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Abstract. Let (A,m) be a local ring. We study the existence and structure of the
m-primary integrally closed ideals generated by dim A + 1 elements.

Introduction

Let (A, m) be a local ring of dimension d and I an ideal of A. An element x ∈ A
is said to be integral over I if x satisfies an equation xn + a1x

n−1 + . . . + an = 0 with
ai ∈ I i. The set of all elements in A that are integral over I is an ideal I, and the
ideal I is called integrally closed if I = I. In [3], Goto studied the m-primary integrally
closed complete intersection ideals. It is shown that such ideals exist only when the
ring is regular, and an m-primary complete intersection ideal in a regular local ring is
integrally closed if and only if it contains d− 1 regular parameters. Moreover, all the
powers of such an ideal are integrally closed. The results are also extended to the case
of complete intersection ideals of arbitrary dimension.

In this note we study the structure of the m-primary integrally closed ideals mini-
mally generated by d + 1 elements. First we observe that such ideals exist if and only
if the maximal ideal of A is minimally generated by at most d + 1 elements. When
the ring A is regular, under the additional assumption that A contains a field, we
prove that there exist regular parameters a1, . . . , ad−2 contained in I such that IA′ is
integrally closed, where A′ = A/(a1, . . . , ad−2). The A′-ideal IA′ is generated by three
elements and the structure of integrally closed ideals generated by three elements in
a two dimensional regular local ring is given by results of Noh [7]. We also prove the
following theorem.

Theorem 0.1. Let (A, m) be a regular local ring of dimension d ≥ 2 and let I be an
m-primary integrally closed ideal minimally generated by d + 1 elements. Assume that
A contains a field. Then the Rees algebra R = ⊕n≥0I

ntn is a Cohen-Macaulay normal
domain and the associated graded ring G = ⊕n≥0I

n/In+1 is a Cohen-Macaulay ring
with a(G) = 1− d.

The a-invariant of G, denoted a(G), is defined by a(G) = sup{i | HM
d (G)i 6= 0},

where M is the maximal homogeneous ideal of G. We refer the reader to [10, Chapter
5] for an exposition of the properties of this invariant in the context of Rees algebras
and associated graded rings.

In the second case, when the embedding dimension of A is d + 1, we prove the
following.
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Theorem 0.2. Let (A, m) be a d-dimensional local ring with infinite residue field and
maximal ideal minimally generated by d+1 elements, and let I be an m-primary almost
complete intersection ideal. If I is integrally closed, then there exists a minimal set of
generators x, a1, . . . , ad for m such that either

(1) I = (xi+1, a1, . . . , ad−1, ad) with xi /∈ (a1, . . . , ad), or
(2) m2 = m(x, a1, . . . , ad−1) and I = (xi+1, a1, . . . , ad−1, z), for some element z ∈

(x, a1, . . . , ad−1).

Also, any ideal of type (1) is integrally closed. In particular, if the reduction number
r(m) is at least 2 (for example, a hypersurface of multiplicity at least 3), then I is
integrally closed if and only if I is of the type (1) described above.

In view of the constraint imposed on the class of ideals described in part (1), we also

give an effective way of deciding whether xs
1 ∈ (x2, x3, . . . , xd+1) in the hypersurface

ring R = k[x1, x2, . . . , xd+1]m/(F ) (F ∈ (x1, . . . , xd+1)
2).

As in [3], the m-full ideals are an important tool for the study of the integral closed-
ness of m-primary almost complete intersection ideals.

Acknowledgement. The author thanks the referee for suggesting an improved ver-
sion of Theorem 0.1 and for other comments that corrected a first version of this
manuscript.

1. Preliminaries

Let (A, m) be a d-dimensional local ring with maximal ideal m. For an ideal I of A,
µ(I) denotes the minimal number of generators of I and λ(A/I) is the length of the A-
module A/I. The embedding dimension of A, denoted edim A, is the minimal number
of generators of m. An m-primary ideal I is said to be almost complete intersection if
µ(I) = d + 1.

