggests
that we are making a systematic error. We will return to this issue in a moment.

5.2 A simple oscillator

Let us now consider another common system: a particle in a harmonic potential. Now
we have an external potential V (x) = kx2/2 so we have

F

m
= − 1

m

dV

dx
= − k

m
x (5.13)

and Newton’s equations become

ẋ = v (5.14)

v̇ = − k

m
x. (5.15)

The analytical solution of a particle starting at time t = 0 at x(0) = 0 with initial
velocity ẋ(t = 0) = v0 is, of course, a harmonic:

x(t) = v0

√

m

k
sin

(
√

k

m
t

)

(5.16)

5.2. A SIMPLE OSCILLATOR 53

Now we need to extend our algorithm to include a position dependent forcing term. A
code may look like this:

Listing 5.2: Newton3.c

#include <s t d i o . h>
#include <mygraph . h>
#include <math . h>

4
typedef struct XV {double x ; double v ;} XV;
typedef struct TX {double t ; double x ;} TX;

double m=1,k=1,v0=1;
9 TX xth [1 0 0] , x1 [1 1] , x2 [1 0 1] , x3 [1 0 0 1] ;

int s i z e t h =100 , s i z e 1 =11, s i z e 2 =101 , s i z e 3 =1001;
int errmeasure=0; // Flag to determine i f one shou ld measure

the error
double tmin=0,tmax=1,g=9.81;

14 double F(double x){
return −k/m∗x ;

}

double I t e r a t e (XV ∗v , double Dt){
19 v−>x+=v−>v∗Dt ;

v−>v+=F(v−>x)∗Dt ;
}

void GetTrajectory (TX x [] , int N, double Dt){
24 int i ;

XV v ;
x [0] . t=tmin ; // t 0 = tmin
x [0] . x=v . x=0; // x 0 = 0
v . v=v0 ; // v 0

29 for (i =1; i<N; i++){
I t e r a t e (&v , Dt) ;
x [i] . t=x [i −1] . t+Dt ;
i f (errmeasure) x [i] . x=v . x−v0∗ s q r t (m/k)∗ s i n (s q r t

(k/m)∗x [i] . t) ;
else x [i] . x=v . x ;

34 }
}

void Tra j e c t o r i e s () {

54 CHAPTER 5. NEWTONIAN DYNAMICS

int i ;
39 double Dt ;

Dt=(tmax−tmin) /(s i z e th −1) ;
for (i =0; i<s i z e t h ; i++) {

xth [i] . t=tmin+i ∗Dt ;
44 i f (errmeasure) xth [i] . x=0;

else xth [i] . x=v0∗ s q r t (m/k)∗ s i n (s q r t (k/m)∗xth [i] . t) ;
}
Dt=(tmax−tmin) /(s i z e1 −1) ;
GetTrajectory (x1 , s i z e1 , Dt) ;

49 Dt=(tmax−tmin) /(s i z e2 −1) ;
GetTrajectory (x2 , s i z e2 , Dt) ;
Dt=(tmax−tmin) /(s i z e3 −1) ;
GetTrajectory (x3 , s i z e3 , Dt) ;

}
54

main () {
int i , done=0;
double N=2;

59 DefineGraphN RxR (” theory ” ,&(xth [0] . t) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”x 10” ,&(x1 [0] . t) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”x 100” ,&(x2 [0] . t) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”x 1000” ,&(x3 [0] . t) ,& s i z e3 ,NULL) ;
StartMenu (”Object on spr ing ” ,1) ;

64 DefineDouble (”m”,&m) ;
DefineDouble (”k” ,&k) ;
DefineDouble (”v0” ,&v0) ;
DefineGraph (curve2d , ”Graph”) ;
DefineDouble (”tmin” ,&tmin) ;

69 DefineDouble (”tmax” ,&tmax) ;
Def ineFunct ion (”Get T r a j e c t o r i e s ” ,&Tr a j e c t o r i e s) ;
Def ineBool (”Error measure” ,&errmeasure) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;

74 while (! done){
Events (1) ;
DrawGraphs () ;
s l e e p (1) ;

}
79 }

5.2. A SIMPLE OSCILLATOR 55

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08

position

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08

position

0.0 0.2 0.4 0.6 0.8 1.0
time

-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08

position

0.0 0.2 0.4 0.6 0.8 1.0
time

-2

-1

0

1

2

3
error (10^-3)

0.0 0.2 0.4 0.6 0.8 1.0
time

-2

-1

0

1

2

3
error (10^-3)

0.0 0.2 0.4 0.6 0.8 1.0
time

-2

-1

0

1

2

3
error (10^-3)

Figure 5.4: The position of a particle in an harmonic oscillator. The results are rather
promising, and we get excellent agreement with the theoretical results, even for a poor
resolution. However, the error continues to accrue.

56 CHAPTER 5. NEWTONIAN DYNAMICS

We show our numerical results in Figure 5.4. The results are surprisingly good. The
errors are very small, but as we can see in the bottom graph, the error is increasing
linearly with time. If we want to follow our particle in the harmonic potential for a long
time, this will likely spell trouble.

5.3 Two dimensional projectile motion

We can now look at the problem of two dimensional projectile motion. To make the
problem more interesting, we can write it such that the force already includes air-friction,
so that we can test the code with our analytical solution for the case of no friction and
then observe the more interesting case of a projectile with friction:

F = −mgey − αv|v| (5.17)

where ey is a unit vector in the y-direction.
This time we have many functions we may want to observe. We want to be able to

display x(t), y(t), y(x), vx(t), vy(t), and E(t). The program below implements all these
quantities as well as the simple Euler integrator for Newton’s equations:

Listing 5.3: Projectile.c

1 #include <s t d i o . h>
#include <mygraph . h>
#include <math . h>
#include <un i s td . h>

6 #define pi
3.1415926535897932384626433832795028841971693993751058209749445

double m=1,g=9.81 , v in =1, theta=45, alpha=0;
#define NG 6 /∗ Graphs f o r d i s p l a y : x (t) y (t) y (x) v x (t) v y (t

) E(t) ∗/
double xth [NG] [1 0 0] [2] , x1 [NG] [5 1] [2] , x2 [NG] [1 0 1] [2] , x3 [NG

] [2 0 1] [2] ;
11 int s i z e t h =100 , s i z e 1 =51, s i z e 2 =101 , s i z e 3 =201;

int errmeasure=0,EnergyMeasure=0; // Flag to determine i f one
shou ld measure the error

double tmax=1;

void FF(double v [4] , double F [2]) {
16 double vabs=sq r t (v [2] ∗ v [2]+v [3] ∗ v [3]) ; /∗ a b s o l u t e va lue o f $

\ vec{v}$ ∗/
F[0]=− alpha∗vabs∗v [2] ;

5.3. TWO DIMENSIONAL PROJECTILE MOTION 57

F[1]=− alpha∗vabs∗v [3]−m∗g ;
}

21 void I t e r a t e (double v [4] , double Dt){
double F [2] ;
v[0]+=v [2] ∗Dt ;
v[1]+=v [3] ∗Dt ;
FF(v ,F) ;

26 v[2]+=F [0] /m∗Dt ;
v[3]+=F [1] /m∗Dt ;

}

void GetTrajectory (double x0 [] [2] , double x1 [] [2] , double x2
[] [2] , double x3 [] [2] , double x4 [] [2] , double x5 [] [2] , int N,
double Dt){

31 int i ;
double v [4] ;

v [0]=0 ; // x 0 = 0
v [1]=0 ; // y 0 = 0

36 v [2]= v in ∗ cos (theta /180∗ pi) ;
v [3]= v in ∗ s i n (theta /180∗ pi) ;

for (i =0; i<N; i++){

41 x0 [i] [0]= x1 [i] [0]= x3 [i] [0]= x4 [i] [0]= x5 [i] [0]= i ∗Dt ; // t
x0 [i] [1]= x2 [i] [0]= v [0] ; // x
x1 [i] [1]= x2 [i] [1]= v [1] ; // y
x3 [i] [1]= v [2] ; // v x
x4 [i] [1]= v [3] ; // v x

46 x5 [i] [1]=0 . 5∗m∗(pow(v [2] , 2)+pow(v [3] , 2))+m∗g∗v [1] ;
// E

I t e r a t e (v , Dt) ;
}

}

51 void Tra j e c t o r i e s () {
int i ;
double Dt ;

Dt=(tmax) /(s i z e th −1) ;
56 for (i =0; i<s i z e t h ; i++) {

58 CHAPTER 5. NEWTONIAN DYNAMICS

xth [0] [i] [0]= i ∗Dt ;
xth [0] [i] [1]= i ∗Dt∗ v in ∗ cos (theta /180∗ pi) ;
xth [1] [i] [0]= i ∗Dt ;
xth [1] [i] [1]= i ∗Dt∗ v in ∗ s i n (theta /180∗ pi)−0.5∗g∗pow(i ∗Dt , 2) ;

61 xth [2] [i] [0]= i ∗Dt∗ v in ∗ cos (theta /180∗ pi) ;
xth [2] [i] [1]= i ∗Dt∗ v in ∗ s i n (theta /180∗ pi)−0.5∗g∗pow(i ∗Dt , 2) ;
xth [3] [i] [0]= i ∗Dt ;
xth [3] [i] [1]= v in ∗ cos (theta /180∗ pi) ;
xth [4] [i] [0]= i ∗Dt ;

66 xth [4] [i] [1]= v in ∗ s i n (theta /180∗ pi)−g∗ i ∗Dt ;
xth [5] [i] [0]= i ∗Dt ;
xth [5] [i] [1]=0 . 5∗m∗pow(v in , 2) ;

}
Dt=(tmax) /(s i z e1 −1) ;

71 GetTrajectory (x1 [0] , x1 [1] , x1 [2] , x1 [3] , x1 [4] , x1 [5] , s i z e1 , Dt) ;
Dt=(tmax) /(s i z e2 −1) ;
GetTrajectory (x2 [0] , x2 [1] , x2 [2] , x2 [3] , x2 [4] , x2 [5] , s i z e2 , Dt) ;
Dt=(tmax) /(s i z e3 −1) ;
GetTrajectory (x3 [0] , x3 [1] , x3 [2] , x3 [3] , x3 [4] , x3 [5] , s i z e3 , Dt) ;

76 }

main () {
int i , done=0;
double N=2;

81
DefineGraphN RxR (”x (t) th” ,&(xth [0] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”x (t) 10” ,&(x1 [0] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”x (t) 100” ,&(x2 [0] [0] [0]) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”x (t) 1000” ,&(x3 [0] [0] [0]) ,& s i z e3 ,NULL) ;

86
DefineGraphN RxR (”y (t) th” ,&(xth [1] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”y (t) 10” ,&(x1 [1] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”y (t) 100” ,&(x2 [1] [0] [0]) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”y (t) 1000” ,&(x3 [1] [0] [0]) ,& s i z e3 ,NULL) ;

91
DefineGraphN RxR (”y (x) th” ,&(xth [2] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”y (x) 10” ,&(x1 [2] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”y (x) 100” ,&(x2 [2] [0] [0]) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”y (x) 1000” ,&(x3 [2] [0] [0]) ,& s i z e3 ,NULL) ;

96
DefineGraphN RxR (”v x (t) th” ,&(xth [3] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”v x (t) 10” ,&(x1 [3] [0] [0]) ,& s i z e1 ,NULL) ;

5.3. TWO DIMENSIONAL PROJECTILE MOTION 59

DefineGraphN RxR (”v x (t) 100” ,&(x2 [3] [0] [0]) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”v x (t) 1000” ,&(x3 [3] [0] [0]) ,& s i z e3 ,NULL) ;

101
DefineGraphN RxR (”v y (t) th” ,&(xth [4] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”v y (t) 10” ,&(x1 [4] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”v y (t) 100” ,&(x2 [4] [0] [0]) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”v y (t) 1000” ,&(x3 [4] [0] [0]) ,& s i z e3 ,NULL) ;

106
DefineGraphN RxR (”E(t) th” ,&(xth [5] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”E(t) 10” ,&(x1 [5] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”E(t) 100” ,&(x2 [5] [0] [0]) ,& s i z e2 ,NULL) ;
DefineGraphN RxR (”E(t) 1000” ,&(x3 [5] [0] [0]) ,& s i z e3 ,NULL) ;

111

StartMenu (” Fa l l i n g ob j e c t ” ,1) ;
DefineDouble (”m”,&m) ;

116 DefineDouble (” alpha ” ,&alpha) ;
DefineDouble (” theta ” ,& theta) ;
DefineDouble (” v in ” ,& v in) ;
DefineGraph (curve2d , ”Graph”) ;
DefineDouble (”tmax” ,&tmax) ;

121 Def ineBool (”Measure Error s ” ,&errmeasure) ;
Def ineFunct ion (”Get T r a j e c t o r i e s ” ,&Tr a j e c t o r i e s) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

126 Events (1) ;
DrawGraphs () ;
s l e e p (1) ;

}
}

Problems

5.3.1: Examine v(t) for the case of a projectile with air-friction. How does this result
differ from the case without air friction? Can you make an analytical prediction
for the final velocity (if there is no bottom)? Does the numerical result agree?

5.3.2: How far will a baseball go if it leaves the bat with 70 mph?(look up the friction
coefficient for a baseball)

60 CHAPTER 5. NEWTONIAN DYNAMICS

5.3.3: What is the optimal angle for the baseball to be launched at to make it travel
as far as possible?

5.4 Three dimensional motion

There is nothing peculiar about problems in three (or more) dimensions, but we need
to consider ways of analysing such problems. One way of analyzing three dimensional
problems is to examine two-dimensional projections, which is, in fact, all you can do
on a two dimensional screen. However, we should keep in mind that all humans can
perceive about three dimensional objects stems from the information that reaches the
retina of their eyes, which is also two dimensional. Depth perception is generated in a
number of ways, some of which we can reproduce on a computer.

The first way to generate depth information is by using two eyes. You will notice
that by holding a hand in front of your eye you are suddenly loosing depth perception.
However, your brain is rather good at camouflaging this deficiency, so you may not
notice right away. If we are able to generate two separate images on your two eyes,
we can calculate them in such a way as to generate the illusion of a three dimensional
object. There are different ways of doing this, but the easiest way of achieving this with
a normal setup is by using two-colored glasses.

Chapter 6

Numerical Algorithms

We have talked about using the Euler algorithm to evaluate the evolution of a particle
described by Newton’s equations. There is nothing in principle that forced us to stick to
one particle, and we will soon look at many particle systems. But we already noticed that
the Euler algorithm, while converging towards the correct solution for ∆t → 0, was not
very good at conserving energy. In this chapter we want to analyze how one can improve
on this simple Euler algorithm to get a better performance for less computational work.
We will see that we can do that by being clever about the discretization of Newton’s
equations, or ordinary differential equations in general.1.

So we are looking here at the question how to best discretize a set of equations of
the form

ẋ = v (6.1)

v̇ =
F (x, v)

m
(6.2)

where x, v, and F (x, v) are a 3N-dimensional vectors for a system with N particles.

6.1 The Euler algorithm

The Euler algorithm of equation (5.10) can be written as

x(t+∆t) = x(t) + v(t)∆t (6.3)

v(x+∆t) = v(t) +
F [x(t), v(t)]

m
∆t (6.4)

So what differential equation does this discrete scheme actually solve? It can’t really
be Newton’s equations, since otherwise the energy should be conserved if we only have

1Please also look at appendix 3A of the book. (It appears that they borrowed this summary
themselves from here

61

http://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/node6.html

62 CHAPTER 6. NUMERICAL ALGORITHMS

conservative forces. In other words, what can we find out about the errors by looking
at this equation?

To answer that question we have to realize that we can write x(t+∆t) as a Taylor
series. With that we get for the Euler discretization

∞
∑

n=1

1

n!

dnx(t)

dtn
(∆t)n−1 = v(t) (6.5)

∞
∑

n=1

1

n!

dnv(x)

dtn
(∆t)n−1 =

F [x(t), v(t)]

m
(6.6)

So the leading order error for the position is of the form

1

2

d2x(t)

dt2
∆t =

1

2

dv(t)

dt
∆t+O[(∆t)2] (6.7)

=
F [x(t), v(t)]

2m
∆t+O[(∆t)2] (6.8)

and for the leading order velocity error we have

1

2

d2v(t)

dt2
∆t (6.9)

=
1

2m

dF [x(t), v(t)]

dt
∆t+O[(∆t)2] (6.10)

=
1

2m

{

∂F [x(t), v(t)]

∂x

dx(t)

dt
+

∂F [x(t), v(t)]

∂v

dv(t)

dt

}

∆t+O[(∆t)2] (6.11)

=
1

2m

{

∂F [x(t), v(t)]

∂x
v(t) +

∂F [x(t), v(t)]

∂v

F [x(t), v(t)]

m

}

∆t+O[(∆t)2]. (6.12)

Here we used the order sign O[(∆t)n] which means that we have neglected terms that
have pre-factors of (∆t)n and higher powers. It is remarkable that with the help of (6.8)
and (6.12) we have been able to represent the error terms in the form of quantities that
we already know.

6.2 A second order method

Now that we know the error terms which appear in the second order, we can actively
subtract them from the Euler method, to obtain a method where second order errors
are removed:

x(t+∆t) =x(t) + v(t)∆t+
F [x(t), v(t)]

2m
(∆t)2 (6.13)

v(x+∆t) =v(t) +
F [x(t), v(t)]

m
∆t

+
1

2m

{

∂F [x(t), v(t)]

∂x
v(t) +

∂F [x(t), v(t)]

∂v

F [x(t), v(t)]

m

}

(∆t)2 (6.14)

6.2. A SECOND ORDER METHOD 63

Following the analysis above, this method does only have leading order errors which go
as (∆t)3. Let us see what this choice means practically: we can also write it as

x(t+∆t) =x(t) + v(t+∆t/2)∆t+O(∆t3) (6.15)

v(x+∆t) =v(t) +
F [x(t+∆t/2), v(t+∆t/2)]

m
∆t+O(∆t3), (6.16)

i.e. we are effectively using the average velocity between the two time-steps to advance
the position and we are using (approximately, since another Taylor expansion is involved)
the average force between the two time-steps to advance the velocity.

Another aspect to consider is that while the continuous Newton’s equations are
reversible, i.e. if we invert time and all velocities then we will come back to our initial
state (at least as long as the force is conservative and, preferably, not dependent on
velocity). This is not true for the discrete version since the evolution between two time
points t and t + ∆t only depends on the state of the system at time t. But for the
new representation this is now true. In the form of equation (6.16) this is exactly true,
but for the actual algorithm proposed here in (6.14) it may only be approximately true
(depending on the form of the forcing term). Note that the representation of (6.16)
has the disadvantage, that we don’t know how to explicitly implement this, as we don’t
know how to obtain the position and velocity half-way between two time-steps. Several
approximations for this exist, all of them accurate to second order. For the algorithm
proposed in (6.14) one has to calculate the derivative matrix for the force, which can be
a bit tedious. Another popular choice is the so-called velocity Verlet algorithm which is
given by

x(t+∆t) =x(t) +

(

v(t) +
1

2m
F (t)∆t

)

∆t (6.17)

v(x+∆t) =v(t) +
F [x(t), v(t)] + F {x(t+∆t), v(t) + F [x(t), v(t)]∆t}

2m
∆t, (6.18)

which is also accurate to second order.
Now it is time to implement these algorithms and test their performance. A sample

implementation that allows you to compare the Euler, Derivative, and Verlet algorithms
is given in Projectile2.c:

Listing 6.1: Projectile2.c

#include <s t d i o . h>
#include <mygraph . h>
#include <math . h>

5 #define pi 3.14159265358979323846264338327950288419716939937

double m=1,g=9.81 , v in =1, theta=45, alpha=0;
#define NG 6 /∗ Graphs f o r d i s p l a y : x (t) y (t) y (x) v x (t) v y (t

) E(t) ∗/

64 CHAPTER 6. NUMERICAL ALGORITHMS

double xth [NG] [1 0 0] [2] , x1 [NG] [5 1] [2] , x2 [NG] [1 0 1] [2] , x3 [NG
] [2 0 1] [2] ;

10 int s i z e t h =100 , s i z e 1 =51, s i z e 2 =101 , s i z e 3 =201;
int errmeasure=0,EnergyMeasure=0; // Flag to determine i f one

shou ld measure the error
double tmin=0,tmax=1;

void FF(double v [4] , double F [2]) {
15 double vabs=sq r t (v [2] ∗ v [2]+v [3] ∗ v [3]) ; /∗ a b s o l u t e va lue o f $

\ vec{v}$ ∗/
F[0]=− alpha∗vabs∗v [2] ;
F[1]=− alpha∗vabs∗v [3]−m∗g ;

}

20 void dFFx(double v [4] , double dF [2] [4]) { /∗ Gradient o f the
Force ∗/

double vabs=sq r t (v [2] ∗ v [2]+v [3] ∗ v [3]) ; /∗ a b s o l u t e va lue o f $
\ vec{v}$ ∗/

dF [0] [0] = 0 ; dF [0] [1] = 0 ; dF[0] [2]=− alpha ∗(2∗v [2] ∗ v [2]+v [3] ∗ v
[3]) /vabs ; dF[0] [3]=− alpha∗v [2] ∗ v [3] / vabs ;

dF [1] [0] = 0 ; dF [1] [1] = 0 ; dF[1] [2]=− alpha∗v [2] ∗ v [3] / vabs ; dF
[1] [3]=− alpha ∗(v [2] ∗ v [2]+2∗v [3] ∗ v [3]) /vabs ;

25 }

void (∗ I t e r a t e) (double v [4] , double Dt)=NULL;

void I t e r a t eEu l e r (double v [4] , double Dt){
30 double F [2] ;

FF(v ,F) ;
v[0]+=v [2] ∗Dt ;
v[1]+=v [3] ∗Dt ;
v[2]+=F[0] ∗Dt/m;

35 v[3]+=F[1] ∗Dt/m;
}

void I t e r a t eDe r i v (double v [4] , double Dt){
double F [2] , dF [2] [4] ;

40 FF(v ,F) ;
dFFx(v , dF) ;
v [0]+=(v [2]+0 .5∗F [0] ∗Dt)∗Dt ;
v [1]+=(v [3]+0 .5∗F [1] ∗Dt)∗Dt ;

6.2. A SECOND ORDER METHOD 65

v [2]+=(F[0]+0 .5/m∗(dF [0] [0] ∗ v [2]+dF [0] [1] ∗ v [3]+dF [0] [2] ∗F [0] /
m+dF [0] [3] ∗F [1] /m)∗Dt) ∗Dt/m;

45 v [3]+=(F[1]+0 .5/m∗(dF [1] [0] ∗ v [2]+dF [1] [1] ∗ v [3]+dF [1] [2] ∗F [0] /
m+dF [1] [3] ∗F [1] /m)∗Dt) ∗Dt/m;

}

void I t e r a t eV e r l e t (double v [4] , double Dt){
double F [2] , Fn [2] ;

50 FF(v ,F) ;
v [0]+=(v [2]+0 .5∗F [0] ∗Dt)∗Dt ;
v [1]+=(v [3]+0 .5∗F [1] ∗Dt)∗Dt ;
v[2]+=F [0] ∗Dt/m;
v[3]+=F [1] ∗Dt/m;

55 FF(v , Fn) ;
v [2]+=0.5∗(Fn[0]−F [0]) ∗Dt/m;
v [3]+=0.5∗(Fn[1]−F [1]) ∗Dt/m;

}

60 void SetEuler () {
I t e r a t e = &I t e r a t eEu l e r ;

}

void SetDer iv () {
65 I t e r a t e = &I t e r a t eDe r i v ;

}

void SetVer l e t () {
I t e r a t e = &I t e r a t eV e r l e t ;

70 }

void GetTrajectory (double x0 [] [2] , double x1 [] [2] , double x2
[] [2] , double x3 [] [2] , double x4 [] [2] , double x5 [] [2] , int N,
double Dt){
int i ;
double v [4] ;

75 v [0]=0 ; // x 0 = 0
v [1]=0 ; // y 0 = 0
v [2]= v in ∗ cos (theta /180∗ pi) ;
v [3]= v in ∗ s i n (theta /180∗ pi) ;

80 x0 [0] [0]= x1 [0] [0]= x3 [0] [0]= x4 [0] [0]= x5 [0] [0] = 0 ; // t
x0 [0] [1]= x2 [0] [0]= v [0] ; // x

66 CHAPTER 6. NUMERICAL ALGORITHMS

x1 [0] [1]= x2 [0] [1]= v [1] ; // y
x3 [0] [1]= v [2] ; // v x
x4 [0] [1]= v [3] ; // v x

85 x5 [0] [1]= 0 . 5 ∗m∗(pow(v [2] , 2)+pow(v [3] , 2))+m∗g∗v [1] ; //
E

for (i =1; i<N; i++){
I t e r a t e (v , Dt) ;

90 x0 [i] [0]= x1 [i] [0]= x3 [i] [0]= x4 [i] [0]= x5 [i] [0]= i ∗Dt ; // t
x0 [i] [1]= x2 [i] [0]= v [0] ; // x
x1 [i] [1]= x2 [i] [1]= v [1] ; // y
x3 [i] [1]= v [2] ; // v x
x4 [i] [1]= v [3] ; // v x

95 x5 [i] [1]=0 . 5∗m∗(pow(v [2] , 2)+pow(v [3] , 2))+m∗g∗v [1] ;
// E

}
}

void Tra j e c t o r i e s () {
100 int i ;

double Dt ;

Dt=(tmax−tmin) /(s i z e th −1) ;
for (i =0; i<s i z e t h ; i++) {

105 xth [0] [i] [0]= i ∗Dt ;
xth [0] [i] [1]= i ∗Dt∗ v in ∗ cos (theta /180∗ pi) ;
xth [1] [i] [0]= i ∗Dt ;
xth [1] [i] [1]= i ∗Dt∗ v in ∗ s i n (theta /180∗ pi)−0.5∗g∗pow(i ∗Dt , 2) ;
xth [2] [i] [0]= i ∗Dt∗ v in ∗ cos (theta /180∗ pi) ;