Originally introduced by Rees, the m-full ideals first appear in papers of Goto [3]
and Watanabe [9].

Definition 1.1. Let (A, m) be a local ring and let I be an ideal of A. The ideal I is
said to be m-full if there exists x ∈ m such that (Im : x) = I.

Remark 1.2. Assume that the residue field k = A/m is infinite. If I is an m-full ideal,
then Im : x = I for x general in m (see [9, Appendix]). Also, it is proved in [3, Theorem

2.4] that if I is integrally closed, then either I is m-full or I =
√

(0).

The following lemma plays an important role in many arguments in this note.

Lemma 1.3 (Watanabe [9]). Let (A, m) be a local ring and I an m-primary ideal of
A.

(1) For every element x of m, we have

µ(I) ≤ λ(mI : x/mI) = λ(A/I + xA) + µ(I + xA/xA).

(2) Suppose that I is m-full. Then µ(J) ≤ µ(I) for every ideal J containing I.
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Using this result, Goto [3, Proposition 2.3] proved that an ideal I generated by a full
system of parameters is m-full if and only if the ring is regular and λ(I+m2/m2) ≥ d−1.
Also, all the powers of an m-full parameter ideal are integrally closed ([3, Theorem 3.1]).

We start the study of the m-primary integrally closed almost complete intersection
ideals with the following immediate observation.

Proposition 1.4. Let (A, m) be a d-dimensional local ring and let I be an m-primary
m-full ideal. If µ(I) = d + 1, then either R is regular or edim A = d + 1.

Proof. By Lemma 1.3, we have µ(m) ≤ µ(I) = d + 1. �

2. Almost complete intersection ideals in regular local rings

In this section we study the structure of the m-primary integrally closed ideals with
µ(I) = d + 1 in a regular local ring (A, m).

Proposition 2.1. Let (A, m) be a d-dimensional regular local ring with infinite residue
field, and let I be an m-primary ideal of A minimally generated by d + 1 elements.
Then I is m-full if and only if there exist regular parameters x, y, a1, . . . , ad−2 such that
I + xA = (x, y2, a1, . . . , ad−2).

Proof. First we prove the direct implication. Let x ∈ m \ m2 such that (Im : x) = I.
By Lemma 1.3, we have

d + 1 = µ(I) = λ(A/I + xA) + µ(I + xA/xA),

and since µ(I+xA/xA) ≥ d−1, this implies that λ(A/I+xA) ≤ 2. If λ(A/I+xA) = 1,
then I+xA = m, and hence µ(I+xA/xA) = d−1. This contradicts the above equality,
and therefore λ(A/I+xA) = 2. Choose y ∈ m such that m = I+(x, y) and my ⊆ I+xA,
so that m2 = m(I + (x, y)) ⊆ I + xA. Considering the chain of ideals

m2 ⊂ m2 + xA ⊂ I + xA ⊂ I + (x, y) = m,

we obtain λ
(
(I + xA)/(m2 + xA)

)
= d− 2, so there exists a saturated chain of ideals

of length d− 2

m2 + xA ⊂ m2 + (x, a1) ⊂ m2 + (x, a1, a2) ⊂ . . . ⊂ m2 + (x, a1, . . . , ad−2) = I + xA.

Also, since y /∈ I +xA and m = I +(x, y), the elements x, y, a1, . . . , ad−2 form a regular
system of parameters.

For the other implication, by Lemma 1.3, we have

d + 1 = µ(I) ≤ λ(mI : x/mI) = λ(A/I + xA) + µ(I + xA/xA) = 2 + d− 1 = d + 1,

and hence µ(I) = λ(mI : x/mI). This implies that Im : x = I, so I is m-full. �

Remark 2.2. The ideals satisfying the equivalent conditions in the conclusion of Propo-
sition 2.1 are not necessarily integrally closed. For example, let R = k[[x, y]] and
I = (x4, y2, x3y). Then I + (x) = (x, y2), but I is not integrally closed, as x2y ∈ I \ I.
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Corollary 2.3. Let (A, m) be a d-dimensional regular local ring and let I be an m-
primary m-full ideal of A minimally generated by d + 1 elements. Then dimk(I +
m2/m2) = d − 2. Moreover, if I is integrally closed and the ring A contains a field,
then there exist regular parameters a1, a2, . . . , ad−2 ∈ I such that IA′ is an integrally
closed ideal generated by three elements, where A′ = A/(a1, . . . , ad−2).