110 xth [2] [i] [1]= i ∗Dt∗ v in ∗ s i n (theta /180∗ pi)−0.5∗g∗pow(i ∗Dt , 2) ;
xth [3] [i] [0]= i ∗Dt ;
xth [3] [i] [1]= v in ∗ cos (theta /180∗ pi) ;
xth [4] [i] [0]= i ∗Dt ;
xth [4] [i] [1]= v in ∗ s i n (theta /180∗ pi)−g∗ i ∗Dt ;

115 xth [5] [i] [0]= i ∗Dt ;
xth [5] [i] [1]=0 . 5∗m∗pow(v in , 2) ;

}
Dt=(tmax−tmin) /(s i z e1 −1) ;
GetTrajectory (x1 [0] , x1 [1] , x1 [2] , x1 [3] , x1 [4] , x1 [5] , s i z e1 , Dt) ;

120 Dt=(tmax−tmin) /(s i z e2 −1) ;
GetTrajectory (x2 [0] , x2 [1] , x2 [2] , x2 [3] , x2 [4] , x2 [5] , s i z e2 , Dt) ;

6.2. A SECOND ORDER METHOD 67

Dt=(tmax−tmin) /(s i z e3 −1) ;
GetTrajectory (x3 [0] , x3 [1] , x3 [2] , x3 [3] , x3 [4] , x3 [5] , s i z e3 , Dt) ;

}
125

main () {
int i , done=0;
double N=2;

130 SetEuler () ;

DefineGraphN RxR (”x (t) th” ,&(xth [0] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”x (t) 10” ,&(x1 [0] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”x (t) 100” ,&(x2 [0] [0] [0]) ,& s i z e2 ,NULL) ;

135 DefineGraphN RxR (”x (t) 1000” ,&(x3 [0] [0] [0]) ,& s i z e3 ,NULL) ;

DefineGraphN RxR (”y (t) th” ,&(xth [1] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”y (t) 10” ,&(x1 [1] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”y (t) 100” ,&(x2 [1] [0] [0]) ,& s i z e2 ,NULL) ;

140 DefineGraphN RxR (”y (t) 1000” ,&(x3 [1] [0] [0]) ,& s i z e3 ,NULL) ;

DefineGraphN RxR (”y (x) th” ,&(xth [2] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”y (x) 10” ,&(x1 [2] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”y (x) 100” ,&(x2 [2] [0] [0]) ,& s i z e2 ,NULL) ;

145 DefineGraphN RxR (”y (x) 1000” ,&(x3 [2] [0] [0]) ,& s i z e3 ,NULL) ;

DefineGraphN RxR (”v x (t) th” ,&(xth [3] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”v x (t) 10” ,&(x1 [3] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”v x (t) 100” ,&(x2 [3] [0] [0]) ,& s i z e2 ,NULL) ;

150 DefineGraphN RxR (”v x (t) 1000” ,&(x3 [3] [0] [0]) ,& s i z e3 ,NULL) ;

DefineGraphN RxR (”v y (t) th” ,&(xth [4] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”v y (t) 10” ,&(x1 [4] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”v y (t) 100” ,&(x2 [4] [0] [0]) ,& s i z e2 ,NULL) ;

155 DefineGraphN RxR (”v y (t) 1000” ,&(x3 [4] [0] [0]) ,& s i z e3 ,NULL) ;

DefineGraphN RxR (”E(t) th” ,&(xth [5] [0] [0]) ,& s i z e th ,NULL) ;
DefineGraphN RxR (”E(t) 10” ,&(x1 [5] [0] [0]) ,& s i z e1 ,NULL) ;
DefineGraphN RxR (”E(t) 100” ,&(x2 [5] [0] [0]) ,& s i z e2 ,NULL) ;

160 DefineGraphN RxR (”E(t) 1000” ,&(x3 [5] [0] [0]) ,& s i z e3 ,NULL) ;

68 CHAPTER 6. NUMERICAL ALGORITHMS

StartMenu (” Fa l l i n g ob j e c t ” ,1) ;
165 DefineDouble (”m”,&m) ;

DefineDouble (” alpha ” ,&alpha) ;
DefineDouble (” theta ” ,& theta) ;
DefineDouble (” v in ” ,& v in) ;
DefineGraph (curve2d , ”Graph”) ;

170 DefineDouble (”tmin” ,&tmin) ;
DefineDouble (”tmax” ,&tmax) ;
Def ineBool (”Measure Error s ” ,&errmeasure) ;
Def ineFunct ion (”Get T r a j e c t o r i e s ” ,&Tr a j e c t o r i e s) ;
Def ineFunct ion (”Set Euler ” ,&SetEuler) ;

175 Def ineFunct ion (”Set Deriv ” ,&SetDer iv) ;
Def ineFunct ion (”Set Ver l e t ” ,&SetVer l e t) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

180 Events (1) ;
DrawGraphs () ;
s l e e p (1) ;

}
}
A few notes on the code. There is a function Iteration() that is nowhere explicitly
defined. Instead it is a variable function that gets assigned in the rountines SetEuler(),
SetDeriv(), and SetVerlet(). Depending on which routine this function pointer is set
to, a different algorithm will be used for the iteration.

Problems

6.2.1: Given the simple nature of the problem of Projectile motion we found that
the Derivative and Verlet algorithm are actually identical for this system. Show
mathematically that this is indeed the case.

6.2.2: Consider the Felix Baumgartner’s record of the highest free-fall achieved on Oc-
tober 14, 2012 (see http://www.sciencedaily.com/releases/2012/10/121014170655.
htm). If you wanted to advise him on his fall, what additional Physics would you
have to take into account to predict his free-fall trajectory? Describe which addi-
tional effects you considered and whether you judge these effects to be potentially
relevant for predicting the fall trajectory. Then implement all of the relevant cor-
rections into our problem and predict the fall of Felix Baumgartner. How does
your predicted fall time and maximum velocity agree with the measured values?

http://www.sciencedaily.com/releases/2012/10/121014170655.htm
http://www.sciencedaily.com/releases/2012/10/121014170655.htm

Chapter 7

Particles in a box and arbitrary
graphics

So far we have discussed rather standard physics problems that could be easily visualized
using a few stardard data types. However, sometimes problems don’t fit these generic
representations. As an example let us look at the simple problem of particles of a certain
size in a box with addtional obstacles. It is fairly obvious what we would a visualization
to look like in this case: we want circles of the size of the particles moving in a window
which also contains a representation of the walls. So all we need are lines and circles,
drawn at the appropriate positions.

The graphics library allows for such representations in an easy way: you can define
a graph of type freedraw that gives you access to the primitive graphics elements. Here
is an example code:

Listing 7.1: freedraw.c

1 #include <un i s td . h>
#include <mygraph . h>
int x o f f s =0, y o f f s =0;

void Draw(int xdim , int ydim){
6 myse l e c t f on t (0 , ” I can wr i t e t ex t ! ” , xdim ∗0 . 3) ;

mydrawline (1 , 0 , 0 , xdim , ydim) ;
myc i r c l e (2 , xdim/2+xo f f s , ydim/2+yo f f s , 0 . 2 ∗ xdim) ;
mytext (4 , xdim/2+xo f f s , ydim/2+yo f f s , ” I can wr i t e t ex t ! ” ,1) ;

}
11

void main () {
int done=0;
AddFreedraw (” l i n e and c i r c l e ” ,&Draw) ;
StartMenu (”Freedraw” ,1) ;

16 De f ine In t (” x o f f s ” ,& x o f f s) ;

69

70 CHAPTER 7. PARTICLES IN A BOX AND ARBITRARY GRAPHICS

x
r

xb

(a) Before collision

xb

r
bx’=x−2(x+r−x)

(b) After collision

Figure 7.1: Sketch for collisions between balls and a surface aligned with the x direction.

De f ine In t (” y o f f s ” ,& y o f f s) ;
DefineGraph (f reedraw , ”Graphics ”) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;

21 while (! done){
Events (1) ;
DrawGraphs () ;
s l e e p (1) ;

}
26 }

Now we want to consider this particle in a box. We already understand how the
particle will move outside away from the boundaries. Now we need to consider what
happens when a particle bounces on a wall. For simplicity let us consider the collision
with the bottom wall, which is entirely in the x-direction.

In such a collision we find that the orthogonal x component velocity gets inverted
where as the parallel y (and z in 3d) component of the velocity remains unchanged. The
position of the particle gets reflected back outside the other side of the obstacle. For a
particle of radius r at position x and a wall at position xb the collision will be triggered
if |x − xb| < r. This situation is sketched in Figure 7.1. The collision is accomplished
by the following process:

vx → −rvx (7.1)

x → x− 2(x− xb + sign(xb − x)r) (7.2)

In Fig. 7.1 you see the situation for xb − x, but if you consider the other case where
the ball is to the right of the obstacle, you will realize the need for the sign function.
This will only work correctly if the timestep is such that vx∆t < r for all velocities that
occur in the simulation.

Now the question arises how we should deal with arbitrarily aligned obstacles. The
easiest way to deal with this problem is outlined in Fig 7.2. A simple rotation around

71

x,y

x ,y

r

b b

x
r

xb xb

r
bx’=x−2(x+r−x)

x ,yb b

x’,y’

r

Figure 7.2: Schematic representation of the collision process for balls with walls of
arbitrary orientation. We rotate the wall and the particles until they align with the x
and y axes, then we perform the collision as described in eqn (7.2), then we rotate back.

one end of the obstacle will reduce this problem to the situation we solved previously.
All we need to do is to find the angle as

θ = atan

(

∆y

∆x

)

(7.3)

There is a small difficulty as the result for the angle would only be found modulo π. There
is a function in C, however, that removes this ambiguity: theta = atan2(deltay,deltax);.
A rotation is achieved by multiplying a vector by a rotation matrix. In two dimensions
this is achieved by

(

x′

y′

)

=

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

x
y

)

(7.4)

After performing the collision, all that is needed is to rotate the coordinates back by an
angle of −θ.

This works well, except for a small error in the energy conservation, as shown in
Figure 7.3. To fix this we have to take into account the effect of the imposed displacement
on the energy:

∆Ep = mg∆y (7.5)

The current algorithm conserves the kinetic energy, because it just reflects the velocities
leaving |v| unchanged. We now realize that we need to change the velocity by a small
amount to account for the change in potential energy. We get

∆Ek =
1

2
m(v2 − (v +∆v)2) =

1

2
m(−v.∆v + (∆v)2) (7.6)

72 CHAPTER 7. PARTICLES IN A BOX AND ARBITRARY GRAPHICS

6340 6360 6380 6400 6420
t

1880

1890

1900

1910

1920E

6340 6360 6380 6400 6420
t

1880

1890

1900

1910

1920E

6340 6360 6380 6400 6420
t

1880

1890

1900

1910

1920E

Figure 7.3: We see that there are discrete jumps in the energy value related to bouncing
events. This only occurs when we have a finite amount of gravity, suggesting that we
see the effect of neglecting the change of potential energy as we are displacing the ball.

Chapter 8

Planetary motion

Let us consider another interesting problem, familiar from introductory Physics. Let
us first consider the motion of two celestial objects interacting purely through gravity.
Let us assume that the two objects have the masses m1 and m2, respectively. The force
between the two objects is then given by Newton’s law of gravity1:

F 12 = −m1m2G

|r12|3
r12 (8.1)

By Newton’s second law, the second mass will feel the force F 21 = −F 12. We know how
to solve this problem analytically, which makes it a good test case for our algorithms.
However, for the only slightly more complicated situation of three masses, there no longer
exists a general analytical solution. For this case, then, numerical methods become
indispensable.

Implementing this problem numerically is straight forward. Except in stead of one
particle, now we have two. We could, of course, separate out the center of mass motion,
which would reduce the complexity of the problem by half, and we would recover a one
particle problem. But since we are on our way to many particle systems, we will just
implement this blindly for now.

This will be the first true simulation, in the sense that we will want to follow the
simulation for a long time, not just numerically integrate the equations of motion for
a short time. We already know, of course, that for two particles the solution will be a
pair of elliptical orbits (at least that is the analytical result, we will have to see if we get
the same for our numerical integration), so this won’t be too exciting. But if we include
more particles the situation changes drastically.

This difference has to be reflected in the structure of the program. Previously we
calculated trajectories for a pre-determined time-period. Now we want to continuously
follow the simulation and visualize the state of the simulation (and maybe a part of its
history). The simulation should be able to continue indefinitely, or until we decide to

1There is a small correction, that we can obtain from Einstein’s general theory of Gravitation. We
will neglect this for now.

73

74 CHAPTER 8. PLANETARY MOTION

stop it. To be able to run such a simulation for a long time, we probably don’t want to
save all intermediate steps. Otherwise we would die of information overload...

So what is a reasonable set of information to retain? We need, of course, the state
of the system. The state of the system is determined by all the position and velocity
coordinates of the particles. For two particles we can restrict ourselves initially to two-
dimensions. For more than two particles, however, we will need to switch to three
dimensions.

I suggest that we keep track of, and graphically display,

1. the current position of the particles

2. the current velocities of the particles

3. a short history of positions of the particles

4. a short history of the velocities of the particles

5. a short history of the energy of the system

6. a short history of the angular momentum of the system

Previously we have always integrated the system at different time-steps simultane-
ously. For this next simulation, we will only use one timestep, but we will be able to
change this timestep in the GUI to see the effect of changing it. And we will also im-
plement an algorithm that picks its own time-step according to its needs. We will see
that this can be extremely useful.

Two quantities that should be conserved are the energy

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

m1m2G

|r12|
(8.2)

and the total angular momentum

L = m1r1 × v1 +m2r2 × v2 (8.3)

For our initial two-dimensional simulations this angular momentum only has a z-component
which is

Lz = m1(r1xv1y − r1yv1x) +m1(r2xv2y − r2yv2x). (8.4)

First let us talk about the choice of the parameters relevant to this simulation:
the masses of the celestial objects m1 and m2, the universal Gravitational constant
G = 6.67300 × 10−11m3kg−1s−2, and finally the spatial displacement of the object,
which is often another large number. The atstronomical unit, roughly the average
distance between the earth and the sun, is AU = 149, 597, 870, 700m. Typicall masses
are also very large numbers, when measured in kg. The earth weighs 5.972×1024kg, the
sun 1.9891× 1030kg. Depending on the data type used, these numbers, when combined,
can tax the ability of the computer to represent those numbers. For the real number

75

type float we have a range of about 1.2×1038 to 3.4×10+38. For a double we typically
have a range from 1.7 × 10308 to 1.7 × 10+308. So we see that using the data-type of
float will give immediate problems, whereas we may be able to get by with the double
type.

Regardless, even if possible it is inconvenient to deal with such humungous numbers.
Instead we make use of the fact that we can use different units to measure our primitive
quantities like mass, time, length, charge etc. So if we want to simulate the earth-
sun system we can choose a length scale of AU , a mass scale of the mass of the sun
(or the earth) and a time-scale so that the gravitational constant becomes 1. These
computational units are much more convenient for programming purposes.

For reasons of definiteness let us define our length-scale as 1AU , and our mass scale
as 1 earth mass. The mass of the sun is then 333,000. The timescale is choosen as to
give

1
AU3

meT
= G (8.5)

= 6.67300× 10−11m3kg−1s−2 (8.6)

= 6.67300× 10−11
1

(1.495× 1011)3
AU35.972× 1024

1

me

τ 2

s2
1

T 2
(8.7)

= 1.192× 10−19τ 2
AU3

meT 2
(8.8)

From this we see that our timescale τ is

τ =
√
1.92× 1019s = 139years (8.9)

We will use computational units like these to have resonable number representations.
With the analysis above we now also know how to refer back between the computational
and the standard units.

Listing 8.1: planets.c

#include <s t d i o . h>
#include <s t r i n g . h>
#include <un i s td . h>

4 #include <mygraph . h>
#include <math . h>

#define pi 3.14159265358979323846264338327950288419716939937

9 double m1=1,m2=1,G=1, v in=1, theta =45;
#define VC 8 /∗ Number o f components in s t a t e v e c t o r ∗/
double v [VC] ; /∗ The s t a t e v e c t o r o f the system ∗/
#define FC 4 /∗ Number o f components in Force vec tor , FC=VC/2 (

t y p i c a l l y) ∗/

76 CHAPTER 8. PLANETARY MOTION

#define NG 6 /∗ Graphs f o r d i s p l a y : (x1 , y1) (x2 , y2) (v1x , v1y) (
v2x , v2y) E(t) ∗/

14 double x1 [NG] [1 0 0] [2] ;
char ∗GrName [NG]={” (x1 , y1) ” , ” (x2 , y2) ” , ” (v1 x , v1 y) ” , ” (v2 x , v2 y

) ” , ” (t ,E) ” , ” (t , L) ” } ;
int s i z e =100;
double time=0, i t e r a t i o n s =0;

19 /∗ S ta t e s : we now have two p a r t i c l e s wi th coo r c ina t e s
x1 , y1 , v1x , v1y , x2 , y2 , v2x , v2z ∗/

void FF(double v [VC] , double F[FC]) {
double rabs=sq r t (pow(v [0]−v [4] , 2)+pow(v [1]−v [5] , 2)) ;

24 F[0]=−G∗m1∗m2/pow(rabs , 3) ∗(v [0]−v [4]) ;
F[1]=−G∗m1∗m2/pow(rabs , 3) ∗(v [1]−v [5]) ;
F[2]=−F [0] ;
F[3]=−F [1] ;

}
29

void dFFx(double v [VC] , double dF [FC] [VC]) { /∗ Gradient o f the
Force ∗/

double rabs=sq r t (pow(v [0]−v [4] , 2)+pow(v [1]−v [5] , 2)) ;

dF [0] [0] = 0 ; dF [0] [1] = 0 ; dF [0] [2] = 0 ;
34 dF [1] [0] = 0 ; dF [1] [1] = 0 ; dF [1] [2] = 0 ;

dF [1] [3] = 0 ;
}

void (∗ I t e r a t e) (double v [VC] , double Dt)=NULL;
39

void I t e r a t eEu l e r (double v [VC] , double Dt){
double F [4] ;
FF(v ,F) ;
v[0]+=v [2] ∗Dt ;

44 v[1]+=v [3] ∗Dt ;
v[2]+=F[0] ∗Dt/m1;
v[3]+=F[1] ∗Dt/m1;

v[4]+=v [6] ∗Dt ;
49 v[5]+=v [7] ∗Dt ;

v[6]+=F[2] ∗Dt/m2;
v[7]+=F[3] ∗Dt/m2;

77

}

54 void I t e r a t eDe r i v (double v [VC] , double Dt){
double F[FC] , dF [FC] [VC] ;
FF(v ,F) ;
dFFx(v , dF) ;
v [0]+=(v [2]+0 .5∗F [0] ∗Dt)∗Dt ;

59 v [1]+=(v [3]+0 .5∗F [1] ∗Dt)∗Dt ;
v [2]+=(F[0]+0 .5/m1∗(dF [0] [0] ∗ v [2]+dF [0] [1] ∗ v [3]+dF [0] [2] ∗F

[0] /m1+dF [0] [3] ∗F [1] /m1)∗Dt) ∗Dt/m1;
v [3]+=(F[1]+0 .5/m1∗(dF [1] [0] ∗ v [2]+dF [1] [1] ∗ v [3]+dF [1] [2] ∗F

[0] /m1+dF [1] [3] ∗F [1] /m1)∗Dt) ∗Dt/m1;
}

64 void I t e r a t eV e r l e t (double v [VC] , double Dt){
double F[FC] , Fn [FC] ;
FF(v ,F) ;
v [0]+=(v [2]+0 .5∗F [0] /m1∗Dt)∗Dt ;
v [1]+=(v [3]+0 .5∗F [1] /m1∗Dt)∗Dt ;

69 v[2]+=F [0] ∗Dt/m1;
v[3]+=F [1] ∗Dt/m1;

v [4]+=(v [6]+0 .5∗F [2] /m2∗Dt)∗Dt ;
v [5]+=(v [7]+0 .5∗F [3] /m2∗Dt)∗Dt ;

74 v[6]+=F [2] ∗Dt/m2;
v[7]+=F [3] ∗Dt/m2;
FF(v , Fn) ; //Could do t h i s r i g h t away s ince F does not depend

on v e l o c i t y .
v [2]+=0.5∗(Fn[0]−F [0]) ∗Dt/m1;
v [3]+=0.5∗(Fn[1]−F [1]) ∗Dt/m1;

79 v [6]+=0.5∗(Fn[2]−F [2]) ∗Dt/m2;
v [7]+=0.5∗(Fn[3]−F [3]) ∗Dt/m2;

}

void SetEuler () {
84 I t e r a t e = &I t e r a t eEu l e r ;

}

void SetDer iv () {
I t e r a t e = &I t e r a t eDe r i v ;

89 }

78 CHAPTER 8. PLANETARY MOTION

void SetVer l e t () {
I t e r a t e = &I t e r a t eV e r l e t ;

}
94

double E(double v [VC]) {
return 0 .5∗m1∗(v [2] ∗ v [2]+v [3] ∗ v [3]) +0.5∗m2∗(v [6] ∗ v [6]+v [7] ∗ v

[7])−m1∗m2∗G/ sq r t (pow(v [0]−v [4] , 2)+pow(v [1]−v [5] , 2)) ;
}

99 double L(double v [VC]) {
return m1∗(v [0] ∗ v [3]−v [1] ∗ v [2])+m2∗(v [4] ∗ v [7]−v [5] ∗ v [6]) ;

}

void I n i t i a l i z e (double v [VC] , double x [NG] [s i z e] [2] , double ∗ time
){

104 ∗ time = 0 ;

v [0]=0 ; // x1 0 = 0
v [1]=1 ; // y1 0 = 1
v [2]= v in ∗ cos (theta /180∗ pi) ;

109 v [3]= v in ∗ s i n (theta /180∗ pi) ;

v [4]=0 ; // x2 0 = 0
v [5]=−1; // y2 0 = −1
v[6]=−m1/m2∗ v in ∗ cos (theta /180∗ pi) ;

114 v[7]=−m1/m2∗ v in ∗ s i n (theta /180∗ pi) ;

/∗ I n i t i a l i z e the g raph i c s v a r i a b l e s ∗/
for (int i =0; i<s i z e ; i++){

x [0] [i] [0]= v [0] ; x [0] [i] [1]= v [1] ;
119 x [1] [i] [0]= v [4] ; x [1] [i] [1]= v [5] ;

x [2] [i] [0]= v [2] ; x [2] [i] [1]= v [3] ;
x [3] [i] [0]= v [6] ; x [3] [i] [1]= v [7] ;
x [4] [i] [0]=∗ time ; x [4] [i] [1]=E(v) ;
x [5] [i] [0]=∗ time ; x [5] [i] [1]=L(v) ;

124 }
}

void AnalyzeData (double v [VC] , double x [NG] [s i z e] [2] , double time
){
for (int i =0; i<NG; i++) // move data po in t s back in g raph i c s

array

79

129 memmove(&x [i] [1] [0] , & x [i] [0] [0] , (s i z e −1)∗2∗ s izeof (double)) ;

x [0] [0] [0] = v [0] ; x [0] [0] [1] = v [1] ;
x [1] [0] [0] = v [4] ; x [1] [0] [1] = v [5] ;
x [2] [0] [0] = v [2] ; x [2] [0] [1] = v [3] ;

134 x [3] [0] [0] = v [6] ; x [3] [0] [1] = v [7] ;
x [4] [0] [0] = time ; x [4] [0] [1] =E(v) ;
x [5] [0] [0] = time ; x [5] [0] [1] =L(v) ;

}

139 void i n i t () {
I n i t i a l i z e (v , x1 ,&time) ; // Just a l i t t l e wrapper to c a l l from

the menu
}

int main () {
144 int i , Paused=1, Step=1, Repeat=1, done=0;

double Dt=0.01;

I n i t i a l i z e (v , x1 ,&time) ;
SetEuler () ;

149
for (i =0; i<NG; i++)

DefineGraphN RxR (GrName [i] ,&(x1 [i] [0] [0]) ,& s i z e ,NULL) ;

StartMenu (”Two c e l e s t i a l bod ie s ” ,1) ;
154 DefineDouble (”m1” ,&m1) ;

DefineDouble (”m2” ,&m2) ;
DefineDouble (”G”,&G) ;
DefineDouble (” theta ” ,& theta) ;
DefineDouble (” v in ” ,& v in) ;

159 Def ineFunct ion (” R e i n i t i a l i z e ” ,& i n i t) ;
DefineGraph (curve2d , ”Graph”) ;
Def ineFunct ion (”Set Euler ” ,&SetEuler) ;
Def ineFunct ion (”Set Deriv ” ,&SetDer iv) ;
Def ineFunct ion (”Set Ver l e t ” ,&SetVer l e t) ;

164 DefineDouble (”Dt” ,&Dt) ;
De f ine In t (”Repeat” ,&Repeat) ;
Def ineBool (”Step” ,&Step) ;
Def ineBool (”Paused” ,&Paused) ;
Def ineBool (”done” ,&done) ;

169 EndMenu() ;

80 CHAPTER 8. PLANETARY MOTION

while (! done){
Events (1) ;
DrawGraphs () ;
i f (! Paused | | ! Step){

174 Step=1;
for (int i =0; i<Repeat ; i++) I t e r a t e (v , Dt) ;
time += Repeat∗Dt ;
AnalyzeData (v , x1 , time) ;

}
179 else s l e e p (1) ;

}
}

We can run this code, but we realize that this code is rather finicky. If we use some
randomly choosen intial conditions and timesteps it is likely that the simulation simply
blows up, and it takes a little while of trying (and a bit of thinking) to figure out a set
of computational parameters that will give you the correct results. We know that we
should be able

The main problem is that the force varies widely with the distance.

Problems

8.0.1: The program listing for planets.c does not have the IterateDeriv() and dFFx()
routines correctly implemented. To do this you need to calculate the general
gradients of ∂F/∂v for all the force components and all the state vector components
and implement them in the cFFx routine. Mathematically you need

dF =

∂Fx1

∂x1

∂Fx1

∂y1

∂Fx1

∂v1x

∂Fx1

∂v1y

∂Fx1

∂x2

∂Fx1

∂y2

∂Fx1

∂v2x

∂Fx1

∂v2y
∂Fy1

∂x1

∂Fy1

∂y1

∂Fy1

∂v1x

∂Fy1

∂v1y

∂Fy1

∂x2

∂Fy1

∂y2

∂Fy1

∂v2x

∂Fy1

∂v2y
∂Fx2

∂x1

∂Fx2

∂y1

∂Fx2

∂v1x

∂Fx2

∂v1y

∂Fx2

∂x2

∂Fx2

∂y2

∂Fx2

∂v2x

∂Fx2

∂v2y
∂Fy2

∂x1

∂Fy2

∂y1

∂Fy2

∂v1x

∂Fy2

∂v1y

∂Fy2

∂x2

∂Fy2

∂y2

∂Fy2

∂v2x

∂Fx2

∂v2y

(8.10)

which looks horrible initially, but there are many zeros and symmetries that make
the calculations simpler. Once you calculated this matrix of derivatives you need
to implement it into the iterateDeriv() routine.

Once you have accomplished this, test the relative performance of the deriv, Verlet,
and Euler algorithms.

8.1. ADAPTIVE STEP SIZE 81

-0.10 -0.05 0.00 0.05 0.10
x

-1.0

-0.5

0.0

0.5

1.0
y

-0.10 -0.05 0.00 0.05 0.10
x

-1.0

-0.5

0.0

0.5

1.0
y

-0.10 -0.05 0.00 0.05 0.10
x

-1.0

-0.5

0.0

0.5

1.0
y

-4 -2 0 2 4
Vx

-3

-2

-1

0

1

2

3
Vy

-4 -2 0 2 4
Vx

-3

-2

-1

0

1

2

3
Vy

-4 -2 0 2 4
Vx

-3

-2

-1

0

1

2

3
Vy

0.0 0.5 1.0 1.5 2.0 2.5
t

0

5

10

15

20
E

0.0 0.5 1.0 1.5 2.0 2.5
t

0

5

10

15

20
E

0.0 0.5 1.0 1.5 2.0 2.5
t

0

5

10

15

20
E

Figure 8.1: Trajectories of two planets, their velocities and the total energy for a sim-
ulation with the Euler algorithm. We see that as the planets approach each other the
algorithm does not conserve energy. Subsequently the planets will fly away from each
other.

8.1 Adaptive Step Size

To get a better execution speed, we need to adapt the step size of the simulation.
But what causes the problems, and when do we need to reduce the time-step for the
simulation? In Figure 8.1 we show how a simulation using the Euler algorithm with the
step-size of 0.01, and an initial velocity of 0.1 fails. For the last data-points before the
failure we show the values for each iteration step.

The failure of the algorithm is characterized by large jumps in the position and
velocity, and that a failure occurred is most obvious when observing the Energy. There
is, maybe surprisingly, no similar error in the angular momentum. So what is going on?
One way to look at this is to use an energy argument: when the two planets approach
each other the forces become large. If the particle arrives in a low-energy region, a
large force is experienced. This force then leads to a large increase in the velocity, and
the finite time-step brings the particle out of the energy well without experiencing the
corresponding force on the way out of the energy minimum. This scenario also explains
why the energy tends to increase strongly in this scenario?

Would using the Verlet algorithm instead of the Euler algorithm help? It depends:
on the one hand the position update would be more extreme when the force and the
velocity align, because the particle will be moved forward by an additional increment
F (∆t)2. On the other hand the velocity will be updated by a more moderate amount of
0.5(F (x(t))+F (x(t+∆t)). For the example above, shown in Figure 8.2, using the Verlet
algorithm is not favorable. This is not an uncommon occurrence: when algorithms fail,
higher order algorithms are often less robust than lower order algorithms. This is the
reason that for simulations you will hardly ever find methods that are better than second
order.

Now what we need to do is to adapt the step-size. This step-size should be chosen
such that we don’t spend too much time, where a larger time-step would be sufficient,
but where we ensure that the time-step becomes small enough when accuracy requires
it. This leaves us with the problem of determining of how to chose the timestep.

82 CHAPTER 8. PLANETARY MOTION

-0.10 -0.05 0.00 0.05 0.10
x

-1.0

-0.5

0.0

0.5

1.0
y

-0.10 -0.05 0.00 0.05 0.10
x

-1.0

-0.5

0.0

0.5

1.0
y

-0.10 -0.05 0.00 0.05 0.10
x

-1.0

-0.5

0.0

0.5

1.0
y

-8 -6 -4 -2 0 2 4 6 8
Vx

-2

-1

0

1

2
Vy

-8 -6 -4 -2 0 2 4 6 8
Vx

-2

-1

0

1

2
Vy

-8 -6 -4 -2 0 2 4 6 8
Vx

-2

-1

0

1

2
Vy

0.0 0.5 1.0 1.5 2.0 2.5
t

0

10

20

30

40

50E

0.0 0.5 1.0 1.5 2.0 2.5
t

0

10

20

30

40

50E

0.0 0.5 1.0 1.5 2.0 2.5
t

0

10

20

30

40

50E

Figure 8.2: Trajectories of two planets, their velocities and the total energy for a sim-
ulation with the Verlet algorithm. We see that as the planets approach each other the
algorithm does not conserve energy. Subsequently the planets will fly away from each
other.

One way of choosing the time-step is to ensure that the displacement in a time-step
is small compared to the inter-planet distance. So we require

v ∆t = ǫr12 (8.11)

⇐ ∆t =
ǫr12
|vmax|

(8.12)

where vmax is the larger of the two absolute velocities. A possible implementation looks
like this:

Listing 8.2: planetsAdapt2.c

#include <s t d i o . h>
#include <s t r i n g . h>
#include <un i s td . h>

4 #include <mygraph . h>
#include <math . h>

#define pi 3.14159265358979323846264338327950288419716939937

9 double m1=1,m2=1,G=1, v in=1, theta =45;
#define VC 8 /∗ Number o f components in s t a t e v e c t o r ∗/
double v [VC] ; /∗ The s t a t e v e c t o r o f the system ∗/
#define FC 4 /∗ Number o f components in Force vec tor , FC=VC/2 (

t y p i c a l l y) ∗/
#define NG 7 /∗ Graphs f o r d i s p l a y : (x1 , y1) (x2 , y2) (v1x , v1y) (

v2x , v2y) E(t) ∗/
14 double x1 [NG] [1 0 0] [2] ;

char ∗GrName [NG]={” (x1 , y1) ” , ” (x2 , y2) ” , ” (v1 x , v1 y) ” , ” (v2 x , v2 y
) ” , ” (t ,E) ” , ” (t , L) ” , ” (t , Dt) ” } ;

int s i z e =100;

8.1. ADAPTIVE STEP SIZE 83

double Dtmeas=0.01 ,Dt=0.0001;
double time=0,Eps=1e−5;

19

/∗ S ta t e s : we now have two p a r t i c l e s wi th coo r c ina t e s
x1 , y1 , v1x , v1y , x2 , y2 , v2x , v2z ∗/

24 double E(double v [VC]) {
return 0 .5∗m1∗(v [2] ∗ v [2]+v [3] ∗ v [3]) +0.5∗m2∗(v [6] ∗ v [6]+v [7] ∗ v

[7])−m1∗m2∗G/ sq r t (pow(v [0]−v [4] , 2)+pow(v [1]−v [5] , 2)) ;
}

double L(double v [VC]) {
29 return m1∗(v [0] ∗ v [3]−v [1] ∗ v [2])+m2∗(v [4] ∗ v [7]−v [5] ∗ v [6]) ;

}

34 double TimeStep (double v [VC] , double F[FC]) {
double rabs=sq r t (pow(v [0]−v [4] , 2)+pow(v [1]−v [5] , 2)) ;
double vabs1=sq r t (pow(v [2] , 2)+pow(v [3] , 2)) ;
double vabs2=sq r t (pow(v [6] , 2)+pow(v [7] , 2)) ;
i f (vabs2>vabs1) vabs1=vabs2 ;

39 return Eps∗ rabs /vabs1 ;
}

void FF(double v [VC] , double F[FC]) {
double rabs=sq r t (pow(v [0]−v [4] , 2)+pow(v [1]−v [5] , 2)) ;

44 F[0]=−G∗m1∗m2/pow(rabs , 3) ∗(v [0]−v [4]) ;
F[1]=−G∗m1∗m2/pow(rabs , 3) ∗(v [1]−v [5]) ;
F[2]=−F [0] ;
F[3]=−F [1] ;

}
49

void (∗ I t e r a t e) (double v [VC] , double ∗ time)=NULL;

void I t e r a t eEu l e r (double v [VC] , double ∗ time){
double F [4] ;

54
FF(v ,F) ;
Dt=TimeStep (v ,F) ;
∗ time+=Dt ;

84 CHAPTER 8. PLANETARY MOTION

v[0]+=v [2] ∗ Dt ;
59 v[1]+=v [3] ∗ Dt ;

v[2]+=F[0] ∗ Dt/m1;
v[3]+=F[1] ∗ Dt/m1;

v[4]+=v [6] ∗ Dt ;
64 v[5]+=v [7] ∗ Dt ;

v[6]+=F[2] ∗ Dt/m2;
v[7]+=F[3] ∗ Dt/m2;

}

69 void I t e r a t eV e r l e t (double v [VC] , double ∗ time){
double F[FC] , Fn [FC] ;
FF(v ,F) ;
Dt=TimeStep (v ,F) ;
∗ time+=Dt ;

74 v [0]+=(v [2]+0 .5∗F [0] /m1∗ Dt)∗ Dt ;
v [1]+=(v [3]+0 .5∗F [1] /m1∗ Dt)∗ Dt ;
v[2]+=F [0] ∗ Dt/m1;
v[3]+=F [1] ∗ Dt/m1;

79 v [4]+=(v [6]+0 .5∗F [2] /m2∗ Dt)∗ Dt ;
v [5]+=(v [7]+0 .5∗F [3] /m2∗ Dt)∗ Dt ;
v[6]+=F [2] ∗ Dt/m2;
v[7]+=F [3] ∗ Dt/m2;
FF(v , Fn) ; //Could do t h i s r i g h t away s ince F does not depend

on v e l o c i t y .
84 v [2]+=0.5∗(Fn[0]−F [0]) ∗ Dt/m1;

v [3]+=0.5∗(Fn[1]−F [1]) ∗ Dt/m1;
v [6]+=0.5∗(Fn[2]−F [2]) ∗ Dt/m2;
v [7]+=0.5∗(Fn[3]−F [3]) ∗ Dt/m2;

89 }

void SetEuler () {
I t e r a t e = &I t e r a t eEu l e r ;

}
94

void SetVer l e t () {
I t e r a t e = &I t e r a t eV e r l e t ;

}

8.1. ADAPTIVE STEP SIZE 85

99 void I n i t i a l i z e (double v [VC] , double x [NG] [s i z e] [2] , double ∗ time
){

∗ time = 0 ;

v [0]=0 ; // x1 0 = 0
v [1]=1 ; // y1 0 = 1

104 v [2]= v in ∗ cos (theta /180∗ pi) ;
v [3]= v in ∗ s i n (theta /180∗ pi) ;

v [4]=0 ; // x2 0 = 0
v [5]=−1; // y2 0 = −1

109 v[6]=−m1/m2∗ v in ∗ cos (theta /180∗ pi) ;
v[7]=−m1/m2∗ v in ∗ s i n (theta /180∗ pi) ;

/∗ I n i t i a l i z e the g raph i c s v a r i a b l e s ∗/
for (int i =0; i<s i z e ; i++){

114 x [0] [i] [0]= v [0] ; x [0] [i] [1]= v [1] ;
x [1] [i] [0]= v [4] ; x [1] [i] [1]= v [5] ;
x [2] [i] [0]= v [2] ; x [2] [i] [1]= v [3] ;
x [3] [i] [0]= v [6] ; x [3] [i] [1]= v [7] ;
x [4] [i] [0]=∗ time ; x [4] [i] [1]=E(v) ;

119 x [5] [i] [0]=∗ time ; x [5] [i] [1]=L(v) ;
x [6] [i] [0]=∗ time ; x [6] [i] [1]=Dt ;

}
}

124 void AnalyzeData (double v [VC] , double x [NG] [s i z e] [2] , double time
){
for (int i =0; i<NG; i++) // move data po in t s back in g raph i c s

array
memmove(&x [i] [1] [0] , & x [i] [0] [0] , (s i z e −1)∗2∗ s izeof (double)) ;

x [0] [0] [0] = v [0] ; x [0] [0] [1] = v [1] ;
129 x [1] [0] [0] = v [4] ; x [1] [0] [1] = v [5] ;

x [2] [0] [0] = v [2] ; x [2] [0] [1] = v [3] ;
x [3] [0] [0] = v [6] ; x [3] [0] [1] = v [7] ;
x [4] [0] [0] = time ; x [4] [0] [1] =E(v) ;
x [5] [0] [0] = time ; x [5] [0] [1] =L(v) ;

134 x [6] [0] [0] = time ; x [6] [0] [1] = Dt ;
}

void i n i t () {

86 CHAPTER 8. PLANETARY MOTION

I n i t i a l i z e (v , x1 ,&time) ; // Just a l i t t l e wrapper to c a l l from
the menu

139 }

int main () {
int i , Paused=1, Step=1, done=0;
double rt ime ;

144 I n i t i a l i z e (v , x1 ,&time) ;
SetEuler () ;

for (i =0; i<NG; i++)
DefineGraphN RxR (GrName [i] ,&(x1 [i] [0] [0]) ,& s i z e ,NULL) ;

149
StartMenu (”Two c e l e s t i a l bod ie s ” ,1) ;
DefineDouble (”m1” ,&m1) ;
DefineDouble (”m2” ,&m2) ;
DefineDouble (”G”,&G) ;

154 DefineDouble (” theta ” ,& theta) ;
DefineDouble (” v in ” ,& v in) ;
Def ineFunct ion (” R e i n i t i a l i z e ” ,& i n i t) ;
DefineGraph (curve2d , ”Graph”) ;
Def ineFunct ion (”Set Euler ” ,&SetEuler) ;

159 Def ineFunct ion (”Set Ver l e t ” ,&SetVer l e t) ;
DefineDouble (”Dt” ,&Dt) ;
DefineDouble (”Dt meas” ,&Dtmeas) ;
DefineDouble (”Eps” ,&Eps) ;
Def ineBool (”Step” ,&Step) ;

164 Def ineBool (”Paused” ,&Paused) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

Events (1) ;
169 DrawGraphs () ;

i f (! Paused | | ! Step){
Step=1;
for (rt ime=0; rtime<Dtmeas ; I t e r a t e (v,& rt ime)) ;
time += rt ime ;

174 AnalyzeData (v , x1 , time) ;
}
else s l e e p (1) ;

}
}

8.2. MORE PARTICLES 87

This approach gives us a pretty good performance. However, it required a good
understanding of the underlying problems. There are more general methods of evalu-
ating the error encountered. These approaches include using results of two methods of
different orders and since the higher order method is expected to be closer to the exact
result. The difference between the two methods is then a measure for the error of the
lower order method. A second approach consists of using the same method but running
it at two time-steps. Again the difference between the results gives us a measure for the
error.

Problems

8.1.1: Examine what happens if your force law looks different. In particular what
happens if your force law is

F 12 =
Gm1m2

|r12|α
r12 (8.13)

for α 6= 3. A particularly important example occurs for an harmonic oscillator,
where the force is linear with the distance. What value of α does that correspond
to? What do the trajectories look like for this force potential?

8.1.2: What do the trajectories look like for other exponents α? Is there an important
qualitative difference?

8.2 More particles

So far we have looked at the dynamics for one or two particles. But there are many
problems that require us to look at more particles. Interestingly the questions that
one might want to ask of such systems changes as we increase the number of particles.
First we will consider systems with a few particles. First we will to examine three body
problems. They are very interesting as the three body problem usually will not allow
an analytical solution. We will also see why that is. We can examine planetary motion
where we consider gravitational interaction, the motion of the classical hydrogen atom
which behaves quite different because the like charges of the two electrons repel each
other. We will also consider a system where we don’t simply have a featureless point
particle, but a particle with additional degrees of freedom, which we will use as a very
simple model of tidal interactions.

But before we do that we have to generalize our program to include more than two,
and ideally an arbitrary number of particles. This is a code that includes an arbitrary
number of particles:

88 CHAPTER 8. PLANETARY MOTION

Listing 8.3: MD.c

#include <s t d i o . h>
2 #include <s t r i n g . h>

#include <un i s td . h>
#include <mygraph . h>
#include <math . h>

7 #define pi 3.14159265358979323846264338327950288419716939937

#define N 6 /∗ Number o f coord ina t e s (or momenta) ∗/
double v [N∗2] , v in [N∗ 2] ; /∗ The s t a t e v e c t o r o f the system ,

i n i t i a l s t a t e ∗/
/∗ We de f i n e a genera l s t a t e v e c t o r c on s i s t i n g o f N coord ina t e s

q and N momenta p . I t reads (q1 , q2 , , . . . , qN , p1 , p2 , . . . pN) . ∗/
12 double m[N/2] ,G=1;

int N02=N/2 ; /∗ Needed f o r the g raph i c s l i b r a r y ∗/
double Eps=1e−5;

#define NG 2+N/2 /∗ Graphs f o r d i s p l a y : Could be anyth ing E(t) ,
L(t) . . ∗/

17 #define MEM 1000
double x1 [NG] [MEM] [2] ;
char ∗GrName [NG]={” (t ,E) ” , ” (t , L) ” , ” (x1 , y1) ” , ” (x2 , y2) ” , ” (x3 , y3) ”

} ; //needs to be more genera l . . .
int s i z e=MEM;
double time=0, i t e r a t i o n s =0;

22
/∗ S ta t e s : we now have N/2 p a r t i c l e s in two dimensions ∗/

void FF(double v [N∗2] , double F[N]) {
double rx , ry , rabs ;

27 int i , j ;

memset(&(F [0]) , 0 ,N∗ s izeof (double)) ; /∗ s e t the F array to
zero ∗/

for (i =0; i<N/2 ; i++){
32 for (j=i +1; j<N/2 ; j++){

rx=v [i ∗2]−v [j ∗ 2] ;
ry=v [i ∗2+1]−v [j ∗2+1] ;
rabs=sq r t (pow(rx , 2)+pow(ry , 2)) ;
F [i ∗2]+=−G∗m[i]∗m[j] / pow(rabs , 3) ∗ rx ;

8.2. MORE PARTICLES 89

37 F [i∗2+1]+=−G∗m[i]∗m[j] / pow(rabs , 3) ∗ ry ;
F [j∗2]+=−F[i ∗ 2] ;
F [j∗2+1]+=−F[i ∗2+1] ;

}
}

42 }

double TimeStep (double v [N∗2]) { // f o r g r a v i t a t i o n a l
i n t e r a c t i o n

int i , j ;
double rabs=1e38 , vabs=1e−10, t ;

47
for (i =0; i<N/2 ; i++){

t=pow(v [N+i ∗2] , 2)+pow(v [N+i ∗2+1] ,2) ;
i f (t>vabs) vabs=t ;
for (j=i +1; j<N/2 ; j++){

52 t=pow(v [i ∗2]−v [j ∗2] , 2)+pow(v [i ∗2+1]−v [j ∗2+1] ,2) ;
i f (t<rabs) rabs=t ;

}
}
return Eps∗ s q r t (rabs /vabs) ;

57 }

void (∗ I t e r a t e) (double v [N∗2] , double Dt)=NULL;

62 void I t e r a t eEu l e r (double v [N∗2] , double Dt){
double F[N] ;
int i ;
FF(v ,F) ;
for (i =0; i<N; i++){

67 v [i]+=v [N+i]∗Dt ;
v [N+i]+=F[i]∗Dt/m[i / 2] ;

}
}

72 void I t e r a t eV e r l e t (double v [N∗2] , double Dt){
double F[N] , Fn [N] ;
int i ;

FF(v ,F) ;
77 for (i =0; i<N; i++){

90 CHAPTER 8. PLANETARY MOTION

v [i]+=(v [N+i]+0.5∗F[i] /m[i /2]∗Dt)∗Dt ;
}
FF(v , Fn) ; /∗ assuming t ha t f o r c e s don ’ t depend on v e l o c i t y ∗/
for (i =0; i<N; i++){

82 v [N+i]+=0.5∗(F [i]+Fn [i]) ∗Dt/m[i / 2] ;
}

}

void SetEuler () {
87 I t e r a t e = &I t e r a t eEu l e r ;

}

void SetVer l e t () {
I t e r a t e = &I t e r a t eV e r l e t ;

92 }

double E(double v [N∗2]) {
double Eret=0, rx , ry , rabs ;
int i , j ;

97
for (i =0; i<N/2 ; i++){

Eret+=0.5∗m[i] ∗ (pow(v [N+2∗ i] , 2)+pow(v [N+2∗ i +1] ,2)) ;
for (j=i +1; j<N/2 ; j++){

rx=v [i ∗2]−v [j ∗ 2] ;
102 ry=v [i ∗2+1]−v [j ∗2+1] ;

rabs=sq r t (pow(rx , 2)+pow(ry , 2)) ;
Eret+=−G∗m[i]∗m[j] / pow(rabs , 1) ;

}
}

107 return Eret ;
}

double L(double v [N∗2]) {
double Lzret=0;

112 int i ;
for (i =0; i<N/2 ; i++){

Lzret+=m[i] ∗ (v [i ∗2]∗v [N+i ∗2+1]−v [i ∗2+1]∗v [N+i ∗2]) ;
}
return Lzret ;

117 }

void I n i t i a l i z e (double v [N∗2] ,double x [NG] [MEM] [2] , double ∗ time

8.2. MORE PARTICLES 91

){
int i , j ;
∗ time = 0 ;

122
for (i =0; i<2∗N; i++) v [i]=vin [i] ;

/∗ I n i t i a l i z e the g raph i c s v a r i a b l e s ∗/
for (int i =0; i<s i z e ; i++){

127 x [0] [i] [0]=∗ time ; x [0] [i] [1]=E(v) ;
x [1] [i] [0]=∗ time ; x [1] [i] [1]=L(v) ;
for (j =0; j<N/2 ; j++){

x [j +2] [0] [0]= v [2∗ j] ;
x [j +2] [0] [1]= v [2∗ j +1] ;

132 }
}

}

void AnalyzeData (double v [N∗2] ,double x [NG] [s i z e] [2] , double
time){

137 for (int i =0; i<NG; i++) // move data po in t s back in g raph i c s
array

memmove(&x [i] [1] [0] , & x [i] [0] [0] , (s i z e −1)∗2∗ s izeof (double)) ;

x [0] [0] [0] = time ; x [0] [0] [1] =E(v) ;
x [1] [0] [0] = time ; x [1] [0] [1] =L(v) ;

142 for (int i =0; i<N/2 ; i++){
x [i +2] [0] [0]= v [2∗ i] ;
x [i +2] [0] [1]= v [2∗ i +1] ;

}
}

147
void SaveState () {

for (int i =0; i<2∗N; i++) vin [i]=v [i] ;
}

152
void i n i t () {

I n i t i a l i z e (v , x1 ,&time) ; // Just a l i t t l e wrapper to c a l l from
the menu

}

157 int main () {

92 CHAPTER 8. PLANETARY MOTION

int i , Paused=1, Step=1, Repeat=1, done=0, Adapt=1;
char s t r [1 0 0] ;
double Dt=0.01;

162 I n i t i a l i z e (v , x1 ,&time) ;
SetEuler () ;

DefineGraphN RxR (”Pos” ,&v [0] ,&N02 ,NULL) ;
DefineGraphN RxR (”Vel” ,&v [N] ,&N02 ,NULL) ;

167 for (i =0; i<NG; i++)
DefineGraphN RxR (GrName [i] ,&(x1 [i] [0] [0]) ,& s i z e ,NULL) ;

StartMenu (”Two c e l e s t i a l bod ie s ” ,1) ;
DefineDouble (”G”,&G) ;

172 StartMenu (” I n i t i a l State ” ,0) ;
for (i =0; i<N/2 ; i++){

s p r i n t f (s t r , ”m %i ” , i) ;
DefineDouble (s t r ,&m[i]) ;
s p r i n t f (s t r , ” x %i ” , i) ;

177 DefineDouble (s t r ,&vin [i ∗2]) ;
s p r i n t f (s t r , ” y %i ” , i) ;
DefineDouble (s t r ,&vin [i ∗2+1]) ;
s p r i n t f (s t r , ”Vx %i ” , i) ;
DefineDouble (s t r ,&vin [N+i ∗2]) ;

182 s p r i n t f (s t r , ”Vy %i ” , i) ;
DefineDouble (s t r ,&vin [N+i ∗2+1]) ;

}
Def ineFunct ion (” SaveState ” ,&SaveState) ;
Def ineFunct ion (” R e i n i t i a l i z e ” ,& i n i t) ;

187 EndMenu() ;
DefineGraph (curve2d , ”Graph”) ;
Def ineFunct ion (”Set Euler ” ,&SetEuler) ;
Def ineFunct ion (”Set Ver l e t ” ,&SetVer l e t) ;
DefineDouble (” time” ,&time) ;

192 DefineDouble (”Dt” ,&Dt) ;
DefineDouble (”Eps” ,&Eps) ;
Def ineBool (”Adapt” ,&Adapt) ;
De f ine In t (”Repeat” ,&Repeat) ;
Def ineBool (”Step” ,&Step) ;

197 Def ineBool (”Paused” ,&Paused) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;

8.2. MORE PARTICLES 93

m0 x0 y0 vx0 vy0
100 0 0 0 0
m1 x1 y1 vx1 vy1
1 0 1 1 0

m2 x2 y2 vx2 vy2
1 0 2 0.1 0

Table 8.1: Initial conditions for the three planets shown in Figure 8.3.

while (! done){
Events (1) ;

202 DrawGraphs () ;
i f (! Paused | | ! Step){

Step=1;
for (int i =0; i<Repeat ; i++){

time += Dt ;
207 I t e r a t e (v , Dt) ;

i f (Adapt) Dt=TimeStep (v) ;
}
AnalyzeData (v , x1 , time) ;

}
212 else s l e e p (1) ;

}
}

We can now use this code to examine the behavior of a three particle system. A first
taste of what these behavior of these systems is, is shown in Figure 8.3. We no longer
find simple elliptical path, but when the planets approach each other they scatter and
find new path. Not all orbits are as chaotic, however. From experience we know that
our planetary system consists of well-spaced planets that are small enough, compared
to the sun, to not influence each others planetary obits significantly.