Proof. Replacing A by A[X]m[X], we may assume that the residue field of A is infinite.
By Proposition 2.1, there exist regular parameters x, y, a1, . . . , ad−2 with I + xA =
(x, y2, a1, . . . , ad−2). Note that we may also assume that a1, . . . , ad−2 ∈ I. This implies
that µ(I + m2/m2) ≥ d − 2, and since I cannot be generated by d elements, we also
have µ(I + m2/m2) ≤ d− 2.

Since every integrally closed ideal is m-full (Remark 1.2), the second part of the
Corollary follows from the following lemma. �

Lemma 2.4. Let (A, m) be a regular local ring containing a field, I an ideal of A, and
x ∈ m \m2. Then (

(I + xA)/xA
)

= (I + xA)/xA.

Proof. By taking the completion of (A, m), we may assume that A = k[[x1, . . . , xd]]. We
may also assume that x1 = x. Let π : A → A/xA be the canonical epimorphism and
let p : k[[x2, . . . , xd]] = A/xA → A be the k-algebra morphism defined by p(xi) = xi

(i = 2, . . . , d). Note that π ◦ p = idA/xA.
The inclusion “⊇”in the conclusion of the Lemma is clear. For the other inclusion,

let y ∈ S such that its image in A/xA is an element of
(
(I + xA)/xA

)
. Write an

equation of integral independence and apply p. It follows that y ∈ I + xA. �

When A is a regular local ring containing a field, Corollary 2.3 reduces the problem
of describing the structure of m-primary almost complete intersection integrally closed
ideals to the case when dim A = 2. Then µ(I) = 3, and [9, Theorem 4] implies that
ord(I) = 2, i.e., I ⊆ m2 and I * m3. By Zariski’s theory of factorization of integrally
closed ideals, either I is a product of two integrally closed parameter ideals or I is
simple. In the first case, each of the two ideals is, up to a change of coordinates, of
the form (x, yn), where x, y is a regular system of parameters. In the second case, the
structure of the simple integrally closed ideals of order 2 is given by Noh in [7].

Lemma 2.5. Let (A, m) be a d-dimensional regular local ring containing a field, and
let I be an ideal of A with edim(A/I) ≤ 2. Then In = In−1I for all n ≥ 1.

Proof. Note that the assumption edim(A/I) ≤ 2 is equivalent to dimk(I + m2/m2) ≥
d− 2.

We use induction on d. If d = 1, the statement is clear, and if d = 2, this is a result
of Lipman and Teissier [6, Corollary 5.4].

We now consider the case when d ≥ 3. We may assume that A has infinite residue
field (if need be, replace A by A[X]m[X]). Let x ∈ I \ m2 be a sufficiently general
element.
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Let y ∈ In and denote by y′ its image in A/(x). Then y′ ∈ (In + (x))/(x)) and, by
the induction hypothesis and Lemma 2.4, we have

y′ ∈
(

In−1 + (x)

(x)

)
(I + (x))/(x)) =

(
In−1 + (x)

(x)

)
(I/(x)),

which implies that y ∈ In−1I + (x). Write y = a + rx with a ∈ In−1I and r ∈ A. Then

rx ∈ In and, since x is sufficiently general, we have r ∈ (In : x) = In−1, and hence

y ∈ In−1I + xIn−1 ⊆ IIn−1. �

Remark 2.6. If (A, m) is a regular local ring containing a field, the above lemma can
also be used to show that an m-primary complete intersection ideal is normal. Using
different methods, this is proved by Goto [3, Theorem 3.1] without assuming that the
ring contains a field.