Similarly many of these planets have moons orbiting the planets. We can see if we
can simulate a system that is reminiscent of the sun-earth-moon system. We can use
parameter sets that have a heavy planet a lighter planet and an even lighter moon. One
may wonder what initial conditions will lead to a system where the moon orbits the
planet, and where this system again orbits around the sun.

First we try the parameters of table 8.2 where we set all bodies up in a line along
the y axis. Then we give them velocities in the x-direction. This can give a system that
behaves qualitatively like a system of sun/planet/moon. However, a relatively slight
difference in the velocity of the moon, either a little too fast or a little too slow leads
to very different systems where the planet and the moon do not remain bound to each
other.

In this particular example the system with the least amount of total energy happens

94 CHAPTER 8. PLANETARY MOTION

-1.0 -0.5 0.0 0.5 1.0
x

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2y

-1.0 -0.5 0.0 0.5 1.0
x

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2y

-1.0 -0.5 0.0 0.5 1.0
x

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2y

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
t

-1504950000.6

-1504950000.4

-1504950000.2

-1504950000.0

-1504949999.8

-1504949999.6
E

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
t

-1504950000.6

-1504950000.4

-1504950000.2

-1504950000.0

-1504949999.8

-1504949999.6
E

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
t

-1504950000.6

-1504950000.4

-1504950000.2

-1504950000.0

-1504949999.8

-1504949999.6
E

Figure 8.3: A three body simulation. The dots indicate the current position of the plan-
ets, and the lines indicate their past positions. The initial conditions for this simulation
is shown in table 8.1. The parameters for this simulation were ∆t = 10−8, Repeat=3000,
G=1, and we used the Verlet algorithm.

8.2. MORE PARTICLES 95

m0 x0 y0 vx0 vy0
100 0 0 -0.1 0
m1 x1 y1 vx1 vy1
1 0 1 10 0

m2 x2 y2 vx2 vy2
0.1 0 1.2 7 0

Table 8.2: Initial conditions for the three planets shown in Figure 8.4.

m0 x0 y0 vx0 vy0
100 0 0 -0.1 0
m1 x1 y1 vx1 vy1
1 0 1 10 0

m2 x2 y2 vx2 vy2
0.1 0 1.2 7.1 0

Table 8.3: Initial conditions for the three planets shown in Figure 8.4.

to eject the moon from the system entirely. In the problems section you will be asked
to examine this system more carefully.

When looking at these complicated path one may ask the question which we have
avoided so far: are these orbits truly solutions to our initial conditions? One way to
answer this is to recalculate the orbits with a different time-step. If the orbit is truly
converged we would expect that the results of the two simulations give us the same
answer. For the calculations used here we used the adaptive step-size algorithm, so
what we have to vary here is the ǫ value in our program (called Eps there). For the
initial calcultions we used ǫ = 10−6. We can compare three simulations with the values
of ǫ = {10−5, 10−6, 10−7}. This is shown in Figure 8.5.

Problems

8.2.1: In the sun/planet/moon system, described in the text above I showed that we
do only find a very limited range in which can observe a moon that is stably bound

m0 x0 y0 vx0 vy0
100 0 0 -0.1 0
m1 x1 y1 vx1 vy1
1 0 1 10 0

m2 x2 y2 vx2 vy2
0.1 0 1.2 7.2 0

Table 8.4: Initial conditions for the three planets shown in Figure 8.4.

96 CHAPTER 8. PLANETARY MOTION

-30 -25 -20 -15 -10 -5 0 5
x

-15

-10

-5

0

5

10

15
y

-30 -25 -20 -15 -10 -5 0 5
x

-15

-10

-5

0

5

10

15
y

-30 -25 -20 -15 -10 -5 0 5
x

-15

-10

-5

0

5

10

15
y

(a) vy3 = 6.8

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

(b) vy3 = 7.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

(c) vy3 = 7.2

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

(d) vy3 = 7.4

Figure 8.4: Orbits of a potential sun/planet/moon system. The only difference between
these systems lies in the slight difference in the initial velocity of the moon, as shown in
Tables 8.5,8.2,8.3,8.4.

m0 x0 y0 vx0 vy0
100 0 0 -0.1 0
m1 x1 y1 vx1 vy1
1 0 1 10 0

m2 x2 y2 vx2 vy2
0.1 0 1.2 6.8 0

Table 8.5: Initial conditions for the three planets shown in Figure 8.4.

8.3. SIMULATING CHAOTIC MOTION 97

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

(a) ǫ = 10−5

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

(b) ǫ = 10−6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0y

(c) ǫ = 10−7

Figure 8.5: Comparison of planetary motion for different time-resolutions ǫ. Other
parameters are the same as for Figure 8.4(d).

to the planet. Using the provided program examine the range of stability more
carefully. In particular examine the motion of the system for at least three orbits
of the planets and determine if the moon is likely to remain bound to the planet.
Using the same parameters as proposed in the text, try to determine the limits of
v3y for which a bound moon can be observed. Can you give a physical argument
for why the moon fails to be bound at either end of the velocity spectrum?
Hint: To do this effectively you want to write a subroutine that scans through
a range of initial velocities of the moon and then record a relevant measurement
(like in the Bunny program). This relevant measurement could be the minimum
and maximum distance between the planet and the moon, averaged over several
orbits of the planet.

8.2.2: We observed that all the bound trajectories for the moon were trajectories where
the moon rotated in the opposite direction to the rotation of the planet around the
sun. Can you find a set of parameters for which the moon rotates in the opposite
direction? If yes, please give these parameters, if not, explain why not.

8.3 Simulating chaotic motion

The problem of accuracy we mentioned in the last chapter raises a complication arising
from the following observations

1. numerical errors will continue to add up during the simulation

2. if we want to ensure that we obtain an accurate solution for a given initial condition
we have to choose the time-step accordingly small

To see why this causes a difficulty assume that you have simulated a system from some
initial conditions at time t0 to time t1 within some specified error ǫ. Now assume that

98 CHAPTER 8. PLANETARY MOTION

m0 x0 y0 vx0 vy0
1 0 0 -0.018 0

m1 x1 y1 vx1 vy1
1 0 1 0.1 0

m2 x2 y2 vx2 vy2
0.1 0 1.4 0.08 0

Table 8.6: Initial conditions for the three planets shown in Figure 8.6.

you also want to know the state the system will be in at some even later time t2. If you
want to know this state also with the same error of ǫ, then you could not start with
the state at time t1, which you already know, because you only know this state with a
certainty of ǫ. This would (likely) not allow you to know the state of the system at time
t2 with that same accuracy and you would have to start you simulation with the initial
condition at time t0 and iterate your system with a higher accuracy.

This now raises the question as to how the error increases with time. This is an
interesting question and the answer strongly depends on the kind of system we are
looking at. For “well behaved” systems the error will not increase more than linearly
with time, i.e. if we simulate the system twice as long, the error will be twice as big. And
example for such a system is the two-body system where we saw that Euler simulations
will show an increase of the energy with time and energy increased linearly in time. The
same error would have been found if we had looked at the deviation of the position from
its analytical value or the velocity.

Many other system, however, have the property that such errors increase not linearly
with time but instead exponentially! These systems are called “chaotic”. Many systems,
including the three body problem, show this property. But why should the three body
problem show such a radically different behavior than the two-body system? After all
the forces are similar, the numerical algorithm is the same, so what makes this system
different? An example can be found already in Figure 8.5 where we saw that a scattering
event of two bodies caused a strong dependence of the scattering angle on the impact
parameter.

If you have every played billiard you know this from personal experience: it is rel-
atively easy to hit one ball. It is a little harder to control the direction the ball you
hit will go. Now if you direct this second ball to hit a third one even a professional
player will find it next to impossible to control the direction of the third ball with any
accuracy.

Let us now consider the situation in Figure 8.6, where three bodies with equal mass
and a sufficiently small initial velocity are circulating each other. It is apparent that the
motion of these bodies has a somewhat random appearance. But does this mean that
the behavior of the system is chaotic in the sense that the behavior is sensitive to the
initial conditions?

8.3. SIMULATING CHAOTIC MOTION 99

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6
y

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6
y

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6
y

(a) ǫ = 10−6

Figure 8.6: Three bodies with equal mass undergoing chaotic motion. The initial con-
ditions are given in Table 8.6.

100 CHAPTER 8. PLANETARY MOTION

m0 x0 y0 vx0 vy0
1 -1.359 2.632 -1.3745 7.694

m1 x1 y1 vx1 vy1
1 -1.374 2.637 1.113 -6.795

m2 x2 y2 vx2 vy2

1

−0.652
−0.672
−0.692
−0.74
−0.75

2.187 -1.096 1.147

Table 8.7: Initial conditions for the three planets shown in Figure 8.7.

To test this question qualitatively we let the system run for a while and then we save
the state. I picked a situation where two particles (red and green) are closely circling
each other and then the particle with the blue trace approaches the pair. In the original
simulation the blue particle approaches the red particle closely and scatters, then the
red particle closely interacts with the green particle and the green particle gets scattered
away leaving the red and blue particles to circle each other closely.

Is this a situation where the behavior of the system is strongly dependent on the
initial conditions? We can restore the same initial condition and slightly change the
initial position of the blue particle and observe what the effect of this change is. The
result of this numerical experiment is shown in Figure 8.7. We see that a slight change
in the initial position of the blue particle can have a pronounced effect on the outcome
of the simulation. If the change is “small enough” the trajectories remain quite similar,
but as the change is increased the qualitative behavior of the scattering process changes.

In principle we should examine next is how the distance between two trajectories
with similar initial conditions changes as a function of a small displacement. But this
is a difficult undertaking: we see that if we change the trajectory only infinitesimally
we expect to get a result that will remain quite similar, whereas a larger deviation can
quickly lead to a completely different solution.

Mathematically we want to look at the state-vector as a function of time, v(t), as
it develops from an initial state v(t) = vin. We want to compare this trajectory with
another trajectory vǫ(t) that evolves from a slightly different initial condition vǫ(0) =
vin + ǫδvin. The difference of this trajectories δv then evolves as

δv(t) = v(t)− vǫ(t). (8.14)

To lowest order in ǫ we then expect this difference to be a linear function of the inital
conditions. We can then write

δv(t) = A(t)ǫδvin (8.15)

8.3. SIMULATING CHAOTIC MOTION 101

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.4

2.6

2.8

3.0

3.2y

(a) x2 = −0.652

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.4

2.6

2.8

3.0

3.2y

(b) x2 = −0.672

-1.6-1.5-1.4-1.3-1.2-1.1-1.0-0.9-0.8-0.7
x

2.2

2.4

2.6

2.8

3.0

3.2
y

-1.6-1.5-1.4-1.3-1.2-1.1-1.0-0.9-0.8-0.7
x

2.2

2.4

2.6

2.8

3.0

3.2
y

-1.6-1.5-1.4-1.3-1.2-1.1-1.0-0.9-0.8-0.7
x

2.2

2.4

2.6

2.8

3.0

3.2
y

(c) x2 = −0.692

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0
y

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0
y

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0
y

(d) x2 = −0.722

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.4

2.6

2.8

3.0

3.2

3.4y

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.4

2.6

2.8

3.0

3.2

3.4y

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.4

2.6

2.8

3.0

3.2

3.4y

(e) x2 = −0.742

Figure 8.7: Three bodies with equal mass undergoing chaotic motion. The initial con-
ditions are given in Table 8.7.

102 CHAPTER 8. PLANETARY MOTION

where it is reasonable to expect the matrix A(t) to be independent of ǫ for small enough
ǫ2. A(0) is the identity matrix and from there the matrix evolves in time.

Both the trajectories obey the same first order differential equation

dv(t)

dt
= a(t) (8.16)

where a(t) is a vector which contains first the Nd velocities of the N particles in d
dimensions, and then the Nd accelerations:

a(t) =

v1x(t)
v1y(t)

...
vNx(t)
vNy(t)

F1x(t)/m1

F1y(t)/m1

...
FNx(t)/mN

FNy(t)/mN

(8.17)

The differential equation governing the evolution of δv(t) is given by

d(δv(t))

dt
=

dv(t)

dt
− dvǫ(t)

dt
=

∂ǫvǫ1x(t)
∂ǫvǫ1y(t)

...
∂ǫvǫNx(t)
∂ǫvǫNy(t)

∂ǫFǫ1x(t)/m1

∂ǫFǫ1y(t)/m1

...
∂ǫFǫNx(t)/mN

∂ǫFǫNy(t)/mN

ǫ (8.18)

Averaging over this quantity will give you a measure of how fast a trajectory will diverge.
The logarithm of this quantity is related to the Lyapunov exponent. In dependence on
the initial disturbance there will be a full matrix of elements and the eigenvalues of
this matrix are known as the Lyapunov exponent. A Lyapunov exponent larger than 1
corresponds to the famous “sensitivity to initial conditions” since solutions will diverge
exponentially.

2If you are a mathematician you can certainly conjure up situation where this would not be the
case, like two point particles in a head-on collision. Any deviation of the path towards the one or the
other direction will lead to a very different outcome.

8.3. SIMULATING CHAOTIC MOTION 103

Figure 8.8: Predicted trajectory of Asteroid 2012 DA14. Credit: NASA

However, these mathematical quantities only tell you about infinitesimal distur-
bances and finite disturbances (i.e. where we cannot neglect higher powers of ǫ) can
show a different behavior.

Let us examine this situation with a practical example (from earthsky.org):

Asteroid 2012 DA14 will pass closest on February 15, 2013. As shown in Figure 8.8, it will
pass much closer than the orbit of the moon - closer even that orbiting geosynchronous
satellites (22,000 miles). So, no, 2012 DA14 wont strike us in 2013. There was a remote
possibility it might strike us in 2020, but that possibility has been ruled out also. What
will happen when Asteroid 2012 DA14 passes closely in 2013?

What will happen when it passes us? The short answer is nothing. On the day
it passes, most of us wont see it or be aware of its passage, in any way. The asteroid
wont alter the tides. It wont cause volcanoes. Itll just sweep closely past us as millions
of asteroids have done throughout Earths four-and-a-half-billion-year history some in
your own lifetime.

http://earthsky.org/space/asteroid-2012-da14-will-pass-very-close-to-earth-in-2013

104 CHAPTER 8. PLANETARY MOTION

The asteroid will be within range for small telescopes and solidly mounted binoculars,
used by experienced observers who have access to appropriate stars charts. Heres what
NASA says about its visibility:

On [February 15, 2013], the asteroid will travel rapidly from the southern evening
sky into the northern morning sky with its closest Earth approach occurring about 19:26
UTC when it will achieve a magnitude of less than seven, which is somewhat fainter
than naked eye visibility. About 4 minutes after its Earth close approach, there is a good
chance it will pass into the Earths shadow for about 18 minutes or so before reappearing
from the eclipse. When traveling rapidly into the northern morning sky, 2012 DA14 will
quickly fade in brightness.

What do we know about asteroid 2012 DA14?

Asteroid 2012 DA14 is a little guy, compared to some asteroids, although its size has
not been pinned down precisely. It is thought to be about 45 meters across (nearly 150
feet across), with an estimated mass of about 130,000 metric tons.

If a space object 150 feet wide were to strike our planet, it wouldnt be Earth-
destroying. But it has been estimated that it would produce the equivalent of 2.4
megatons of TNT. How does that compare with other known impact events on Earth?
In 1908, in a remote part of Russia, an explosion killed reindeer and flattened trees.
But no crater was ever found. Scientists now believe a small comet struck Earth. That
event has been estimated at 3 to 20 megatons. So 2012 DA14 is in the same approximate
realm as the Tunguska comet (which, actually, might have been an asteroid instead). It
would not destroy Earth, but it could flatten a city.

Of course, about 70% of our world is covered by oceans. That means the most likely
landing spot of any incoming asteroid is in the water not on a city or other populated
area.

Astronomers at the Observatorio Astronmico de La Sagra in Spain discovered 2012
DA14 in early 2012. We know 2012 DA14s orbit is similar to that of Earth. That is
one reason the asteroid eluded astronomers until recently. You can be sure that many
astronomers are carefully tracking 2012 DA14 now.

The orbit of 2012 DA14 is an inclined ellipse. In other words, its tilted sightly
with respect to Earths orbit around the sun, and, like Earths orbit, its not circular but
elliptical like a circle that someone sat down on. According to Bad Astronomer Phil
Plait, who appears to have used a computer program to look at its orbit:

The asteroid spends most of its time well away from our planet. However, the path
of the rock does bring it somewhat close to the Earth twice per orbit, or about every six
months. The last time it passed us was on February 16 [2012], when it was about 2.5
million km (1.5 million miles) away, equal to about 6 times the distance to the moon.
Thats usually about the scale of these encounters it misses us by quite a margin.

If we know it will miss us in 2013 and in 2020, why are astronomers still watching?
In fact, the orbit of 2012 DA14 is not entirely pinned down, although it is known well
enough to say for sure: it will not hit us next year, or in 2020.

8.3. SIMULATING CHAOTIC MOTION 105

But it will come close on February 15, 2013! It should be close enough to catch the
attention of virtually everyone on Earth in February 2013, on whats sure to be a media
field day.

Will 2012 DA14 strike Earth in 2020?
No. In March 2012, when a collision between 2012 DA14 and Earth in 2020 was still

remotely possible, I asked astronomer Donald Yeomans to clarify the risk. Yeomans is,
among other things, manager of NASAs Near-Earth Object Program Office at NASAs
Jet Propulsion Laboratory. In March 2012, he told EarthSky that a 2020 collision
between Earth and asteroid 2012 DA14 was

approximately one chance in 83,000, with additional remote possibilities beyond
2020. However, by far the most likely scenario is that additional observations, especially
in 2013, will allow a dramatic reduction in the orbit uncertainties and the complete
elimination of the 2020 impact possibility.

It turned out they didnt have to wait until 2013. By May, 2012, astronomers had
ruled out even the remote possibility of a 2020 collision.

Still, 2012 DA14 and asteroids like it are sobering.
Bottom line: The near Earth asteroid 2012 DA14 will have a very close pass near

Earth on February 15, 2013. It will sweep approximately 21,000 miles from us much
closer than the moons orbit and closer than geosynchronous satellites. It will not strike
Earth. Its orbit around the sun can bring it no closer to the Earths surface on February
15, 2013 than 3.2 Earth radii.

The situation described above can be rephrased in the following terms: we know rea-
sonably well the orbit of the earth and the moon, but the orbit of the asteroid is not
yet precisely known. As we observe the asteroid using telescopes we can get an estimate
on the asteroid’s position and velocity. But these estimates are subject to measurement
errors. So we want to know what the possible trajectories are, given the uncertainty in
the position and velocity of the asteroid.

How would you go about addressing such a problem?
The simplest answer is to run the program with a number of different initial condi-

tions. Ideally we will be able to see all the solutions at the same time. We can define
an array of state-vectors and an array of initial conditions and then show the positions
for all the different realizations at the same time. If the uncertainty is irrelevant for
the problem at hand we will find that all states corresponding to the different initial
conditions remain closely spaced together. In our example above we would expect all
the asteroid trajectories to remain closely spaced together.

A new version of our planets program that accomplishes this is included here:

Listing 8.4: MD-ensemble.c

1 #include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <un i s td . h>

106 CHAPTER 8. PLANETARY MOTION

#include <mygraph . h>
6 #include <math . h>

#define pi 3.14159265358979323846264338327950288419716939937

#define M 150 /∗ Maximum number o f ensembles ∗/
11 int mp1=M; /∗ I n i t i a l number o f ensembles ∗/

#define N 6 /∗ Number o f coord ina t e s (or momenta) ∗/
double v [M+1] [N∗2] , v in [N∗2]={0 ,0 ,0 ,1 ,0 ,1 .2 , −0 .107 ,0 ,10 ,0 ,7 ,0} ,

dvin [N∗ 2] ; /∗ The s t a t e v e c t o r o f the system , i n i t i a l s t a t e
∗/

/∗ We de f i n e a genera l s t a t e v e c t o r c on s i s t i n g o f N coord ina t e s
q and N momenta p . I t reads (q1 , q2 , , . . . , qN , p1 , p2 , . . . pN) . ∗/

int RandIn i t i a l =0;
16 double m[M+1] [N/2] ,dm[N/2] ,G=1;

int N02=N/2 ; /∗ Needed f o r the g raph i c s l i b r a r y ∗/
double Eps=1e−5;

#define NG 2+N/2 /∗ Graphs f o r d i s p l a y : Could be anyth ing E(t) ,
L(t) . . ∗/

21 #define MEM 1000
double x1 [NG] [MEM] [2] ;
double x2 [N/ 2] [M] [2] ; /∗ in s tan tanous p o s i t i o n o f ensemble

p a r t i c l e s ∗/
char ∗GrName [NG]={” (t ,E) ” , ” (t , L) ” , ” (x1 , y1) ” , ” (x2 , y2) ” , ” (x3 , y3) ”

} ; //needs to be more genera l . . .
char ∗Gr2Name [N/2]={”Ens1” , ”Ens2” , ”Ens3” } ;

26 int s i z e=MEM;
double time=0, i t e r a t i o n s =0;

/∗ S ta t e s : we now have N/2 p a r t i c l e s in two dimensions ∗/

31 void FF(double v [N∗2] ,double m[N/2] , double F[N]) {
double rx , ry , rabs ;
int i , j ;

memset(&(F [0]) , 0 ,N∗ s izeof (double)) ; /∗ s e t the F array to
zero ∗/

36
for (i =0; i<N/2 ; i++){

for (j=i +1; j<N/2 ; j++){
rx=v [i ∗2]−v [j ∗ 2] ;

8.3. SIMULATING CHAOTIC MOTION 107

ry=v [i ∗2+1]−v [j ∗2+1] ;
41 rabs=sq r t (pow(rx , 2)+pow(ry , 2)) ;

F [i ∗2]+=−G∗m[i]∗m[j] / pow(rabs , 3) ∗ rx ;
F [i∗2+1]+=−G∗m[i]∗m[j] / pow(rabs , 3) ∗ ry ;
F [j∗2]+=−F[i ∗ 2] ;
F [j∗2+1]+=−F[i ∗2+1] ;

46 }
}

}

double TimeStep (double v [N∗2]) { // f o r g r a v i t a t i o n a l
i n t e r a c t i o n

51 int i , j ;
double rabs2 , vabs2 [N/2] , t , dt=1e10 ;

for (i =0; i<N/2 ; i++)
vabs2 [i]=pow(v [N+i ∗2] , 2)+pow(v [N+i ∗2+1] ,2) ; // v e l o f par t i

56 for (i =0; i<N/2 ; i++){
for (j=i +1; j<N/2 ; j++){

rabs2=pow(v [i ∗2]−v [j ∗2] , 2)+pow(v [i ∗2+1]−v [j ∗2+1] ,2) ; //
d i s t i / j

i f (dt>rabs2 /vabs2 [i]) dt=rabs2 /vabs2 [i] ;
i f (dt>rabs2 /vabs2 [j]) dt=rabs2 /vabs2 [j] ;

61 }
}
return Eps∗ s q r t (dt) ;

}

66
void (∗ I t e r a t e) (double v [N∗2] , double m[N/2] , double Dt)=NULL;

void I t e r a t eEu l e r (double v [N∗2] , double m[N/2] , double Dt){
double F[N] ;

71 int i ;
FF(v ,m,F) ;
for (i =0; i<N; i++){

v [i]+=v [N+i]∗Dt ;
v [N+i]+=F[i]∗Dt/m[i / 2] ;

76 }
}

void I t e r a t eV e r l e t (double v [N∗2] , double m[N/2] , double Dt){

108 CHAPTER 8. PLANETARY MOTION

double F[N] , Fn [N] ;
81 int i ;

FF(v ,m,F) ;
for (i =0; i<N; i++){

v [i]+=(v [N+i]+0.5∗F[i] /m[i /2]∗Dt)∗Dt ;
86 }

FF(v ,m,Fn) ; /∗ assuming t ha t f o r c e s don ’ t depend on v e l o c i t y
∗/

for (i =0; i<N; i++){
v [N+i]+=0.5∗(F [i]+Fn [i]) ∗Dt/m[i / 2] ;

}
91 }

void SetEuler () {
I t e r a t e = &I t e r a t eEu l e r ;

}
96

void SetVer l e t () {
I t e r a t e = &I t e r a t eV e r l e t ;

}

101 double E(double v [N∗2] , double m[N/2]) {
double Eret=0, rx , ry , rabs ;
int i , j ;

for (i =0; i<N/2 ; i++){
106 Eret+=0.5∗m[i] ∗ (pow(v [N+2∗ i] , 2)+pow(v [N+2∗ i +1] ,2)) ;

for (j=i +1; j<N/2 ; j++){
rx=v [i ∗2]−v [j ∗ 2] ;
ry=v [i ∗2+1]−v [j ∗2+1] ;
rabs=sq r t (pow(rx , 2)+pow(ry , 2)) ;