Theorem 2.7. Let (A, m) be a regular local ring of dimension d ≥ 2 and let I be an
m-primary integrally closed ideal minimally generated by d + 1 elements. Assume that
A contains a field. Then the Rees algebra R = ⊕n≥0I

ntn is a Cohen-Macaulay normal
domain and the associated graded ring G = GI(R) = ⊕n≥0I

n/In+1 is a Cohen-Macaulay
ring with a(G) = 1− d.

Proof. The normality of the Rees algebra follows from Lemma 2.5 and Corollary 2.3.
Also, by [10, Theorem 5.1.23], it is enough to prove that G is Cohen-Macaulay and
a(G) = 1− d.

We prove the statements by induction on the dimension of the ring. If d = 2,
by [5, Theorem 3.2], it follows that R is Cohen Macaulay. In particular, G is also
Cohen-Macaulay. Also, by [6, Proposition 5.5], I has reduction number one, and hence
a(G) = −1 (see [10, 5.1.26]).

Assume that d ≥ 3 and let x ∈ I \ m2 be a sufficiently general element. Since I
is normal, we have In : x = In−1 for all n, so the image x∗ of x in I/I2 is a non-
zero divisor on G. Also, G/x∗G ∼= GIR′(R′), where R′ = R/(x). By Lemma 2.4, the
ideal IR′ is integrally closed, and hence, by the induction hypothesis, the ring G is
Cohen-Macaulay. Since a(G) + 1 = a(G/x∗G), we also obtain a(G) = 1− d. �

Remark 2.8. If the ideal I is not primary to the maximal ideal, it is not necessarily true
that an integrally closed almost complete intersection is normal. Let R = k[[x, y, z]]
(char k = 0) and let P be the kernel of the natural k-algebra morphism from R to
k[[t7, t9, t10]]. It can be checked with Macaulay 2 [4] that a = x7z+x2y5−3x3y2z2+yz5 /∈
P 2 and a ∈ (P 2m : m), so P 2 is not integrally closed.

3. Almost complete intersection ideals in rings of embedding
dimension d + 1

In this section we describe the integrally closed m-primary almost complete inter-
section ideals when edim A = d + 1. First we give a description of the larger class of
m-full ideals.
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Proposition 3.1. Let (A, m) be a d-dimensional local ring with infinite residue field
and edim A = d + 1, and let I be an m-primary ideal of A minimally generated by
d + 1 elements. Then I is m-full if and only if there exists a minimal set of generators
x, y, a1, . . . , ad−1 of m such that either

(1) I + xA = m or
(2) m2 = (x, a1, . . . , ad−1)m and I + xA = (x, a1, . . . , ad−1).

Proof. First assume that I is m-full. Let x ∈ m\m2 such that (Im : x) = I. By Lemma
1.3, we have

(3.1.1) d + 1 = µ(I) = λ(A/I + xA) + µ(I + xA/xA),

and since µ(I + xA/xA) ≥ d − 1, we obtain λ(A/I + xA) ≤ 2. If λ(A/I + xA) = 1,
then I + xA = m.

We now consider the case when λ(A/I + xA) = 2. Choose y ∈ m such that m =
I + (x, y) and my ⊆ I + xA. Then m2 = m(I + (x, y)) ⊆ I + xA and considering the
chain of ideals

m2 ⊂ m2 + xA ⊂ I + xA ⊂ I + (x, y) = m,

we get λ(I +xA/m2 +xA) = d− 1, so there exists a saturated chain of ideals of length
d− 1

m2 + xA ⊂ m2 + (x, a1) ⊂ m2 + (x, a1, a2) ⊂ . . . ⊂ m2 + (x, a1, . . . , ad−1) = I + xA.

Since y /∈ I + xA, it also follows that x, y, a1, . . . , ad−1 is a minimal set of generators of
m.