111 Eret+=−G∗m[i]∗m[j] / pow(rabs , 1) ;
}

}
return Eret ;

}
116

double L(double v [N∗2] , double m[N/2]) {
double Lzret=0;
int i ;
for (i =0; i<N/2 ; i++){

8.3. SIMULATING CHAOTIC MOTION 109

121 Lzret+=m[i] ∗ (v [i ∗2]∗v [N+i ∗2+1]−v [i ∗2+1]∗v [N+i ∗2]) ;
}
return Lzret ;

}

126 void I n i t i a l i z e (double v [M+1] [N∗2] , double m[M+1] [N/2] ,double
x1 [NG] [MEM] [2] , double x2 [N/ 2] [M] [2] , double ∗ time){
int i , j ;
∗ time = 0 ;

for (i =0; i<2∗N; i++) v [0] [i]=vin [i] ;
131 for (i =0; i<2∗N; i++)

for (int n=1;n<mp1+1;n++) v [n] [i]=vin [i] ;
for (i =0; i<N/2 ; i++)

for (int n=1;n<mp1+1;n++) m[n] [i]=m[0] [i] ;

136 j =1;
i f (RandIn i t i a l){

while (j<mp1+1){
m[j] [2]+=(drand48 () −0.5)∗dm [2] ;
v [j] [4]+=(drand48 () −0.5)∗dvin [4] ;

141 v [j] [5]+=(drand48 () −0.5)∗dvin [4] ;
v [j] [10]+=(drand48 () −0.5)∗dvin [4] ;
v [j ++][11]+=(drand48 () −0.5)∗dvin [4] ;

}
}

146 else {
for (int m3=−1;m3<2;m3+=2)

for (int x3=−1;x3<2;x3+=2)
for (int y3=−1;y3<2;y3+=2)

for (int vx3=−1;vx3<2;vx3+=2)
151 for (int vy3=−1;vy3<2;vy3+=2){

i f (j==mp1+1) p r i n t f (”M needs to be l a r g e r than %
i \n” , j) ;

else {
m[j] [2]+=m3∗dm [2] ;
v [j] [4]+=x3∗dvin [4] ;

156 v [j] [5]+=y3∗dvin [4] ;
v [j] [10]+=vx3∗dvin [4] ;
v [j ++][11]+=vy3∗dvin [4] ;

}
}

110 CHAPTER 8. PLANETARY MOTION

161 }
/∗ I n i t i a l i z e the g raph i c s v a r i a b l e s ∗/
for (int i =0; i<s i z e ; i++){

x1 [0] [i] [0]=∗ time ; x1 [0] [i] [1]=E(v [0] ,m[0]) ;
x1 [1] [i] [0]=∗ time ; x1 [1] [i] [1]=L(v [0] ,m[0]) ;

166 for (j =0; j<N/2 ; j++){
x1 [j +2] [i] [0]= v [0] [2 ∗ j] ;
x1 [j +2] [i] [1]= v [0] [2 ∗ j +1] ;

}
}

171 }

void AnalyzeData (double v [M+1] [N∗2] ,double m[M+1] [N/2] ,double
x1 [NG] [MEM] [2] , double x2 [N/ 2] [M] [2] , double time){
for (int i =0; i<NG; i++) // move data po in t s back in g raph i c s

array
memmove(&x1 [i] [1] [0] , & x1 [i] [0] [0] , (s i z e −1)∗2∗ s izeof (double)

) ;
176

x1 [0] [0] [0] = time ; x1 [0] [0] [1] =E(v [0] ,m[0]) ;
x1 [1] [0] [0] = time ; x1 [1] [0] [1] =L(v [0] ,m[0]) ;

for (int i =0; i<N/2 ; i++){
x1 [i +2] [0] [0]= v [0] [2 ∗ i] ;

181 x1 [i +2] [0] [1]= v [0] [2 ∗ i +1] ;
}

for (int n=0;n<N/2 ; n++){
for (int m=0;m<mp1 ;m++){

x2 [n] [m] [0]= v [m+1] [2∗n] ;
186 x2 [n] [m] [1]= v [m+1] [2∗n+1] ;

}
}

}

191 void SaveState () {
for (int i =0; i<2∗N; i++) vin [i]=v [0] [i] ;

}

196 void i n i t () {
I n i t i a l i z e (v ,m, x1 , x2 ,&time) ; // Just a l i t t l e wrapper to c a l l

from the menu
}

8.3. SIMULATING CHAOTIC MOTION 111

int main () {
201 int i , Paused=1, Step=1, Repeat=1, done=0, Adapt=1;

char s t r [1 0 0] ;
double Dt=0.01 ,DelT=0.01;

I n i t i a l i z e (v ,m, x1 , x2 ,&time) ;
206 Se tVer l e t () ;

DefineGraphN RxR (”Pos” ,&(v [0] [0]) ,&N02 ,NULL) ;
DefineGraphN RxR (”Vel” ,&(v [0] [N]) ,&N02 ,NULL) ;
for (i =0; i<NG; i++)

211 DefineGraphN RxR (GrName [i] ,&(x1 [i] [0] [0]) ,& s i z e ,NULL) ;
for (i =0; i<N/2 ; i++)

DefineGraphN RxR (Gr2Name [i] ,&(x2 [i] [0] [0]) ,&mp1,NULL) ;

StartMenu (”Two c e l e s t i a l bod ie s ” ,1) ;
216 DefineDouble (”G”,&G) ;

StartMenu (” I n i t i a l State ” ,0) ;
for (i =0; i<N/2 ; i++){

s p r i n t f (s t r , ”m %i ” , i) ;
DefineDouble (s t r ,&m[0] [i]) ;

221 i f (i==2){ s p r i n t f (s t r , ”dm %i ” , i) ;
DefineDouble (s t r ,&dm[i]) ;}

s p r i n t f (s t r , ” x %i ” , i) ;
DefineDouble (s t r ,&vin [i ∗2]) ;
i f (i==2){ s p r i n t f (s t r , ”dx %i ” , i) ;

226 DefineDouble (s t r ,&dvin [i ∗2]) ;}
s p r i n t f (s t r , ” y %i ” , i) ;
DefineDouble (s t r ,&vin [i ∗2+1]) ;
i f (i==2){ s p r i n t f (s t r , ”dy %i ” , i) ;

DefineDouble (s t r ,&dvin [i ∗2+1]) ;}
231 s p r i n t f (s t r , ”Vx %i ” , i) ;

DefineDouble (s t r ,&vin [N+i ∗2]) ;
i f (i==2){ s p r i n t f (s t r , ”dVx %i ” , i) ;

DefineDouble (s t r ,&dvin [N+i ∗2]) ;}
s p r i n t f (s t r , ”Vy %i ” , i) ;

236 DefineDouble (s t r ,&vin [N+i ∗2+1]) ;
i f (i==2){ s p r i n t f (s t r , ”dVy %i ” , i) ;

DefineDouble (s t r ,&dvin [N+i ∗2+1]) ;}
}
Def ineBool (”Random I n i t i a l s t a t e s ” ,&RandIn i t i a l) ;

112 CHAPTER 8. PLANETARY MOTION

241 DefineMod (”# of I n i t i a l po in t s ” ,&mp1,M) ;
Def ineFunct ion (” SaveState ” ,&SaveState) ;
Def ineFunct ion (” R e i n i t i a l i z e ” ,& i n i t) ;
EndMenu() ;
DefineGraph (curve2d , ”Graph”) ;

246 Def ineFunct ion (”Set Euler ” ,&SetEuler) ;
Def ineFunct ion (”Set Ver l e t ” ,&SetVer l e t) ;
DefineDouble (” time” ,&time) ;
DefineDouble (”Dt” ,&Dt) ;
DefineDouble (”DelT” ,&DelT) ;

251 DefineDouble (”Eps” ,&Eps) ;
Def ineBool (”Adapt” ,&Adapt) ;
De f ine In t (”Repeat” ,&Repeat) ;
Def ineBool (”Step” ,&Step) ;
Def ineBool (”Paused” ,&Paused) ;

256 Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

Events (1) ;
DrawGraphs () ;

261 i f (! Paused | | ! Step){
Step=1;
for (int n=0;n<mp1+1;n++){

for (double dtime=0;dtime<DelT ; dtime+=Dt){
i f (Adapt) Dt=TimeStep (v [n]) ;

266 i f (dtime+Dt>DelT) Dt=DelT−dtime ;
I t e r a t e (v [n] ,m[n] , Dt) ;

}
}
time+=DelT ;

271 AnalyzeData (v ,m, x1 , x2 , time) ;
}
else s l e e p (1) ;

}
}

The key features of this program are that we now have an array of state vectors
(line 13). Also we define a level of confidence for the initial state vector. In the initial
conditions are now set for all these state vectors in the function Initialize. There are
two methods: We use random initial conditions (line 136) if the value of RandInitial
is not zero. To accomplish this we use the random function rand48(), which returns a
double value between 0 and 1. Or we will set the initial values on the corners of the
hyper-cube. Since a high-dimensional hyper-cube has many values we will eventually

8.3. SIMULATING CHAOTIC MOTION 113

need more points than we reasonably can (which is why we also introduced the random
initial values, which do not suffer from this discrepancy.

In the main routine (line 260) we now loop additionally over all ensembles (i.e. our
loop over m), can call the TimeStep(), and Iterate() routines with all relevant state
vectors.

There is a small subtlety: for the first time we allow a variable number of points to
be displayed. This is done on line 210, where we have the number of ensembles mp1.
This number is accessible through the menu due to the entry in line 238. We used a
new kind of variable DefineMod. What this means that in this case we have an integer
that can take on the values between 0 and M. If someone were to enter a larger number
n > M (which would likely crash the program) the GUI will replace the number with
n%M .

Another subtlety involves realizing that with variable step sizes, the different ensem-
bles will be at different times after the same number of steps. Therefore I replaced the
Repeat variable with DelT variable that gives the time intervals that are iterated to until
we look at the graphics again and call a routine that examines events (i.e. notices that
someone clicked the menu and wants to interact with the program). This ensures that
we compare the positions of the planets in the different ensembles at the same times.

Now we should examine some examples. Let us consider the scattering situation
of Figure 8.7. We now set the initial condition at x2 = 0.7, but for the third particle
(with index 2) we allow for a variation of 0.001 on the positions, the velocity and the
mass. For this simulation we leave the coordinates of the other particles unchanged. We
then initiated 9 state vectors with random initial conditions within the allowed range of
0.001 in dimensionless units and examine the evolution of the system. Initially there is
little difference between the different ensembles, as should be expected. This is shown
in Figure 8.9.

Even after the blue particle has scattered for the first time and the green particle it
originally scattered with interacted again with the red particle, the introduced scatter
remains small and all ensembles follow a very similar trajectory. This is shown in Figure
8.9(b). After two more scattering events at time t = 0.527 there is still a coherent swarm
of ensembles, but thy clearly start to diverge.

The further evolution of our system is now shown in Figure 8.10. Even at time
t = 0.738 the positions of the Ensembles form a clearly coherent bunch, giving you an
estimate of your likely error due to your uncertainty regarding the initial conditions. At
time t = 0.908 we see that the positions of the green particle in the different ensembles
now can be found in two separate patches. If we had included more particles it is likely
that our “probability cloud” would not be disjointed, but would remain connected. At
this point it is clear that we would need a much large number of ensemble points to get a
decent representation of the probability distribution of the particle positions consistent
with the uncertainty of our knowledge of the initial conditions.

By time t = 0.58 some ensembles are still undergoing a scattering process, others
have disengaged (like the sample system for which we are drawing the trajectories) into

114 CHAPTER 8. PLANETARY MOTION

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7y

-1.32-1.31-1.30-1.29-1.28-1.27-1.26-1.25
x

2.670

2.675

2.680

2.685

2.690

2.695y

-1.32-1.31-1.30-1.29-1.28-1.27-1.26-1.25
x

2.670

2.675

2.680

2.685

2.690

2.695y

-1.32-1.31-1.30-1.29-1.28-1.27-1.26-1.25
x

2.670

2.675

2.680

2.685

2.690

2.695y

(a) t=0.291

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9y

-1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9y

-1.40-1.38-1.36-1.34-1.32-1.30-1.28-1.26-1.24-1.22
x

2.65

2.70

2.75

2.80

2.85

2.90

2.95
y

-1.40-1.38-1.36-1.34-1.32-1.30-1.28-1.26-1.24-1.22
x

2.65

2.70

2.75

2.80

2.85

2.90

2.95
y

-1.40-1.38-1.36-1.34-1.32-1.30-1.28-1.26-1.24-1.22
x

2.65

2.70

2.75

2.80

2.85

2.90

2.95
y

(b) t=0.405

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9y

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9y

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9y

-1.50 -1.45 -1.40 -1.35 -1.30
x

2.78

2.80

2.82

2.84

2.86

2.88

2.90y

-1.50 -1.45 -1.40 -1.35 -1.30
x

2.78

2.80

2.82

2.84

2.86

2.88

2.90y

-1.50 -1.45 -1.40 -1.35 -1.30
x

2.78

2.80

2.82

2.84

2.86

2.88

2.90y

(c) t=0.527

Figure 8.9: Scattering experiment for initial conditions given in Table 8.7 with the ex-
ception of x2 = 0.7. Nine different ensembles with a scattering of 0.001 (in dimensionless
units) for position, velocity and mass of the third (blue) particle are shown. We see that
initially very little scattering is visible but the ensembles diverge as time goes on.

8.3. SIMULATING CHAOTIC MOTION 115

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
y

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
y

-1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
x

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
y

-1.56-1.54-1.52-1.50-1.48-1.46-1.44-1.42-1.40
x

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

y

-1.56-1.54-1.52-1.50-1.48-1.46-1.44-1.42-1.40
x

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

y

-1.56-1.54-1.52-1.50-1.48-1.46-1.44-1.42-1.40
x

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

y

(a) t=0.738

-1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.6 -1.4 -1.2 -1.0 -0.8
x

2.2

2.4

2.6

2.8

3.0

3.2y

-1.65 -1.60 -1.55 -1.50 -1.45
x

2.9

3.0

3.1

3.2

y

-1.65 -1.60 -1.55 -1.50 -1.45
x

2.9

3.0

3.1

3.2

y

-1.65 -1.60 -1.55 -1.50 -1.45
x

2.9

3.0

3.1

3.2

y

(b) t=0.908

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5y

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5y

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5y

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5y

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5y

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5y

(c) t=1.58

Figure 8.10: Same as Figure 8.9, but at later times. We see that at the last time the
ensembles have lost most of their original correlation.

116 CHAPTER 8. PLANETARY MOTION

-0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0
y

-0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0
y

-0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0
y

Figure 8.11: Example of non-trivial periodic motion in the three body problem. The
parameters for this simulation are given in Table 8.8.

a single scattered particle and a pair of particles orbiting each other.
Note: From our previous numerical experiments one may expect that all three

particle systems exhibit chaotic motion. However, this is not always the case. A fun
example is shown in Figure 8.11, with parameters similar to the ones we used for the
sun-earth-moon system of Figure 8.4, except that the light body (with the blue trace)
is a factor of 100 times less massive. The trajectory of the light body is now a spiral
which repeats after rounding the heavy “sun” in the middle twice, only with a specific
new incline angle. At this point I happened to come across this interesting configuration
after playing with the program for a while.

Problems

8.3.1: Use the MD-ensemble.c program to simulate a two-particle system with a cer-
tain amount of uncertainty in the initial conditions. What do you observe about
the divergence of ensembles with different initial conditions?

8.3.2: Use the same program to simulate a three-particle system of your choice. Does

8.4. PLANETS WITH INTERNAL STRUCTURE 117

m0 x0 y0 vx0 vy0
100 0 0 -0.1 0
m1 x1 y1 vx1 vy1
1 0 1 10 0

m2 x2 y2 vx2 vy2
0.001 0 1.2 2 0

Table 8.8: Initial conditions for the three planets shown in Figure 8.11.

the divergence behavior of the system appear to change?

8.3.3: To be a bit more quantitative in the analysis above, consider what is a good
quantitative measure of the observed divergence of the ensembles. Use the measure
you devise to calculate the divergence of the different ensembles in the two systems
you examined above. You will want to create a new graph by increasing NG, thereby
introducing another entry in the x1 array and making sure that you include the
new name in the GrName[NG] array.

8.3.4: The observation in the last note gives rise to an interesting observation: the
trajectory in Fig. 8.11 shows a clear double periodicity. Can you quantify the
periodicity? Once you have done this do a plot (similar to the plot in the bunny
graph) of the local minima of the distance as a function of the initial velocity of
the light object. For your initial conditions use a window around the initial values
given in Table 8.8. Use this to identify the window in which we have a stable
configuration and give an idea for what causes unstable orbits or planet ejections.
Hint: I recommend following the suggestion Tyler made in class regarding finding
the minimal distance: simply follow the distances of the two lighter objects and
once this distance has gone through a minimum simply record that distance.

8.4 Planets with internal structure

So far we have treated our celestial bodies as point particles. That misses important
structure: the particles can hardly ever collide, there are no tidal forces and no means
to dissipate energy. For many fundamental problems, like the formation of a planets in
a solar system, or even the slowing down of a moon circulating around a planet due to
the tidal forces are not accessible in such a system.

We discussed that we wanted to simulate the effect of tides. However, how should
one model such an extended planet? There are many discussions that treat the planet
basically as a fluid drop which has a viscosity and reacts to the gravitational interaction
with another celestial object. However, such treatments are not simple and while it is
possible to obtain analytical solutions in simple cases, it is not so easy to write out these
forces in all generality.

118 CHAPTER 8. PLANETARY MOTION

1 2 3 4 5

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

Figure 8.12: Potential for our gravitationally interacting particles with a repulsive core.

Having thought about this problem for a while I decided that we should at least
try to take a computational approach to the problem and see how far we can get with
this. We could imagine our planet to be made up of a set of mass blocks that show
gravitational attraction up to a distance given by their radius, but then show a repulsive
interaction that will prevent them from collapsing into each other. We achieve this by
altering the potential of these particles so that they are repulsive at short distances.

A possible example of such a potential that behaves like 1/r at short distances but
becomes repulsive at short distances would be

V (r) = Gm1m2

(

r30
4r4

− 1

r

)

. (8.19)

This potential is graphed in Figure 8.12. This potential has a very special distance: at
a distance of r0 there is a minimum in the potential, so it becomes possible for particles
to aggregate and find an equilibrium position. This is easily seen: the requirement for
an equilibrium position is

0 =
dV (r)

dr
(8.20)

= Gm1m2

(

−r30
r5

+
1

r2

)

(8.21)

⇔ 1 =
r30
r3

(8.22)

⇔ r = r0 (8.23)

(8.24)

Numerically this is easily achieved. We simply change the interaction force between

8.4. PLANETS WITH INTERNAL STRUCTURE 119

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x

-0.2

-0.1

0.0

0.1

0.2

0.3y

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x

-0.2

-0.1

0.0

0.1

0.2

0.3y

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
x

-0.2

-0.1

0.0

0.1

0.2

0.3y

Figure 8.13: The trajectories of 6 particles set up on a triangular lattice initially. They
do not settle down to a nice equilibrium shape and continue to move since there is no
dissipation that would allow them to settle down.

120 CHAPTER 8. PLANETARY MOTION

the particles to

F1,2 = −Gm1m2

(

− r30
r61,2

+
1

r31,2

)

r1,2. (8.25)

When we run a simulation with a number of particles packed closely together at a dis-
tance of the distance r0 = 0.1, we see particles busily moving around. Firstly, the reason
that the particles are moving around comes from the additional attractive interaction of
the particles with other particles that are not their nearest neighbours. So the particles
are spaced a little bit too far for their true equilibrium position. This extra energy
induces oscillatory motion. Initially this motion is along the lines that they system
symmetry requires. However, afte a while numerical errors add up, and this symmetric
solution becomes unstable. Instead the particles start to undergo a new kind of motion
that has a “noisy” feel to it. In fact the particle move in a way that seems appropriate
for the thermal motion of Atoms. An example of this is shown in Figure 8.13.

However, this motion does not seem reasonable for parts of a planet. So what is
missing in our description, if we imagine the particles to represent parts of a planet? If
you imagine that these planet-parts are moving relative to each other we would expect
that there is some friction that will eventually bring these particles to rest. This friction
will be (at least approximately) proportional to their relative velocity. So now we need
to model a velocity dependent friction force.

This should sound familiar, since we introduced something similar when we consid-
ered a baseball flying with air resistance. In this case we would only want to have a
friction force if the particles are close together, but the friction force should vanish when
the particles are separating from each other.

Since we are making some very general assumptions here, we can introduce a velocity
dependent friction force. What form does such a force take? To give a well founded
answer to this problem we would need to carefully analyze the dynamics of an extended
planetary body. That is an extremely difficult task and will depend strongly on its
internal composition. A rocky planet will have a very different behavior from a gaseous
giant. If we are interested in a generic phenomenon only, however, we can try to develop
a minimal model that jut includes enough of the Physical phenomena to allow us to see
the effects of tidal interactions. So we can assume that the friction force becomes larger if
the “planet parts” that are represented by our particles are closer together. Furthermore
the force should be proportional to the relative velocity of the two particles. For the
friction force F̂ between particle i and j we can then choose

F̂i,j = Max

{

1− 1

r1
, 0

}

η (vj − vi) (8.26)

where η is a friction coefficient and r1 is the cut-off radius for the frictional particle
interaction.

When we put this into the code we see that the thermal motion does indeed stop.
Now we can test this code for a rotating planet, and this is when we find a surprise: the
“planet” stops rotating! Why is this happening?

8.4. PLANETS WITH INTERNAL STRUCTURE 121

It is not unusual, when devising a simulation, to run into this kind of problem. So it
is worth while to spend a moment to consider how one should react in such a situation.

My first instinct is to note that the behavior of this sytem clearly violates angular
momentum conservation. So why does this system violate angular momentum con-
servation? To answer this question it is a good idea to recall why we expect angular
momentum conservation in the first place. When you look back to your introductory
mechanics you will find that angular momentum conservation is prooved fro system that
only have central forces between point particles, i.e. forces that do not apply to torque.
In our cas the potential interaction force of equation (8.25) is exactly of that form.
However, our ad-hoc friction force of equation (8.26) does not have this form. Here the
friction force does apply a torque!

At first glance this appears to be an insurmountable problem: if we don’t have a
friction force that is applied to particles moving sideways with respect to each other,
then it is not a physical friction force. So how can we make this more physical?

To answer this question let us consider the simple case of two particles: If they
are simply rotating around each other, there should be no friction force, but if they
are passing by each other there should be a friction force. However, this is a difficult
proposition as the situations look exactly the same as far as the friction forces are
concerned.

If we imagine the physical system the difference between the two situations is that
the particles are rotating in the case where they are moving around each other and they
are not rotating in the case where they are just passing by each other. But in the case
of our point-particles, we can’t keep track of that difference.

So what is needed to resolve this situation is to include the angular momentum of the
particle in the simulation. In a two-dimensional case the angular momentum is always in
the direction orthogonal to the plane, so we need a single number to encode the angular
momentum. In a three-dimensional case the angular momentum is a (pseudo-)vector,
so we need to keep track or three components of the angular momentum.

Now we need to consider the angular momentum of our particles when we calculate
the friction force. In equation (8.26) we should now consider the velocity difference of
the velocity of the two rotating disks at the midpoint between the disks. This gives a
new friction force of the kind

F̂ i,j = Max

{

1− 1

r1
, 0

}

η
[(

vj + ωj ×
rj,i

2

)

−
(

vi + ωi ×
ri,j

2

)]

(8.27)

To update the angular momenta Li of the two particles we need to additionally calculate
the torques they applying on each other. The torques for this simple interaction between
two particles are given by

τ i = −F̂ i,j ×
ri,j

2
(8.28)

τ j = τ i. (8.29)

122 CHAPTER 8. PLANETARY MOTION

Now let us consider if this satisfies the condition of angular momentum conservation.
The change in angular momentum ∆L, obtained from the forcing terms in eqn. (8.27),
is given by

∆L
part = F̂ i,j × ri,j∆t (8.30)

The internal angular momentum is changed by

∆L
int = (τ i + τ j)∆t = −∆L

part (8.31)

so that the angular momentum of the point particles that is destroyed through the
friction force is added symmetrically to the internal angular momentum of each particle.

This needs to be put into the code. Here is the modified code version:

Listing 8.5: MD-rep2.c

#include <s t d i o . h>
#include <s t r i n g . h>
#include <un i s td . h>
#include <mygraph . h>

5 #include <math . h>

#define pi 3.14159265358979323846264338327950288419716939937

#define N 14 /∗ Number o f coord ina t e s (or momenta) ∗/
10 #define Nplanet 6 /∗ number o f p l an e t o i d par t s ∗/

double v [N∗2+N/2] , v in [N∗2+N/ 2] ; /∗ The s t a t e v e c t o r o f the
system , i n i t i a l s t a t e ∗/

/∗ We de f i n e a genera l s t a t e v e c t o r c on s i s t i n g o f N coord ina t e s
q and N momenta p . I t reads (q1 , q2 , , . . . , qN , p1 , p2 , . . . pN) . ∗/

double m[N/2] ,MI [N/2] ,G=1, r0 =0.1 , r1 =0.2 , eta=0;
int N02=N/2 ; /∗ Needed f o r the g raph i c s l i b r a r y ∗/

15 double Eps=1e−5;

#define NG1 8
#define NG NG1+N/2 /∗ Graphs f o r d i s p l a y : Could be anyth ing E(t

) , L(t) . . ∗/
#define MEM 1000

20 double x1 [NG] [MEM] [2] ;
char ∗GrName [NG]={” (t ,E) ” , ” (t , L orb) ” , ” (t , L in t) ” , ” (t , L tot) ” , ”

(t , lam1) ” , ” (t , lam2) ” , ” (t , t e t) ” , ” (t , tetM) ” , ” (x1 , y1) ” , ” (x2 , y2)
” , ” (x3 , y3) ” , ” (x4 , y4) ” , ” (x5 , y5) ” , ” (x6 , y6) ” , ” (x7 , y7) ” } ; //
needs to be more genera l . . .

int s i z e=MEM;
double time=0, i t e r a t i o n s =0;

8.4. PLANETS WITH INTERNAL STRUCTURE 123

25 /∗ S ta t e s : we now have N/2 p a r t i c l e s in two dimensions ∗/

void FF(double v [N∗2+N/2] , double F[N+N/2]) {
double rx , ry , rabs , vx , vy , Ft , Fx , Fy ;
int i , j ;

30
memset(&(F [0]) , 0 , (N+N/2)∗ s izeof (double)) ; /∗ s e t the F array

to zero ∗/

for (i =0; i<N/2 ; i++){
for (j=i +1; j<N/2 ; j++){

35 rx=v [i ∗2]−v [j ∗ 2] ;
ry=v [i ∗2+1]−v [j ∗2+1] ;
rabs=sq r t (pow(rx , 2)+pow(ry , 2)) ;
Ft=−G∗m[i]∗m[j]∗(−pow(r0 , 3) /pow(rabs , 6)+1/pow(rabs , 3)) ;
Fx=Ft∗ rx ;

40 Fy=Ft∗ ry ;
i f (rabs<r1){

vx=(v [N+j ∗2]−v [2∗N+j]∗ ry /2)−(v [N+i ∗2]+v [2∗N+i]∗ ry
/2) ;

vy=(v [N+j ∗2+1]+v [2∗N+j]∗ rx /2)−(v [N+i ∗2+1]−v [2∗N+i]∗ rx
/2) ;

Fx+=(1−rabs / r1)∗ eta ∗vx ;
45 Fy+=(1−rabs / r1)∗ eta ∗vy ;

F [N+i]+=0.5∗(Fx∗ry−Fy∗ rx) ;
F [N+j]+=0.5∗(Fx∗ry−Fy∗ rx) ;

}

50 F [i ∗2]+=Fx ;
F [i ∗2+1]+=Fy ;
F [j ∗2]−=Fx ;
F [j ∗2+1]−=Fy ;

}
55 }

}

double TimeStep (double v [N∗2+N/2]) { // f o r g r a v i t a t i o n a l
i n t e r a c t i o n

int i , j ;
60 double rabs=1e38 , vabs=1e−4, t ;

for (i =0; i<N/2 ; i++){

124 CHAPTER 8. PLANETARY MOTION

t=pow(v [N+i ∗2] , 2)+pow(v [N+i ∗2+1] ,2) ;
i f (t>vabs) vabs=t ;

65 for (j=i +1; j<N/2 ; j++){
t=pow(v [i ∗2]−v [j ∗2] , 2)+pow(v [i ∗2+1]−v [j ∗2+1] ,2) ;
i f (t<rabs) rabs=t ;

}
}

70 return Eps∗ s q r t (rabs /vabs) ;
}

void (∗ I t e r a t e) (double v [N∗2+N/2] , double Dt)=NULL;
75

void I t e r a t eEu l e r (double v [N∗2+N/2] , double Dt){
double F[N+N/ 2] ;
int i ;
FF(v ,F) ;

80 for (i =0; i<N; i++){
v [i]+=v [N+i]∗Dt ;
v [N+i]+=F[i]∗Dt/m[i / 2] ;

}
for (i =0; i<N/2 ; i++){

85 v [2∗N+i]+=F[N+i]∗Dt/MI [i] ;
}

}

void I t e r a t eV e r l e t (double v [N∗2+N/2] , double Dt){
90 double F[N+N/2] ,Fn [N+N/ 2] ;

int i ;

FF(v ,F) ;
for (i =0; i<N; i++){

95 v [i]+=(v [N+i]+0.5∗F[i] /m[i /2]∗Dt)∗Dt ;
}
for (i =0; i<N; i++){

v [N+i]+=F[i] ∗Dt/m[i / 2] ;
}

100 for (i =0; i<N/2 ; i++){
v [2∗N+i]+=F[N+i] ∗Dt/MI [i] ;

}
FF(v , Fn) ; /∗ assuming t ha t f o r c e s do depend on v e l o c i t y ∗/
for (i =0; i<N; i++){

8.4. PLANETS WITH INTERNAL STRUCTURE 125

105 v [N+i]+=0.5∗(−F[i]+Fn [i]) ∗Dt/m[i / 2] ;
}
for (i =0; i<N/2 ; i++){

v [2∗N+i]+=0.5∗(−F[N+i]+Fn [N+i]) ∗Dt/MI [i] ;
}

110 }

void SetEuler () {
I t e r a t e = &I t e r a t eEu l e r ;

}
115

void SetVer l e t () {
I t e r a t e = &I t e r a t eV e r l e t ;

}

120 double E(double v [N∗2+N/2]) {
double Eret=0, rx , ry , rabs ;
int i , j ;

for (i =0; i<N/2 ; i++){
125 Eret+=0.5∗m[i] ∗ (pow(v [N+2∗ i] , 2)+pow(v [N+2∗ i +1] ,2))

+0.5∗MI[i]∗pow(v [2∗N+i] , 2) ;
for (j=i +1; j<N/2 ; j++){

rx=v [i ∗2]−v [j ∗ 2] ;
ry=v [i ∗2+1]−v [j ∗2+1] ;

130 rabs=sq r t (pow(rx , 2)+pow(ry , 2)) ;
Eret+=−G∗m[i]∗m[j]∗(−pow(r0 , 3) /(4∗pow(rabs , 4))+1/pow(rabs

, 1)) ;
}

}
return Eret ;

135 }

double L(double v [N∗2+N/2] , int type){
double Lzret=0;
int i ;

140 for (i =0; i<N/2 ; i++){
switch (type){
case 0 : Lzret+=m[i] ∗ (v [i ∗2]∗v [N+i ∗2+1]−v [i ∗2+1]∗v [N+i ∗2]) ;

break ;
case 1 : Lzret+=MI [i]∗ v [2∗N+i] ;

145 break ;

126 CHAPTER 8. PLANETARY MOTION

case 2 : Lzret+=m[i] ∗ (v [i ∗2]∗v [N+i ∗2+1]−v [i ∗2+1]∗v [N+i ∗2])+
MI [i]∗ v [2∗N+i] ;
break ;

}
}

150 return Lzret ;
}

double PlanetMoments (double v [N∗2+N/2] ,double ∗ lam1 , double ∗
lam2 , double ∗ t e t){

double M=0,X[2]={0 ,0} , xx=0,xy=0,yy=0;
155 int i ;

for (i =0; i<Nplanet ; i++){
M+=m[i] ;
X[0]+=m[i]∗ v [2∗ i] ;
X[1]+=m[i]∗ v [2∗ i +1] ;

160 xx+=m[i]∗ v [2∗ i]∗ v [2∗ i] ;
xy+=m[i]∗ v [2∗ i]∗ v [2∗ i +1] ;
yy+=m[i]∗ v [2∗ i +1]∗v [2∗ i +1] ;

}
X[0]/=M;

165 X[1]/=M;
xx/=M; xy/=M; yy/=M;
xx−=X[0] ∗X[0] ;
xy−=X[0] ∗X[1] ;
yy−=X[1] ∗X[1] ;

170 ∗ lam1=0.5∗(xx+yy)+sq r t (pow (0 . 5∗ (xx−yy) ,2)+pow(xy , 2)) ;
∗ lam2=0.5∗(xx+yy)−s q r t (pow (0 . 5∗ (xx−yy) ,2)+pow(xy , 2)) ;
∗ t e t=atan2 (xy , xx−∗lam2) ;
i f (∗ tet <0) ∗ t e t+=M PI ;

}
175

void RemoveCMvel (double v [N∗2+N/2]) {
double px=0,py=0,M=0;
for (int i =0; i<N/2 ; i++){

px+=m[i]∗ v [N+2∗ i] ;
180 py+=m[i]∗ v [N+2∗ i +1] ;

M+=m[i] ;
}
px/=M;
py/=M;

185 for (int i =0; i<N/2 ; i++){

8.4. PLANETS WITH INTERNAL STRUCTURE 127

v [N+2∗ i]−=px ;
v [N+2∗ i+1]−=py ;

}
}

190
void SetVin (double vin [N∗2+N/2]) {

for (int i =0; i <3; i++){
m[i]=1;
vin [i ∗2]= r0∗ i ;

195 vin [i ∗2+1]=0;
vin [N+i ∗2]= vin [N+i ∗2+1]=0;
MI [i]=2 ./5 .∗m[i]∗pow (0 . 5∗ (r0+r1) ,2) ;
v in [2∗N+i]=0;

}
200 for (int i =3; i <5; i++){

m[i]=1;
vin [i ∗2]=(i −2.5)∗ r0 ;
v in [i ∗2+1]= sq r t (3 . / 4 .) ∗ r0 ;
v in [N+i ∗2]= vin [N+i ∗2+1]=0;

205 MI [i]=2 ./5 .∗m[i]∗pow (0 . 5∗ (r0+r1) ,2) ;
v in [2∗N+i]=0;

}
for (int i =5; i <6; i++){
m[i]=1;

210 vin [i ∗2]=(i −4)∗ r0 ;
v in [i ∗2+1]=2∗ s q r t (3 . / 4 .) ∗ r0 ;
v in [N+i ∗2]= vin [N+i ∗2+1]=0;
MI [i]=2 ./5 .∗m[i]∗pow (0 . 5∗ (r0+r1) ,2) ;
v in [2∗N+i]=0;

215 }
for (int i =6; i <7; i++){
m[i]=1;
vin [i ∗2]=(i −4)∗ r0 ;
v in [i ∗2+1]=10∗ s q r t (3 . / 4 .) ∗ r0 ;

220 vin [N+i ∗2]= 3 ;
vin [N+i ∗2+1]=0;
MI [i]=2 ./5 .∗m[i]∗pow (0 . 5∗ (r0+r1) ,2) ;
v in [2∗N+i]=0;

}
225 RemoveCMvel (vin) ;

}

128 CHAPTER 8. PLANETARY MOTION

void I n i t i a l i z e (double v [N∗2+N/2] ,double x [NG] [MEM] [2] , double ∗
time){
int i , j ;

230 double l1 , l2 , t ;
∗ time = 0 ;

for (i =0; i<2∗N+N/2 ; i++) v [i]=vin [i] ;

235 /∗ I n i t i a l i z e the g raph i c s v a r i a b l e s ∗/
for (int i =0; i<s i z e ; i++){

x [0] [i] [0]=∗ time ; x [0] [i] [1]=E(v) ;
x [1] [i] [0]=∗ time ; x [1] [i] [1]=L(v , 0) ;
x [2] [i] [0]=∗ time ; x [2] [i] [1]=L(v , 1) ;

240 x [3] [i] [0]=∗ time ; x [3] [i] [1]=L(v , 2) ;
PlanetMoments (v,& l1 ,& l2 ,& t) ;
x [4] [i] [0]=∗ time ; x [4] [i] [1]= l 1 ;
x [5] [i] [0]=∗ time ; x [5] [i] [1]= l 2 ;
x [6] [i] [0]=∗ time ; x [6] [i] [1]= t ;

245 x [7] [i] [0]=∗ time ; x [7] [i] [1]= atan2 (v [N−1] ,v [N−2]) ;

for (j =0; j<N/2 ; j++){
for (int k=0;k<s i z e ; k++){

x [j+NG1] [k] [0]= v [2∗ j] ;
250 x [j+NG1] [k] [1]= v [2∗ j +1] ;

}
}

}
}

255
void AnalyzeData (double v [N∗2] ,double x [NG] [s i z e] [2] , double

time){
double l1 , l2 , t ,Xcm=0,Ycm=0,M=0;
for (int i =0; i<NG; i++) // move data po in t s back in g raph i c s

array
memmove(&x [i] [1] [0] , & x [i] [0] [0] , (s i z e −1)∗2∗ s izeof (double)) ;

260
for (int i =0; i<N/2 ; i++){

Xcm+= m[i]∗ v [2∗ i] ;
Ycm+= m[i]∗ v [2∗ i +1] ;
M+= m[i] ;

265 }
Xcm/=M; Ycm/=M;

8.4. PLANETS WITH INTERNAL STRUCTURE 129

x [0] [0] [0] = time ; x [0] [0] [1] =E(v) ;
x [1] [0] [0] = time ; x [1] [0] [1] =L(v , 0) ;

270 x [2] [0] [0] = time ; x [2] [0] [1] =L(v , 1) ;
x [3] [0] [0] = time ; x [3] [0] [1] =L(v , 2) ;
PlanetMoments (v,& l1 ,& l2 ,& t) ;
x [4] [0] [0] = time ; x [4] [0] [1] = l 1 ;
x [5] [0] [0] = time ; x [5] [0] [1] = l 2 ;

275 x [6] [0] [0] = time ; x [6] [0] [1] = t ;
x [7] [0] [0] = time ; x [7] [0] [1] = atan2 (v [N−1]−Ycm, v [N−2]−Xcm) ;
for (int i =0; i<N/2 ; i++){

x [i+NG1] [0] [0] = v [2∗ i] ;
x [i+NG1] [0] [1] = v [2∗ i +1] ;

280 }
}

void SaveState () {
for (int i =0; i<2∗N+N/2 ; i++) vin [i]=v [i] ;

285 }

void i n i t () {
I n i t i a l i z e (v , x1 ,&time) ; // Just a l i t t l e wrapper to c a l l from

the menu
290 }

int main () {
int i , Paused=1, Step=1, Repeat=1, done=0, Adapt=1;
char s t r [1 0 0] ;

295 double Dt=0.01;

SetVin (vin) ;
I n i t i a l i z e (v , x1 ,&time) ;
Se tVer l e t () ;

300
SetDefau l tCo lor (2) ;
SetDefaultLineType (0) ;
SetDefaultShape (4) ;
S e tDe f au l tS i z e (8) ;

305 S e tDe f a u l tF i l l (1) ;
DefineGraphN RxR (”Pos” ,&v [0] ,&N02 ,NULL) ;
DefineGraphN RxR (”Vel” ,&v [N] ,&N02 ,NULL) ;

130 CHAPTER 8. PLANETARY MOTION

for (i =0; i<NG; i++){
SetDefau l tCo lor (i +2) ;

310 SetDefaultShape (0) ;
SetDefaultLineType (1) ;
S e tDe f a u l tF i l l (0) ;
DefineGraphN RxR (GrName [i] ,&(x1 [i] [0] [0]) ,& s i z e ,NULL) ;

}
315 StartMenu (”Mult ip l e c e l e s t i a l bod ie s ” ,1) ;

DefineDouble (”G”,&G) ;
DefineDouble (” r0 ” ,&r0) ;
DefineDouble (” r1 ” ,&r1) ;
DefineDouble (” eta ” ,& eta) ;

320 StartMenu (” I n i t i a l State ” ,0) ;
for (i =0; i<N/2 ; i++){

s p r i n t f (s t r , ”m %i ” , i) ;
DefineDouble (s t r ,&m[i]) ;
s p r i n t f (s t r , ” x %i ” , i) ;

325 DefineDouble (s t r ,&vin [i ∗2]) ;
s p r i n t f (s t r , ” y %i ” , i) ;
DefineDouble (s t r ,&vin [i ∗2+1]) ;
s p r i n t f (s t r , ”Vx %i ” , i) ;
DefineDouble (s t r ,&vin [N+i ∗2]) ;

330 s p r i n t f (s t r , ”Vy %i ” , i) ;
DefineDouble (s t r ,&vin [N+i ∗2+1]) ;
s p r i n t f (s t r , ”Omega %i ” , i) ;
DefineDouble (s t r ,&vin [2∗N+i]) ;

}
335 Def ineFunct ion (” SaveState ” ,&SaveState) ;

Def ineFunct ion (” R e i n i t i a l i z e ” ,& i n i t) ;
EndMenu() ;
DefineGraph (curve2d , ”Graph”) ;
Def ineFunct ion (”Set Euler ” ,&SetEuler) ;

340 Def ineFunct ion (”Set Ver l e t ” ,&SetVer l e t) ;
DefineDouble (” time” ,&time) ;
DefineDouble (”Dt” ,&Dt) ;
DefineDouble (”Eps” ,&Eps) ;
Def ineBool (”Adapt” ,&Adapt) ;

345 De f ine In t (”Repeat” ,&Repeat) ;
Def ineBool (”Step” ,&Step) ;
Def ineBool (”Paused” ,&Paused) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;

8.4. PLANETS WITH INTERNAL STRUCTURE 131

350 while (! done){
Events (1) ;
DrawGraphs () ;
i f (! Paused | | ! Step){

Step=1;
355 for (int i =0; i<Repeat ; i++){

i f (Adapt) Dt=TimeStep (v) ;
time += Dt ;
I t e r a t e (v , Dt) ;

}
360 AnalyzeData (v , x1 , time) ;

}
else s l e e p (1) ;

}
}

Firstly we test that angular momentum is now conserved. (Add more text here).
We can now use this code to simulate a compound planet and the effect a circulating

moon has on this system. Some of the first results of such a simulation are shown in
Figure 8.14. The first observation we should make is that the effect of any tidal forces
is very small. There is a small increase in the orbital angular momentum of the system,
which obtains its value from the internal rotation of the planetary bits. This is mostly
an oscillatory process with a small drift, as one can see in the closeup in the second
graph. At the same time the energy of the system slowly decreases, consistent with a
small tidal friction. The configuration of the compound planet and its moon is shown
in the last panel.

When you see these results of your first simulation you should a) be elated that you
see the effect you were looking for, and b) be extremely wary about whether the effect
you see is real. The changes we see here are very small, not unlike some of the earlier
numerical errors we have seen. When you are confronted with a small effect, you have
to be extra-weary about what you actually see in your simulation.

Furthermore, the actual tides are not visible on our roughly discretized planet, so we
can’t directly observe the phenomenon. So if we want to seriously consider the problem
of tides, our work is just now beginning.

How can we see the tides in our compound planet? We would need to see that our
compound planet is no longer isotropic. A typical way of looking at deviations from the
spherical shape consists of looking at moments of the positions. In particular we can
find the center of mass as

X =

∑

i ximi
∑

i mi

(8.32)

where the sum is over all particles in the compound planet. However, we can also sum
over two coordinates to obtain a tensor. To write this down effectively we express the
vectors in terms of their coordinates and identify the coordinates by Greek indices. We

132 CHAPTER 8. PLANETARY MOTION

50 100 150 200
x

-26535

-26534

-26533

-26532

-26531

-26530
y

50 100 150 200
x

-26535

-26534

-26533

-26532

-26531

-26530
y

50 100 150 200
x

-26535

-26534

-26533

-26532

-26531

-26530
y

(a) Lorb(t)

220.0220.5221.0221.5222.0222.5223.0
x

-265311.0

-265310.5

-265310.0

-265309.5

-265309.0

-265308.5

-265308.0y

220.0220.5221.0221.5222.0222.5223.0
x

-265311.0

-265310.5

-265310.0

-265309.5

-265309.0

-265308.5

-265308.0y

220.0220.5221.0221.5222.0222.5223.0
x

-265311.0

-265310.5

-265310.0

-265309.5

-265309.0

-265308.5

-265308.0y

(b) Lorb(t)

50 100 150 200
x

-95.40

-95.35

-95.30

-95.25

y

50 100 150 200
x

-95.40

-95.35

-95.30

-95.25

y

50 100 150 200
x

-95.40

-95.35

-95.30

-95.25

y

(c) Lorb(t)

220.0220.5221.0221.5222.0222.5223.0
x

-9541198

-9541197

-9541196

-9541195

-9541194

y

220.0220.5221.0221.5222.0222.5223.0
x

-9541198

-9541197

-9541196

-9541195

-9541194

y

220.0220.5221.0221.5222.0222.5223.0
x

-9541198

-9541197

-9541196

-9541195

-9541194

y

(d) Lorb(t)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8y

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8y

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
x

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8y

(e) Planet configuration

Figure 8.14: First attempt at simulating tidal effects with our new code.

8.4. PLANETS WITH INTERNAL STRUCTURE 133

can write (8.32) as

Xα =

∑

i xiαmi
∑

i mi

(8.33)

So we can write for the tensor

Γαβ =

∑

i(xiα −Xα)(xiβ −Xβ)mi
∑

i mi

. (8.34)

By construction this tensor is symmetric, and a symmetric tensor has two real eigenval-
ues and two real eigenvectors. If the two eigenvalues are not identical, then we have a
non-isotropic drop. The eigenvectors give us information about the orientation of the
compound planet.

The eigenvectors are defined through the relation

Γαβeβ = λeβ (8.35)

and the number of eigenvectors is equal to the dimension of the matrix. From this we
can see that

(Γαβ − λδαβ)eβ = 0 (8.36)

The question we now need to answer is the following: for which values of λ does this
equation have a solution? The answer is that the matrix multiplying the eigenvector
has to be singular:

det(Γ− λ1) = 0 (8.37)

For our two-dimensional problem above this gives the so-called characteristic equation

(Γxx − λ)(Γyy − λ)− ΓxyΓyx = 0 (8.38)

λ2 − (Γxx + Γyy)λ+ ΓxxΓyy − ΓxyΓyx = 0 (8.39)

(8.40)

This quadratic equation has the solution

λ1,2 =
Γxx + Γyy

2
±
√

(Γxx + Γyy)2

4
− (ΓxxΓyy − ΓxyΓyx) (8.41)

=
Γxx + Γyy

2
±
√

(Γxx − Γyy)2

4
+ ΓxyΓyx (8.42)

Once we know the eigenvalues we can solve eqn. (8.35) for the eigenvectors. We get

(Γxx − λ)ex + Γxyey = 0 (8.43)

Γyxex + (Γyy − λ)ey = 0 (8.44)

(8.45)

134 CHAPTER 8. PLANETARY MOTION

Eigenvectors are only defined up to a factor, so we can define the vector as
(

ex
ey

)

=

(

Γxy

Γxx − λ1,2

)

(8.46)

Once we have the eigenvectors we know the orientation of the deformation of the com-
pound planet.

Since the eigenvectors are only defined up to a factor they can be inverted and still
be eigenvectors. This means that the angle we define here is only defined up to an
arbitrary addition of an angle of 180◦.

Now we can examine the angle of the moon, compared to the center of mass of the
planet/moon system, to the angle of the eigenvector of the planet. On first look the
two angles agree almost completely. Keep in mind that the angle of the eigenvector is
only defined up to an arbitrary multiple of π. If there is to be an exchange of angular
momentum between the planet and the moon, there has to be a difference in the two
angles. Otherwise there could not be a torque, due to the symmetry.

So we want to monitor the difference between the two angles, and for small angles
we expect the torque to be proportional to the difference between the two angles. This
raises a number of important questions: what happens if there is no friction? Can we
still transfer angular momentum between the moon and the planet? With friction, how
long will it take for the planet to rotate in sync with the moon?

It is important to keep in mind that this is only a very simple model for tidal effects.
However, we will be able to understand quite a bit of the basic physics from this simple
model.

Problems

8.4.1: Use the sample program (with minor additions) to measure the difference be-
tween the inclination angles for the deformation of the planet and the position of
the moon. Explain carefully how the different angles are measured and what the
importance of this difference is.

8.4.2: Now measure the total angular momentum of the planet. Does this angular
momentum change with time? Does the change of angular momentum depend on
the viscous friction force (i.e. η)? Why is that?

8.4.3: Assuming you found that the planet obtained angular momentum from the
moon, how long will it take for the planetary rotation and the rotation of the moon
to be the same? Try to make a simple model for this and test your prediction.

8.4.4: Now give the planet a large amount of angular momentum. How much angu-
lar momentum can your planet have before it disintegrates? Explain this limit
analytically.

8.5. DIFFUSION OF PARTICLES IN A BOX 135

8.5 Diffusion of particles in a box

So far we have considered particles that will attract each other with a gravitational
potential. Such a potential is considered to be “long ranged”. To see what long-ranged
means let us consider the following example: first let us consider material of a constant
density ρ1 making up object 1. This object interacts with another smaller body, which
we call object 2. Now when object 2 approaches object 1 it makes a big difference if
object 1 is big or small. This is so even though any additional mass of object 2 will
have to be further away. We can also make this quantitative: if the interaction between
object 1 and object 2 is purely gravitational we can express this analytically as

F 12 =
m1m2G

r312
r12 (8.47)

Now the distance between the two centers depends on the total mass on object 1: say R
is the distance between the center of object 2 to the surface of object 1, then r12 = R+r1,
where r1 is the radius of object 1. Now we have the relation:

m1 = ρ1V1 = ρ1
3

4
πr31 (8.48)

and therefore we have

r1 =

(

4m1

3πρ1

) 1

3

(8.49)

and for a given distance R the magnitude of the force is

F12 =
m1m2G

(R + r1)2
(8.50)

=
m1m2G

(

R + 3

√

4m1

3πρ1

)2
(8.51)

Now let us assume for simplicity that R is much smaller than r1. In fact, let us just put
it to zero to see what the force right at the surface of object 1 would be:

F12(R = 0) =
m

1/3
1 m2G(3πρ1)

2/3

42/3
(8.52)

What is important here is that the Force does not converge to a constant value, no
matter how big we make object 1. Another way of saying this is that we can never
neglect the interaction with objects that are some fixed distance away. This is why we
call forces with this property long-range.