So far we have proved that I+xA = (x, y2, a1, . . . , ad−1). Since λ(A/I+xA) = 2, from
(3.1.1) it follows that µ(I+xA/xA) = d−1. Consider the A/xA-ideal K = (I+xA)/xA.
Let us observe that a1, . . . , ad−1 are linearly independent in K/mK. By contradiction,
if they are linearly dependent, say ad−1 ∈ mK+(a1, . . . , ad−2)A/xA, it follows that in A
we have ad−1 ∈ m(I+xA)+(a1, . . . , ad−2)+xA, and hence I+xA = (x, y2, a1, . . . , ad−2).
Since I +(x, y) = m, we then have m = (x, y, a1, . . . , ad−2), contradicting µ(m) = d+1.
So a1, . . . , ad−1 are linearly independent in K/mK. Since µ(K) = d − 1 and K =
(y2, a1, . . . , ad−1)A/xA, it follows that y2 ∈ mK + (a1, . . . , ad−1)A/xA, or equivalently,
y2 ∈ m(I + xA) + (a1, . . . , ad−1) + xA. This implies that I + xA = (x, a1, . . . , ad−1).

From the exact sequence

0 → I/mI → m/mI
·x−→ m/mI → m/(mI + xm) → 0,

we obtain µ(I) = λ(I/mI) = λ
(
m/(mI + xm)

)
. On the other hand, µ(I) = µ(m) =

λ(m/m2) ≤ λ
(
m/(mI + xm)

)
, and therefore m2 = mI + xm.

We now prove that every ideal of type (1) or (2) is m-full.
By Lemma 1.3, we have

d + 1 = µ(I) ≤ λ(mI : x/mI) = λ(A/I + xA) + µ(I + xA/xA).

If I + xA = m, then λ(A/I + xA) = 1 and µ(I + xA/xA) = d, so λ(mI : x/mI) =
µ(I) = λ(I/mI) = d + 1. Then Im : x = I, so I is m-full. In the other case,
when I + xA = (x, a1, . . . , ad−1) and m2 ⊆ I + xA, we have λ(A/I + xA) ≤ 2 and
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µ(I + xA/xA) ≤ d − 1, so again λ(mI : x/mI) = µ(I) = d + 1, and hence I is
m-full. �

Theorem 3.2. Let (A, m) be a d-dimensional local ring with infinite residue field and
edim A = d + 1, and let I be an m-primary almost complete intersection ideal. If I is
integrally closed, then there exists a minimal set of generators x, a1, . . . , ad for m such
that either

(1) I = (xi+1, a1, . . . , ad−1, ad) with xi /∈ (a1, . . . , ad), or
(2) m2 = m(x, a1, . . . , ad−1) and I = (xi+1, a1, . . . , ad−1, z), for some element z ∈

(x, a1, . . . , ad−1).

Also, any ideal of type (1) is integrally closed. In particular, if the reduction number
r(m) is at least 2 (for example, a hypersurface of multiplicity at least 3), then I is
integrally closed if and only if I is of the type (1) described above.

Proof. Assume that I is integrally closed. Then I is m-full, so there exists x ∈ m \m2

with Im : x = I and I is of one of the forms described in Proposition 3.1.
First we consider the case when I + xA = m. Let i be such that xi /∈ I but

xi+1 ∈ I. Since (Im : x) = I, we have xi+1 /∈ Im, so there exist a1, . . . , ad such
that I = (xi+1, a1, . . . , ad). Since I + (x) = m, the ideal m is minimally generated by
x, a1, . . . , ad.

We now want to see when an ideal of the form Ii+1 := (xi+1, a1, . . . , ad) with m =
(x, a1, . . . , ad) is integrally closed. First let us note that Ii+1 is integrally closed if
and only if xi /∈ Ii+1. Indeed, if Ii+1 is not integrally closed, then there exists y ∈
Ii+1 \ Ii+1. Choose a unit u in A such that y = uxt + b for some positive integer t and
b ∈ (a1, . . . , ad). Then xt ∈ Ii+1 \ Ii+1, hence t ≤ i, and therefore xi ∈ Ii+1. The other
implication is clear.