A completely different example are the inter-atomic forces that keep molecules to-
gether. Imagine some liquid water. This water is held together by intermolecular forces.
Now if another small drop approaches the water-surface it will eventually be attracted

136 CHAPTER 8. PLANETARY MOTION

y
θ

Rε

r
F

Figure 8.15: Red object is sample that experiences force Fy from the blue substrate. The
force is long-ranged if the resulting force on the red object does not become independent
of R for large R.

and merge with the water surface. However, the force that accomplishes this only de-
pends on the local environment, and if you add much more water to the system this will
have not effect on the drops affinity to the water surface. These forces are what we call
short-ranged.

Mathematically we can distinguish between long and short range forces in the fol-
lowing way: let us consider a sample attracted by a large substrate, as shown in Figure
8.15. If the forces are long-range, like the gravitational forces we have been dealing
with, then the force the red sample is experiencing will increase as the big blue object
is increased in size.

However, many other forces don’t act in that way. Imagine the red object being a
bead that is about to interact with a mass of water. The bead will feel some force, once
it is close enough to the water, but that force will not depend on how much water there
is. So this raises the question: what distinguishes between long-ranged and short-ranged
forces? There are some simple cases, e.g. a potential that has a finite range will ensure
that there are no force contributions from any distance further away than that range.
But such forces are nonphysical.

Most force follows a power-law (or at least can be written as a sum of power con-
tributions). So let us assume that our particle, located at the origin interacts with
particles from the large mass. This large mass consists of many small particles, but we
can simplify this here and assume a continuum of particles, each interacting through a
pair-potential that follows a simple power-law

F1,2 = −rα1,2
r1,2

r1,2
(8.53)

Because the force can diverge for very small distances we will remove a bit of Material
from around the red object up to a distance ǫ. So now the blue material stretches in
a semi-sphere from the distance ǫ to the distance R. The question we want to answer

8.5. DIFFUSION OF PARTICLES IN A BOX 137

is: does the force on the red object converge to some constant, or does it continue to
increase?

For this very simple geometry it is not hard to calculate the force on the object. For
a two-dimensional object we get for the force

Fy(R) =

∫ R

r=ǫ

dr

∫ π

0

r dθ F 1,2 · êy (8.54)

=

∫ R

r=ǫ

dr

∫ π

0

r dθ rα (8.55)

= 2

∫ R

r=ǫ

dr (−rα+1) (8.56)

=
2

α + 2

[

−rα+2
]R

ǫ
(8.57)

=
2

α + 2
(ǫα+2 −Rα+2) (8.58)

Now if we consider the limit of large R we get

lim
R→∞

Fy(R) =

{

2ǫα+2

α+2
α < −2

−∞ α ≥ −2
(8.59)

So for a gravitational potential of α = −2 this does show that (for a two-dimensional
situation) the gravitational potential leads to a long-range force.

More realistically, however we should consider the three dimensional system. In that
case we can consider the equivalent system where the spherical cap now extends not
only in two dimensions, but in three instead. Mathematically this simply means that
we need to move from a polar coordinate system to a spherical coordinate system. This
introduces a new angle φ. We then get

Fy(R) =

∫ R

ǫ

dr

∫ π

0

r dθ

∫ 2π

0

r dφ F 1,2 · êy (8.60)

=

∫ R

r=ǫ

dr

∫ π

0

r dθ

∫ 2π

0

r dφ rα (8.61)

= 4π

∫ R

r=ǫ

dr (−rα+2) (8.62)

=
4π

α + 3

[

−rα+3
]R

ǫ
(8.63)

=
4π

α + 3
(ǫα+3 −Rα+3) (8.64)

Now if we consider the limit of large R we get

lim
R→∞

Fy(R) =

{

4πǫα+3

α+3
α < −3

−∞ α ≥ −3
(8.65)

138 CHAPTER 8. PLANETARY MOTION

1.5 2.0 2.5 3.0 3.5 4.0

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 8.16: Leonard-Jones potential of (8.52) for a = 1 and b = 0.

So for a three dimensional system the forcing term is long-ranged if α > −3. An example
for such forces are dipol-forces that go with r−3, and can be considered long-range in
this case.

But interactions that go with r−4 or higher powers will be short-ranged in the sense
defined above.

This leads us a famous toy-potential that people have long used to simulate inter-
particle interactions: the Leonard-Jones potential. It is short ranged and given by

V (r) =

(

a

r12
− b

r6

)

(8.66)

This potential is similar to the potential we used for our planet parts, but the powers
for the dependence on the distance is different.

Because this potential is short-ranged we often find that people use a slightly altered
potential that is set to exactly zero at some reasonable cut-off radius. The advantage of
this procedure is that you don’t have to calculate the force if particles are further than
this cut-off radius away from each other.

Implementing this in our code is trivial. We simply replace the interaction force with
a force corresponding to the potential of equation (8.66)

F (r) =

(

−12a

r14
+

6b

r8

)

r (8.67)

An even easier situation arrises when we consider non-aggregating particles, e.g. gas
molecules of an ideal gas. Then we only use the repulsive part of the potential and we
can observe the diffusion of particles.

When we are interested in bulk behavior of a system we can’t possibly simulate all
the particles and so we have to somehow contain them. One way to do this would be

8.5. DIFFUSION OF PARTICLES IN A BOX 139

to introduce walls into our system. When we do that, however, the system may show
special behavior near the walls. This is good for many applications, particularly the
simulation of nano-size objects, since we can then simulate them completely.

For larger systems, however, where we are interested of the behavior in the bulk, this
is not such a good idea. If we contain the material in some sort of container we need to
look only at the behavior a certain distance away from the wall in an effort to separate
the wall behavior from the bulk behavior. One simple method to remove this difficulty
is to use periodic boundary conditions. In this method we imagine that the large system
we are intersted is covered with identical copies of our much smaller simulation. If the
system is basically homogenous without large variations of its properties, the resulting
system should basically look correct.

Let us look concretely at how one would implement this. Say our simulational system
has a finite spatial extend and consists of a box that is spanned by the two corner points
(0, 0, 0) and (Lx, Ly, Lz) with edges that are parallel to the x, y, and z-axis. The particles
can move freely inside this box and they interact according to Newton’s laws. But when
their path cross one of the faces of the box they are re-inserted into the box at the
equivalent position at the opposing face of the box. So at all times the particles will
remain inside the box. Mathematically this is achieved by projecting the positions inside
the appropriate intervals:

x → x mod Lx (8.68)

y → y mod Ly (8.69)

z → z mod Lz (8.70)

We also need to consider the interactions of the particles. The do not only interact
with the particles in the box, but also with the images of the particles in the ajoining
space. Formally, this should be taken to infinity, which would make the whole process
completely unfeasible:

F i =
∑

images

N
∑

j=1

Fi,j(xi,xj) (8.71)

=
∞
∑

k=−∞

∞
∑

l=−∞

∞
∑

m=−∞

N
∑

j=1

Fi,j(xi,xj + (kLxex + lLyey +mLzez)) (8.72)

Now since the interactions we are interested in are short-ranged, images that are removed
from the center box can be neglected. (This would not be the case for gravitational
intereactions).

140 CHAPTER 8. PLANETARY MOTION

Chapter 9

Basic Kinetic Theory and Statistical
Mechanics

Now that we have a simple MD code that can simulate different phases of matter, it
would be helpful if we could say something more quantitiative about this. We will start
by trying to understand the concept of temperature.

Firstly we will consider what the probability is that we will find that a particle has
a particular velocity. What does P (vx = Ux) look like? what we can do is to look at the
distribution of velocities that we find over some extended period of time. If we look at
different times, we will find that the particles have some particular velocities. At some
instance later these velocities will have changed. If we now look at all these velocities
we will find that some velocities are more likely than others. How would we go about
quantifying this?

A typical way of doing this is by using a velocity histogram. I.e. we just count the
number of particles with velcity in a range of vk and vk+∆v and plot this histogram. To
do this we define a velocity range between vmin and vmax and the number of histogram
bars that we would like to have NH . Then at different times in our simulation we look at
all the velocities and check where in the histogram the velocity falls and add one to the
total number in that histogram bar. We can then do this again until we find a smooth
distribution. There is some finetuning you may want to do determining appropriate
values for the min and max values as well as the number of histogram bars.

Now we need to compare this with our expectation. We expect to find that the prob-
ability of finding a particular velocity is given by the Maxwell-Boltzmann distribution

P (v) ∝ exp

(

−(v− < v >)2

2kT

)

(9.1)

where the expectation value of the velocity < v > is just a constant that does not
change, because our algorighm conserves mass. The Temperature is given by the kinetic
energy per particle:

D kT =

〈

1

2
mv2

〉

(9.2)

141

142 CHAPTER 9. BASIC KINETIC THEORY AND STATISTICAL MECHANICS

where D is the nunmber of spatial dimensions.
In terms or the program we can approximate this quantity by

D kT ≈
N
∑

i=1

1

2
miv

2
i /N (9.3)

This quantity will still fluctuate, since energy is exchanged between the potential and
kinetic energy, so we get an even better approximation by continuing to average the
temperature over different simulation times.

Now let us put this in the program:

Listing 9.1: MDnew.c

1 #include <math . h>
#include <time . h>
#include <s t d l i b . h>
#include <mygraph . h>
#define N 100

6
typedef struct obj {double x ; double y ; double vx ; double vy ;

double m; double r1 ; double r2 ; int co l 1 ; int co l 2 ;} obj ;
typedef struct vecd {double x ; double y ;} vecd ;

double Lx=10,Ly=10, amp=0.1 , v s c a l e =1;
11 double Etot , Ekin , Epot , GlobalkT=0;

obj at [N] ;

#define NH 1000
16 int Nhist=100 ,DoVhist=0,GlobalkTcount=0;

vecd Vav ;
typedef struct h i s t {double x ; double count ;} h i s t ;
h i s t vh i s t [NH] , vhistN [NH] , vhistTH [NH] ;
double vmin=−10,vmax=10;

21
void Normal izeHist (h i s t h i s t i n [NH] , h i s t h i s t ou t [NH] , int Nhist){

double sum=0;
for (int i =0; i<Nhist ; i++){

sum+=h i s t i n [i] . count ;
26 }

double f a c=Nhist /(h i s t i n [Nhist −1] . x − h i s t i n [0] . x) /sum ;
for (int i =0; i<Nhist ; i++){

h i s t ou t [i] . x=h i s t i n [i] . x ;
h i s t ou t [i] . count = fac ∗ h i s t i n [i] . count ;

143

31 }
}

double GetkT(obj at [N]) {
double M=0,kT=0;

36
Vav . x=0;
Vav . y=0;

for (int n=0;n<N; n++){
41 M+=at [n] .m;

Vav . x+=at [n] .m∗at [n] . vx ;
Vav . y+=at [n] .m∗at [n] . vy ;

}
Vav . x/=M;

46 Vav . y/=M;
for (int n=0;n<N; n++){

kT+=at [n] .m∗(pow(at [n] . vx−Vav . x , 2)+pow(at [n] . vy−Vav . y , 2)) ;
}
kT/=2∗N; // number o f dimensions

51 return kT ;
}

void VHistTH(h i s t vh i s t [NH] , int Nhist , double kT){
for (int i =0; i<Nhist ; i++){

56 vh i s t [i] . x=vmin+(i +0.5) ∗(vmax−vmin) /(Nhist) ;
vh i s t [i] . count=exp(−at [0] .m∗pow(vh i s t [i] . x−Vav . x , 2) /(2∗kT))

;
// not very p r e c i s e s ince the d i s t r i b u t i o n depends on m fo r

each atom
}
Normal izeHist (vh i s t , vh i s t , Nhist) ;

61 }

void VHist In i t (h i s t vh i s t [NH] , int Nhist){
for (int i =0; i<Nhist ; i++){

vh i s t [i] . x=vmin+(i +0.5) ∗(vmax−vmin) /(Nhist) ;
66 vh i s t [i] . count=0;

}
GlobalkT=GetkT(at) ;
GlobalkTcount=1;
VHistTH(vhistTH , Nhist , GlobalkT) ;

144 CHAPTER 9. BASIC KINETIC THEORY AND STATISTICAL MECHANICS

71 }

void VHist (obj at [N] , h i s t vh i s t [NH] , int Nhist){
GlobalkT=(GlobalkT∗GlobalkTcount+ GetkT(at))/++GlobalkTcount ;
VHistTH(vhistTH , Nhist , GlobalkT) ;

76
for (int n=0;n<N; n++){

int i=f l o o r ((at [n] . vx−vmin) /(vmax−vmin) ∗(Nhist)) ;
i f (i <0) i =0;
i f (i>=Nhist) i=Nhist−1;

81 vh i s t [i] . count+=1;
}

}

void StartVHist () {
86

VHis t In i t (vh i s t , Nhist) ;
DoVhist=1;

}

91 void StopVHist () {
DoVhist=0;

}

double KE(obj at [N]) {
96 double E=0;

for (int i =0; i<N; i++){
E+=0.5∗at [i] .m∗(at [i] . vx∗at [i] . vx+at [i] . vy∗at [i] . vy) ;

}
101 return E;

}

double PE(obj at [N]) {
double E=0;

106
for (int i =0; i<N; i++)

for (int j=i +1; j<N; j++){
for (int x=−1;x<2;x++)

for (int y=−1;y<2;y++){
111 double rx=at [i] . x−(at [j] . x+x∗Lx) ;

double ry=at [i] . y−(at [j] . y+y∗Ly) ;

145

double r2= rx∗ rx+ry∗ ry ;
double r6= r2∗ r2∗ r2 ;
double r12=r6∗ r6 ;

116 E+=1/r12−1/r6 ;
}

}
return E;

}
121

void Force (obj at [N] , vecd F [N]) {
for (int i =0; i<N; i++){F[i] . x=F[i] . y=0;}
for (int i =0; i<N; i++)

for (int j=i +1; j<N; j++){
126 for (int x=−1;x<2;x++)

for (int y=−1;y<2;y++){
double rx=at [i] . x−(at [j] . x+x∗Lx) ;
double ry=at [i] . y−(at [j] . y+y∗Ly) ;
double r2= rx∗ rx+ry∗ ry ;

131 i f (r2>16) continue ;
double r8= r2∗ r2∗ r2∗ r2 ;
double r14=r8∗ r8 / r2 ;
double tmp=12/r14−6/r8 ;
double Fx=tmp∗ rx ;

136 double Fy=tmp∗ ry ;
F [i] . x+=Fx ;
F [i] . y+=Fy ;
F [j] . x−=Fx ;
F [j] . y−=Fy ;

141 }
}

}

void Ver l e t (obj at [N] , double dt){
146 vecd F [N] ;

Force (at ,F) ;
for (int i =0; i<N; i++){

at [i] . vx+=F[i] . x/ at [i] .m∗0 .5∗ dt ;
151 at [i] . vy+=F[i] . y/ at [i] .m∗0 .5∗ dt ;

at [i] . x +=at [i] . vx∗dt ;
i f (at [i] . x<0) at [i] . x+=Lx ;
else i f (at [i] . x>=Lx) at [i] . x−=Lx ;

146 CHAPTER 9. BASIC KINETIC THEORY AND STATISTICAL MECHANICS

at [i] . y +=at [i] . vy∗dt ;
156 i f (at [i] . y<0) at [i] . y+=Ly ;

else i f (at [i] . y>=Ly) at [i] . y−=Ly ;
}
Force (at ,F) ;
for (int i =0; i<N; i++){

161 at [i] . vx+=F[i] . x/ at [i] .m∗0 .5∗ dt ;
at [i] . vy+=F[i] . y/ at [i] .m∗0 .5∗ dt ;

}
}

166 void i n i t (obj at [N]) {
int N2=c e i l (s q r t (N)) ,n=0;
vecd CMv;
double M;
for (int i =0;(i<N2)&&(n<N) ; i++)

171 for (int j =0;(j<N2)&&(n<N) ; j++,n++){
at [n] . x=i ∗Lx/N2 ;
at [n] . y=j ∗Ly/N2 ;
at [n] . vx=amp∗random () /RANDMAX;
at [n] . vy=amp∗random () /RANDMAX;

176 at [n] .m=1;
at [n] . r1 =0.5∗1;
at [n] . r2 =0.5∗1 .122 ;
at [n] . c o l 1 =2;
at [n] . c o l 2 =3;

181 }
// now remove the cen te r o f mass motion
M=CMv. x=CMv. y=0;
for (int n=0;n<N; n++){
M+= at [n] .m;

186 CMv. x+=at [n] .m∗at [n] . vx ;
CMv. y+=at [n] .m∗at [n] . vy ;

}
CMv. x/=M;
CMv. y/=M;

191 for (int n=0;n<N; n++){
at [n] . vx−=CMv. x ;
at [n] . vy−=CMv. y ;

}
Epot=PE(at) ;

196 Ekin=KE(at) ;

147

Etot=Epot+Ekin ;
}

void I n i t () {
201 i n i t (at) ;

}

void v s c a l e f (obj at [N]) {
for (int n=0;(n<N) ; n++){

206 at [n] . vx∗=vsca l e ;
at [n] . vy∗=vsca l e ;
}

}

211 void Vscale () {
v s c a l e f (at) ;

}

void TopView(int xdim , int ydim){
216 int xo f f s , y o f f s ;

double s c a l e ;
// we want to cen te r the d i s p l a y in the cen te r o f the window
i f (Lx/xdim>Ly/ydim){

s c a l e=xdim/Lx ;
221 x o f f s =0;

y o f f s =(ydim−Ly∗ s c a l e) /2 ;
}
else {

s c a l e=ydim/Ly ;
226 x o f f s=(xdim−Lx∗ s c a l e) /2 ;

y o f f s =0;
}

for (int i =0; i<N; i++){
231 my f i l l e d c i r c l e (at [i] . co l2 ,

x o f f s+at [i] . x∗ s ca l e ,
ydim−(y o f f s+at [i] . y∗ s c a l e) ,
at [i] . r2 ∗ s c a l e) ;

m y f i l l e d c i r c l e (at [i] . co l1 ,
236 x o f f s+at [i] . x∗ s ca l e ,

ydim−(y o f f s+at [i] . y∗ s c a l e) ,
at [i] . r1 ∗ s c a l e) ;

148 CHAPTER 9. BASIC KINETIC THEORY AND STATISTICAL MECHANICS

}
}

241
void Analys i s () {

Epot=PE(at) ;
Ekin=KE(at) ;
Etot=Epot+Ekin ;

246 i f (DoVhist){
VHist (at , vh i s t , Nhist) ;
Normal izeHist (vh i s t , vhistN , Nhist) ;

}
}

251
int main () {

int done=0,Repeat=1, cont=0,Slow=1000;
double dt =0.01;

256 i n i t (at) ;
AddFreedraw (”Top view” ,&TopView) ;
DefineGraphN RxR (”Vel x Hist ” ,& vh i s t [0] . x,&Nhist ,NULL) ;
SetDe fau l tCo lor (3) ;
SetDefaultShape (1) ;

261 SetDefaultLineType (0) ;
DefineGraphN RxR (”Vel x Hist norm”,&vhistN [0] . x,&Nhist ,NULL) ;
SetDe fau l tCo lor (2) ;
SetDefaultShape (0) ;
SetDefaultLineType (1) ;

266 DefineGraphN RxR (”Vel x Hist TH”,&vhistTH [0] . x,&Nhist ,NULL) ;

StartMenu (” Sol ” ,1) ;
DefineGraph (f reedraw , ”Views”) ;
DefineGraph (curve2d , ”Histogram graph”) ;

271 StartMenu (”Energy” ,0) ;
DefineDouble (”E pot” ,&Epot) ;
DefineDouble (”E kin ” ,&Ekin) ;
DefineDouble (”kT” , &GlobalkT) ;
DefineDouble (”E tot ” ,&Etot) ;

276 EndMenu() ;
StartMenu (”Histogram” ,0) ;
DefineDouble (”Vmin” ,&vmin) ;
DefineDouble (”Vmax” ,&vmax) ;
DefineMod (”N h i s t ” ,&Nhist ,NH) ;

149

281 Def ineFunct ion (” Sta r t Hist ” ,&StartVHist) ;
Def ineFunct ion (”Stop Hist ” ,&StopVHist) ;
EndMenu() ;

StartMenu (” I n i t ” ,0) ;
286 DefineDouble (”Amp”,&) ;

Def ineFunct ion (” I n i t ” ,& I n i t) ;
EndMenu() ;
DefineDouble (” v e l S c a l e ” ,& v s c a l e) ;
Def ineFunct ion (”Vscale ” ,&Vscale) ;

291 DefineDouble (”Lx” ,&Lx) ;
DefineDouble (”Ly” ,&Ly) ;
DefineDouble (”dt” ,&dt) ;
Def ineBool (” cont ” ,&cont) ;
De f ine In t (”Slow”,&Slow) ;

296 De f ine In t (”Repeat” ,&Repeat) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;
while (! done){

Events (1) ;
301 DrawGraphs () ;

i f (cont){
for (int i =0; i<Repeat ; i++){

Ver l e t (at , dt) ;
for (int j =0; j<Slow ; j++) nanos leep ((struct t imespec [])

{{0 , 100000}} , NULL) ;
306 }

Analys i s () ;
}
else nanos leep ((struct t imespec []) {{0 , 1000000}} , NULL) ;

}
311 }

The result is rather satisfactory, as is shown in Figure 9.1.

150 CHAPTER 9. BASIC KINETIC THEORY AND STATISTICAL MECHANICS

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8y

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8y

-3 -2 -1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8y

Figure 9.1: Velocity distribution function for the x velocity compared to the theoretical
distribution function and a snapshot of the configuration.

Chapter 10

Monte Carlo

P (s) ∝ exp

(

−H(s)

kT

)

(10.1)

where H() is the Hamiltonian, i.e. a function that gives the total energy of the system.
Then if we ask about the probability of finding the system in state s1 or s2 it is simply
given by

P (s1)

P (s2)
= exp

(

−H(s1)−H(s2)

kT

)

(10.2)

Now in equilibrium these probabilities are constant, and if we have an algorithm that
has the following detailed balance condition for transition T between states, we can be
assured that the probabilities are not changed by the transitions:

P (s1)T1←2 = P (s2)T2←1 (10.3)

Since time does not matter here, we can multiply the transition rates by an arbitrary
constant and that will not change the final probability distribution. Let us assume that
H(s1) > H(s2), so we have P (s11) > P (s2). To get the most accepted transitions we
choose

T2←1 = 1 (10.4)

T1←2 =
P (s1)

P (s2)
= exp

(

−∆E1,2

kT

)

(10.5)

which ensures that the detailed balance condition (10.3) is fulfilled.

151

152 CHAPTER 10. MONTE CARLO

Chapter 11

Lattice Gases

11.1 Hardy, de Pazzis, and Pomeau (HPP)

The first of the lattice Gases. It uses a square lattice and a simple collision rule: particles
colliding head-on end up going in the orthogonal direction. That is all we need. These
collisions conserve mass, momentum and (trivially) energy.

However, the model is not sufficiently symmetric to allow for the correct hydrody-
namics. (we will see later why that is.

To practically implement this we need to encode a state. Since we can only have (in
this model) one particle per lattice velocity we can encode the presence or absence of
particles as single bits! This makes the code very memory efficient.

One example program where we have utilized this is given here:

Listing 11.1: LG1.c

/∗
La t t i c e Gas accord ing to , Hardy , Pomeau and de Pazz i s (1973 and

1976)
∗/

4
#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <un i s td . h>

9 #include <mygraph . h>
#include <math . h>

/∗ The f o l l ow i n g shou ld not be necessary , but some o l d e r
compi l e r s don ’ t suppor t t h i s ye t ∗/

#define Ob0001 1
14 #define Ob0010 2

#define Ob0100 4

153

154 CHAPTER 11. LATTICE GASES

#define Ob1000 8
#define Ob0101 5
#define Ob1010 10

19 #define Ob1111 15
#define Ob1110 14
#define Ob1011 11

#define NV 4 // 4 v e l o c i t i e s , square l a t t i c e , not i s o t r o p i c .
24 #define LX 1000

#define LY 1000

int n [LX] [LY] ;
/∗ Meaning o f the s t a t e : each b i t o f the i n t e g e r imp l i e s a

p a r t i c l e a t the corresponding v e l o c i t y . ea s t : 1 north : 10
west :100 south :1000 , (in b inary)

29 So one p a r t i c l e t r a v l i n g north and one p a r t i c l e t r a v e l l i n g
south would be 1010=9

∗/
double R=10;
/∗ now some f i e l d s to be d i s p l a y ed ∗/
int rhoreq=0, ureq=0, coa r s e =1, l x=LX, ly=LY;

34 double rho [LX] [LY] , u [LX] [LY] [2] ; // the s e cou ld be in t e g e r s ,
but the g raph i c s i s not ye t s e t up f o r t ha t .

/∗ For ana l y s i s ∗/
double Uxav [LY] ;
int Uxavreq=0;

39

void i t e r a t e () {
stat ic int nn [LX] [LY] ;

/∗ c o l l i d i n g the p a r t i c l e s ∗/
44 for (int x=0;x<LX;++x)

for (int y=0;y<LY;++y){
switch (n [x] [y]) {
case Ob0101 : nn [x] [y]= Ob1010 ; break ;
case Ob1010 : nn [x] [y]= Ob0101 ; break ;

49 default : nn [x] [y]=n [x] [y] ;
}

}
/∗ now we need to move the p a r t i c l e s ∗/
for (int x=0;x<LX;++x)

11.1. HARDY, DE PAZZIS, AND POMEAU (HPP) 155

54 for (int y=0;y<LY;++y){
n [x] [y]=

(nn [(x+1)%LX] [y]& Ob0100)
+(nn [(x+LX−1)%LX] [y]& Ob0001)
+(nn [x] [(y+1)%LY]& Ob1000)

59 +(nn [x] [(y+LY−1)%LY]& Ob0010) ;
}

}

64 void i n i t c i r c () {
for (int x=0;x<LX;++x)

for (int y=0;y<LY;++y){
i f (pow(x−LX/2 ,2)+pow(y−LY/2 ,2)<R)

n [x] [y]=0;
69 else

n [x] [y]=rand ()& Ob1111 ;
}

}

74 void i n i t s h e a r () {
for (int x=0;x<LX;++x)

for (int y=0;y<LY;++y){
i f (y<LY/2)

n [x] [y]=random ()& Ob1011 ;
79 else

n [x] [y]=random ()& Ob1110 ;
}

}

84 void GetGraphs () {
double ∗ rp=&(rho [0] [0]) ,∗up=&(u [0] [0] [0]) ;
l x=LX/ coar s e ;
l y=LY/ coar s e ;
i f (rhoreq){

89 rhoreq=0;
memset (rp , 0 , l x ∗ l y ∗ s izeof (double)) ;
for (int x=0; x<LX;++x)

for (int y=0; y<LY; ++y)
rp [x/ coa r s e ∗ l y+y/ coar s e]

94 +=(n [x] [y]& Ob0001)
+((n [x] [y]& Ob0010)>>1)

156 CHAPTER 11. LATTICE GASES

+((n [x] [y]& Ob0100)>>2)
+((n [x] [y]& Ob1000)>>3) ;

}
99 i f (ureq){

ureq=0;
memset (up , 0 , l x ∗ l y ∗2∗ s izeof (double)) ;
for (int x=0; x<LX;++x)

for (int y=0; y<LY; ++y){
104 up [(x/ coa r s e ∗ l y+y/ coar s e) ∗2]+=

(n [x] [y]& Ob0001)−((n [x] [y]& Ob0100)>>2) ;
up [(x/ coa r s e ∗ l y+y/ coar s e)∗2+1]+=

((n [x] [y]& Ob0010)>>1)−((n [x] [y]& Ob1000)>>3) ;
}

109 }
i f (Uxavreq){

Uxavreq=0;
memset (Uxav , 0 , l y ∗ s izeof (double)) ;
for (int x=0; x<LX;++x)

114 for (int y=0; y<LY; ++y){
Uxav [y/ coa r s e]+=

(n [x] [y]& Ob0001)−((n [x] [y]& Ob0100)>>2) ;
}

for (int y=0; y<l y ; ++y){
119 Uxav [y]/=LX∗ coa r s e ;

}
}

}

124 int main () {
int Paused=1, Step=1, Repeat=1, done=0;

i n i t c i r c () ;
DefineGraphN R (”Ux av” ,&Uxav [0] ,& ly ,&Uxavreq) ;

129 DefineGraphNxN R(”Density ” ,&(rho [0] [0]) ,& lx ,& ly ,& rhoreq) ;
DefineGraphNxN RxR(” v e l o c i t y ” ,&(u [0] [0] [0]) ,& lx ,& ly ,&ureq) ;

StartMenu (”Square La t t i c e Gas” ,1) ;
DefineDouble (”Rˆ2” ,&R) ;

134 Def ineFunct ion (” i n i t c i r c ” ,& i n i t c i r c) ;
Def ineFunct ion (” i n i t shear ” ,& i n i t s h e a r) ;
De f ine In t (”Coarsegra in ” ,& coar s e) ;
DefineGraph (contour2d , ”Density p l o t ”) ;

11.2. FRISCH, HASSLACHER, AND POMEAU (FHP) 157

DefineGraph (curve2d , ”Uav graph”) ;
139 De f ine In t (”Repeat” ,&Repeat) ;

Def ineBool (”Step” ,&Step) ;
Def ineBool (”Paused” ,&Paused) ;
Def ineBool (”done” ,&done) ;
EndMenu() ;

144 while (! done){
Events (1) ;
GetGraphs () ;
DrawGraphs () ;
i f (! Paused | | ! Step){

149 Step=1;
for (int i =0; i<Repeat ; i++){

i t e r a t e () ;
}

}
154 else s l e e p (1) ;

}
}

11.2 Frisch, Hasslacher, and Pomeau (FHP)

The discovery of Frisch, Hasslacher, and Pomeau (or Stephen Wolfram, depending on
whom you ask) was that one can recover a more symmetrical simulation, when one
uses a more symmetric lattice. The simplest lattice that achieves this is the hexagonal
lattice, presented in Figure 11.1.

Now we have more collisions that we can consider: there are still head-on collisions of
two particles, but there are now two possible outcomes in two different lattice directions
rotated by 60◦ and −60◦, respectively. Additionally we consider a three particle collision,
where three particles coming in with angles 0◦, 120◦, 240◦ will go out with angles 60◦,
180◦, 300◦ and vice versa.

For a practical implementation we will need to represent the hexagonal grid in C.
We will use an array again, but that requires a square morphology. In figure 11.1 we
show the sheared two dimensional lattice as black lines. In the square lattice the black
lines now correspond to direct nearest-neighbor connections. However, the hexagonal
lattice has two more nearest neighbors, shown as red lines, and these connections are
represented as next-nearest neighbor connections in the square lattice.

We can adapt the code for the HPP lattice Gas to simulate the FHP lattice gas:

Listing 11.2: LG2.c

/∗
La t t i c e Gas accord ing to Fr isch Hass lacher and Pomeau

158 CHAPTER 11. LATTICE GASES

4

X

Y

3 2

1

6
5

Figure 11.1: The hexagonal lattice of the FHP model.

∗/
4

#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <un i s td . h>

9 #include <mygraph . h>
#include <math . h>

/∗ The f o l l ow i n g shou ld not be necessary , but some o l d e r
compi l e r s don ’ t suppor t t h i s ye t ∗/

#define Ob000001 1
14 #define Ob000010 2

#define Ob000100 4
#define Ob001000 8
#define Ob010000 16
#define Ob100000 32

19 #define Ob001001 9
#define Ob010010 18
#define Ob100100 36
#define Ob010101 21
#define Ob101010 42

11.2. FRISCH, HASSLACHER, AND POMEAU (FHP) 159

24 #define Ob111111 63

#define NV 6 // 6 v e l o c i t i e s , hexagonal l a t t i c e .
#define LX 500

29 #define LY 500 // This r ep r e s en t s a para l l e l o g ram

int n [LX] [LY] ;
/∗ Meaning o f the s t a t e : each b i t o f the i n t e g e r imp l i e s a

p a r t i c l e a t the corresponding v e l o c i t y . ea s t : 1 north : 10
west :100 south :1000 , (in b inary)

So one p a r t i c l e t r a v l i n g north and one p a r t i c l e t r a v e l l i n g
south would be 1010=9

34 ∗/
double R=10, f r a c =0.5 ;
/∗ now some f i e l d s to be d i s p l a y ed ∗/
int rhoreq=0, ureq=0, coa r s e =1, l x=LX, ly=LY;
double rho [LX] [LY] , u [LX] [LY] [2] ; // the s e cou ld be in t e g e r s ,

but the g raph i c s i s not ye t s e t up f o r t ha t .
39

/∗ For ana l y s i s ∗/
double Uxav [LY] ;
int Uxavreq=0;

44 void i t e r a t e () {
stat ic int k=153123;
stat ic int nn [LX] [LY] ;
/∗ c o l l i d i n g the p a r t i c l e s ∗/
for (int x=0;x<LX;++x)

49 for (int y=0;y<LY;++y){
switch (n [x] [y]) {
case Ob001001 : nn [x] [y]= ((++k&1)==0)? Ob100100 : Ob010010

; break ;
case Ob010010 : nn [x] [y]= ((++k&1)==0)? Ob001001 : Ob100100

; break ;
case Ob100100 : nn [x] [y]= ((++k&1)==0)? Ob010010 : Ob001001

; break ;
54 case Ob010101 : nn [x] [y]= Ob101010 ; break ;

case Ob101010 : nn [x] [y]= Ob010101 ; break ;
default : nn [x] [y]=n [x] [y] ;
}

}

160 CHAPTER 11. LATTICE GASES

59 /∗ now we need to move the p a r t i c l e s ∗/
for (int x=0;x<LX;++x)

for (int y=0;y<LY;++y){
n [x] [y]=

(nn [(x+1)%LX] [y]& Ob001000)
64 | (nn [(x+LX−1)%LX] [y]& Ob000001)

| (nn [x] [(y+1)%LY]& Ob010000)
| (nn [x] [(y+LY−1)%LY]& Ob000010)
| (nn [(x+LX−1)%LX] [(y+1)%LY]& Ob100000)
| (nn [(x+1)%LX] [(y+LY−1)%LY]& Ob000100) ;

69 }
}

void i n i t () {
74 for (int x=0;x<LX;++x)

for (int y=0;y<LY;++y){
i f (pow((x+0.5∗y)−(LX/2.+LY/4 .) , 2)+pow(sq r t (0 . 7 5) ∗(y−LY

/2) ,2)<R)
n [x] [y]=0;

else {
79 n [x] [y]=((rand ()< f r a c ∗RANDMAX) ?Ob000001 : 0)

| ((rand ()< f r a c ∗RANDMAX) ?Ob000010 : 0)
| ((rand ()< f r a c ∗RANDMAX) ?Ob000100 : 0)
| ((rand ()< f r a c ∗RANDMAX) ?Ob001000 : 0)
| ((rand ()< f r a c ∗RANDMAX) ?Ob010000 : 0)

84 | ((rand ()< f r a c ∗RANDMAX) ?Ob100000 : 0) ;
}

}
}

89 void i n i t s h e a r () {
for (int x=0;x<LX;++x)

for (int y=0;y<LY;++y){
i f (y>LY/2)

n [x] [y]=((rand ()< f r a c ∗RANDMAX) ?Ob000001 : 0)
94 | ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob010010 : 0)

| ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob100100 : 0)
/∗ | ((rand ()<f r a c ∗RANDMAX)?Ob001000 : 0) ∗/
| ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob010010 : 0)
| ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob100100 : 0) ;

99 else

11.2. FRISCH, HASSLACHER, AND POMEAU (FHP) 161

n [x] [y]=/∗ (rand ()<f r a c ∗RANDMAX)?Ob000001 : 0)
| ∗/ ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob010010 : 0)
| ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob100100 : 0)
| ((rand ()< f r a c ∗RANDMAX) ?Ob001000 : 0)

104 | ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob010010 : 0)
| ((rand () <0.25∗ f r a c ∗RANDMAX) ?Ob100100 : 0) ;

}
109 }

void GetGraphs () {
int x , y ;
double ∗ rp=&(rho [0] [0]) ,∗up=&(u [0] [0] [0]) ;

114 lx=LX/ coar s e ;
l y=LY/ coar s e ;
i f (rhoreq){

rhoreq=0;
memset (rp , 0 , l x ∗ l y ∗ s izeof (double)) ;

119 for (x=0; x<LX;++x)
for (y=0; y<LY; ++y)

rp [x/ coa r s e ∗ l y+y/ coar s e]
+=(n [x] [y]& Ob000001)
+((n [x] [y]& Ob000010)>>1)

124 +((n [x] [y]& Ob000100)>>2)
+((n [x] [y]& Ob001000)>>3)
+((n [x] [y]& Ob010000)>>4)
+((n [x] [y]& Ob100000)>>5) ;

}
129 i f (ureq){

ureq=0;
memset (up , 0 , l x ∗ l y ∗2∗ s izeof (double)) ;
for (x=0; x<LX;++x)

for (y=0; y<LY; ++y){
134 up [(x/ coa r s e ∗ l y+y/ coar s e) ∗2]+=

(n [x] [y]& Ob000001)
+0.5∗ (((n [x] [y]& Ob000010)>>1)−((n [x] [y]& Ob000100)

>>2))
−((n [x] [y]& Ob001000)>>3)
−0.5∗(((n [x] [y]& Ob010000)>>4)−((n [x] [y]& Ob100000)

>>5)) ;
139 up [(x/ coa r s e ∗ l y+y/ coar s e)∗2+1]+= sq r t (0 . 7 5) ∗

162 CHAPTER 11. LATTICE GASES

(((n [x] [y]& Ob000010)>>1)+((n [x] [y]& Ob000100)>>2)
−((n [x] [y]& Ob010000)>>4)−((n [x] [y]& Ob100000)>>5)) ;

}
}

144 i f (Uxavreq){
memset (Uxav , 0 , l y ∗ s izeof (double)) ;

for (y=0; y<LY; ++y){
for (x=0; x<LX;++x)

Uxav [y/ coa r s e]+=
149 (n [x] [y]& Ob000001)

+0.5∗ (((n [x] [y]& Ob000010)>>1)−((n [x] [y]& Ob000100)
>>2))

−((n [x] [y]& Ob001000)>>3)
−0.5∗(((n [x] [y]& Ob010000)>>4)−((n [x] [y]& Ob100000)

>>5)) ;
}

154 for (y=0;y<l y ; y++){
Uxav [y]/=LX∗ coa r s e ;

}
}

}
159

int main () {
int Paused=1, Step=1, Repeat=1, done=0;

i n i t () ;
164 DefineGraphN R (”Ux av” ,&Uxav [0] ,& ly ,&Uxavreq) ;

DefineGraphNxN R(”Density ” ,&(rho [0] [0]) ,& lx ,& ly ,& rhoreq) ;
DefineGraphNxN RxR(” v e l o c i t y ” ,&(u [0] [0] [0]) ,& lx ,& ly ,&ureq) ;

StartMenu (”Hexagonal La t t i c e Gas” ,1) ;
169 DefineDouble (”Rˆ2” ,&R) ;

DefineDouble (” f r a c ” ,& f r a c) ;
Def ineFunct ion (” i n i t c i r c ” ,& i n i t) ;
Def ineFunct ion (” i n i t shear ” ,& i n i t s h e a r) ;
De f ine In t (”Coarsegra in ” ,& coar s e) ;

174 DefineGraph (contour2d , ”Density p l o t ”) ;
DefineGraph (curve2d , ”Uav graph”) ;
De f ine In t (”Repeat” ,&Repeat) ;
Def ineBool (”Step” ,&Step) ;
Def ineBool (”Paused” ,&Paused) ;

179 Def ineBool (”done” ,&done) ;

11.2. FRISCH, HASSLACHER, AND POMEAU (FHP) 163

EndMenu() ;
while (! done){

Events (1) ;
GetGraphs () ;

184 DrawGraphs () ;
i f (! Paused | | ! Step){

Step=1;
for (int i =0; i<Repeat ; i++){

i t e r a t e () ;
189 }

}
else s l e e p (1) ;

}
}

To represent this graphically I include another option in the GUI to represent an
array as a trapezoidal part of a hexagonal lattice.

164 CHAPTER 11. LATTICE GASES

Chapter 12

The Boltzmann equation

While we discussed the different lattice gases, Tyler pointed out that the simple pictures
we got do not really tell you why the FHP lattice gas is supposed to be so superior over
the HHP lattice gas. Sure, in the simulations of the fluid filling in a void we saw a
hexagonal structure rather than a cubic structure, but that is not enough evidence to
show that the FHP lattice gas really represents a significant advantage.

To understand the reasoning behind this we need to consider the underlying theory
of kinetic theory, which will take us all of today’s lecture. This is a somewhat involved
mathematics, maybe more than you are used to, but it will help us understand the
difference between these two lattice gases, as well as the method which as now all but
replaced lattice gases: lattice Boltzmann.

We can write the evolution equation for the lattice gas for a general velocity set {vi}
as

ni(x+vi, t+1) = ni(x, t)+
∑

jkl

Pi,j→kl(nknl−ninj)+
∑

jklmn

Pijk→lmn(nlnmnn−ninjnk)+· · ·

(12.1)
where ni(x, t) is the number of particles moving with velocity vi at position x at time
t. The effect of the collision is given by first two-particle collisions, then three particle
collisions and maybe more. Now we want to examine the macroscopic behavior of the
fluid we are simulating. To do that we now define a distribution function fi, which
represents the behavior of a large number of molecules. We can imagine that we look
at a coarse-grained system where we look at many particles. In this case, the local
fluctuations become unimportant and we are left with a deterministic behavior:

fi(x+ vi, t+ 1) = fi(x, t) + Ωi (12.2)

where Ωi is the collision operator.
To understand what the collision operator does, let us consider what the distribution

looks like in equilibrium. For a lattice gas model, the solution will widely fluctuate, but
for a coarse-grained approach the result will be a well-defined distribution. We will
call this the equilibrium distribution. We can determine the equilibrium distribution by

165

166 CHAPTER 12. THE BOLTZMANN EQUATION

the condition that it does not get altered by the collisions. So what is this equilibrium
distribution? Before we can answer this question, we need to consider the important
effect that the conserved quantities of mass, momentum and energy (or temperature)
cannot be altered by the collisions, so the distribution is expected to depend on these
variables. So we are looking for f 0

i (ρ,u, θ).

f 0
i (ρ,u, θ) = (12.3)

Now the effect of this collision operator will be to bring the distributions fi closer
to their local equilibrium values f 0

i , which are consistent with the conserved quantities
mass, momentum and (sometimes) energy.

This suggests that we can approximate the collision operator as

Ωi =
1

τ
(f 0

i − fi) (12.4)

12.1 Multi-phase flow

If the system is not an ideal system, it will have a pressure that is different from the
ideal gas pressure. Such systems are described by a Van-der-Walls equation of state:

p(ρ) = p0

(

ρ

3− ρ
− 9

8
ρ2θc

)

(12.5)

We can incorporate such a pressure into the Navier-Stokes equation:

∂t(ρu) +∇(ρuu) = −∇p+∇(η(∇u+ (∇u)T) (12.6)

We currently have for a pressure term −∇(ρθ). We can compensate this with a forcing
term of the form:

F = −∇(p− ρθ) (12.7)

12.2 Including a passive scalar

A passive scalar is a quantity that is simply advected with the fluid flow. This could
represent the movement of some tracer particles. Such a second quantity can be encoded
by its own lattice Boltzmann equation with some densities gi. For this density we will
have

T =
∑

i

gi (12.8)

and it will obey the lattice Boltzmann equation

gi(x+ vi, t+ 1) = gi(x, t)
1

τ2
(f 0

i (T, u)− gi(x, t)). (12.9)

12.3. INCLUDING TEMPERATURE AS A PASSIVE SCALAR 167

The remaining question is what the resulting hydrodynamic equation for this passive
tracer density T (x, t) is going to be. Just as in the case of the hydrodynamic equations
we will Taylor expand the densities in (12.9)

(∂t + viα∂α)gi +
1

2
(∂t + viα∂α)

2gi +O(∂3) =
1

τ2
(f 0

i (T, u)− gi). (12.10)

From this we again get

gi = f 0
i (T, u)− τ(∂t + viα∂α)gi +O(∂2) (12.11)

which we substitute into (12.10) to get

(∂t + viα∂α)g
0
i − (τ − 1

2
)(∂t + viα∂α)

2g0i +O(∂3) =
1

τ2
(f 0

i (T, u)− gi). (12.12)

and then sum this to get

∂tT + ∂α(Tuα)− (τ − 1

2
)[∂t(∂tT + ∂α(Tuα)) + ∂β(∂t(Tuβ) + ∂α(Tuαuβ + Tθδαβ))] = 0

(12.13)
This simplifies to (remembering that ∂tuα + uβ∂βuα = (1/ρ)∂α(ρθ) +O(∂2))

∂tT + ∂α(Tuα) = (τ2 −
1

2
)[θ∂α∂αT + T∂α

1

ρ
∂α(ρθ)] (12.14)

This we can write as

∂tT +∇(Tu) = (τ2 −
1

2
)θ[∇2T + T∇2 ln(ρ)]. (12.15)

In most cases the density is assumed to be nearly constant and the last term can be
neglected.

12.3 Including temperature as a passive scalar

In principle there is no need to do anything special to include the temperature in the
method, since this would simply follow from energy conservation. However, to include
the temperature we would need to match the fourth order moments of the equilibrium
distribution, and this requires a larger velocity set. There have been some recent efforts
in that direction, but we will stick there to another approach, which can also be used
for

168 CHAPTER 12. THE BOLTZMANN EQUATION

Appendix A

Programming Exercises

Problems

1.1: Write a C-program that writes out the numbers 1 to 10 to the terminal.

1.2: Write a C-program that writes out the values of sin(x/10) for x from 0 to 100.

1.3: Write a C-program that writes the values of sin(x/10) for x from 0 to 100 into an
array and then use the graphics library to display this array graphically.
Hint: You can use the subroutine DefineGraphN R to define a one-dimensional
array, and use the DefineGraph routine with the parameter curve2d to get a
menu button to view graphs of that type.

1.4: Write a C-program that writes the values of sin(ax) for x from 0 to 100 and a
variable a into an array and then use the graphics library to display this array
graphically. Use the GUI to be able to interactively change the value of a.

1.5: Now write a C-program that fills a double array with the x component of sin(ax)
and the y component with cos(bx) for values of x from 0 to 99. Include the values
of a and b in the GUI and plot the resulting two-dimensional array for various
values of a and b. What do these figures look like? What are “reasonable” values
of a and b?

1.6: Now plot the path
(

sin(ax+ c)
cos(bx+ c)

)

(A.1)

instead, include the parameter c in the GUI and plot the result. What does the
parameter c do to the graph? Can you give an analytical expression of the effect
of the parameter?

169

170 APPENDIX A. PROGRAMMING EXERCISES

1.7: Now plot instead the path
(

sin(ax+ c)
sin(bx+ c)

)

(A.2)

for different values of a and b. How do these graphs differ from the previous
graphs?

1.8: Now plot instead the path
(

sin(ax+ c)
sin(bx)

)

. (A.3)

How do these graphs differ? What is the effect of changing c now?

1.9: Now you want to allow the graph to be continuously updated. You could allow
the parameters a, b, and c to be changing in time. Write a program that shows
how the graph changes as you (slowly) alter the parameters.
Hint: You could change have an iteration routine that changes the parameters
for you and then you can observe the change. You may also want to experiment
with the size of your data array to get the most pleasing results.

1.10: Not all data are created equal. Imagine you want to consider the general behav-
ior of a system like the three particle scattering as the function of two different
parameters (maybe the initial x position and the initial y velocity). Now you cal-
culate how far apart the particles will be after a certain time. The resulting data
will be a two dimensional array of distances. To represent this data, you will have
to define a new data type: DefineGraphNxN R(). Use this routine to plot data of
the type

f(x, y) = exp(−a(x2 + y2)) sin(b(x2 + y2)) (A.4)

for different values of a and b. To view data of this type you will need to include
a menu item of the form DefineGraph(contour2d ,’’name’’).

A.1 Graph library tips

To have different graphs displayed in different windows you can use:

extern void NewGraph();

extern void SetActiveGraph(int);

The first of these commands is used between different DefineGraph statements, and the
second one is used before the

DefineGraph();

statements in the GUI.

A.2. THE PAIR CORRELATION FUNCTION 171

A.2 The Pair correlation function

A quantity of interest is the pair correlation function g(r1, r2), i.e. the probability of
finding a particle at position r2, given that there is already a particle at position r1. In
translationally and rotationally invariant systems this quantity will only depend on the
total distance r = |r1 − r2|. We then have the radial distribution function g(r).

This quantity is very important, since it is related (through a Fourier transformation)
to the Structure factor S(q), which can be experimentally obtained by X-ray scattering.
Here, however, we will focus on how to obtain this radial distribution function in our
simulations.

Formally this is straight forward. First let us define a density

ρ(r) =
∑

i

δ(r − ri) (A.5)

where ri is the position of the ith atom. We then define the pair correlation function as

g(r) =

∫

dr1dr2ρ(r1)ρ(r2)δ((r1 − r2)− r) (A.6)

This would be a pair correllation function for a specific configuration, and it would be
a set of delta functions.

But what we are really interested in is a generic state of the system, not a particular
realization. A different way of thinking about this is that we are looking at an ensemble
of equivalent systems, and we look at the generic structure, which will be a continuous
function, not a set of delta functions:

g(r) =

〈∫

dr1dr2ρ(r1)ρ(r2)δ((r1 − r2)− r)

〉

(A.7)

where I have not yet defined what I mean my this ensemble average < · · · >. What
we mean by this ensemble is a selection of all systems that correspond to the same
“macroscopic” state. The way to think about this is that if I tell you that you have a jar
of a given volume full of a gas of a certain density in equilibrium, there are many particle
configurations consistent with that information. All of these consistent configurations
together make up the “ensemble”.

To practically extract a radial distribution function from a simulation we have an-
other route we can take. What we are after is the distribution of those delta functions,
so we will want to “smear out” the result, or put it in some kind of histogram, so that
we obtain a continuous looking solution.

g(r) =
∑

i

∑

j

θ[|(r1 − r2)− r| −∆r] (A.8)

Practically we might achieve this by defining a g(r) field in our code with dimension
dimx = Lx/∆x etc. We would then calculate an instantaneous pair correlation function
through a bit of code like this:

	Introduction
	Approach in this lecture

	Introduction to Linux
	Working remotely

	Writing a report using LaTeX
	Introduction to C programming
	The bare bones
	A bit more interesting
	And now with a GUI
	C-basics
	Variables
	Operators
	Conditional execution
	Functions

	Fractals: Mandelbrot and Julia sets
	Outlook

	Newtonian dynamics
	The falling ball
	A simple oscillator
	Two dimensional projectile motion
	Three dimensional motion

	Numerical Algorithms
	The Euler algorithm
	A second order method

	Particles in a box and arbitrary graphics
	Planetary motion
	Adaptive Step Size
	More particles
	Simulating chaotic motion
	Planets with internal structure
	Diffusion of particles in a box

	Basic Kinetic Theory and Statistical Mechanics
	Monte Carlo
	Lattice Gases
	Hardy, de Pazzis, and Pomeau (HPP)
	Frisch, Hasslacher, and Pomeau (FHP)

	The Boltzmann equation
	Multi-phase flow
	Including a passive scalar
	Including temperature as a passive scalar

	Programming Exercises
	Graph library tips
	The Pair correlation function