On the other hand, we have xi ∈ Ii+1 if and only if xi ∈ (a1, . . . , ad). Indeed, if
xi ∈ Ii+1, then mi+1 + (a1, . . . , ad) = m(mi + (a1, . . . , ad)) + (a1, . . . , ad) is a reduction
of mi + (a1, . . . , ad), hence (a1, . . . , ad) is a reduction of mi + (a1, . . . , ad). This shows

that xi ∈ (a1, . . . , ad).

In conclusion, if k = max{s|xs /∈ (a1, . . . , ad)}, the ideal Ii+1 is integrally closed for
i ∈ {0, . . . , k} and not integrally closed for i ≥ k + 1.

Next we consider the case when I is of the second type described in Proposition 3.1,
i.e., there exist x, y, a1, . . . , ad−1 generators for m such that m2 = (x, a1, . . . , ad−1)m
and I + xA = (x, a1, . . . , ad−1). Let i be such that xi+1 ∈ I and xi /∈ I; since (Im :
x) = I, the element xi+1 is a minimal generator of I. Let b2, . . . , bd+1 be such that
I = (xi+1, b2, . . . , bd+1). Since (x, b2, . . . , bd+1) = (x, a1, . . . , ad−1) and µ(I) = d + 1, one
of the elements bj is in the ideal generated by x and the other elements bi. We may
assume that bd+1 ∈ (x, b2, . . . , bd), and hence we have m = (x, y, b2, . . . , bd).

If the reduction number r(m) ≥ 2, then I must be of the first type described in the
statement and, as we have seen in the first part of the proof, any such ideal is integrally
closed. As explained in the following remark, if A is Cohen-Macaulay, r(m) = 1 if and
only if A is a hypersurface of multiplicity e(A) = 2. �
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Remark 3.3. If (A, m) is a Cohen-Macaulay ring with infinite residue ring, it was proved
by Abhyankar [1] that e(A) ≥ edim A − dim A + 1, where e(A) is the Hilbert-Samuel
multiplicity of A . Moreover, Sally [8] proved that equality holds if and only if for some
(hence every) minimal reduction K of m, Km = m2. When A is a Cohen-Macaulay
local ring of embedding dimension d + 1, i.e., A is a hypersurface, this implies that
ideals of type (2) described in Theorem 3.2 exist only when e(A) = 2.

Note that ideals of type (1) exist in any local ring with edim A = d+1 (the maximal
ideal is such an example).

In the case when the reduction number of the maximal ideal is one, the characteriza-
tion given by Theorem 3.2 is rather weak. As the following example shows, not every
ideal of type (2) is integrally closed.

Example 3.4. Let A = C[[x, y]]/(xy + x3 + y3). Note that A is a one-dimensional
Cohen-Macaulay domain, e(A) = 2 and m2 = (x + y)m. Then µ(mn) = 2 for all n ≥ 2
and, by using the algorithm described in [2], it can be checked that m is a normal ideal.
On the other hand, in the ring A = C[[x, y]]/(y2), we have e(A) = 2, m2 = xm and the
ideal K = m2 = (x2, xy) is of type (2), but is not integrally closed as y ∈ K \K.

For one-dimensional rings, a better description is given by the following Proposition.

Proposition 3.5. Let (A, m) be a local Cohen-Macaulay ring of dimension one with
r(m) = 1 and let I be an m-primary ideal with µ(I) = 2. If I is integrally closed, then
there exist generators x, y for m, a non-negative integer n, and an integrally closed
ideal I ′ of type (1) such that I = xnI ′.

Proof. As in the proof of Theorem 3.2, either I is of the type (1), in which case we
take n = 0, or there exist x, y generators for m and z ∈ (x) such that m2 = xm and
I = (xi+1, z). We may also assume that x is a not a zero-divisor. Let n be a positive
integer such that z = xnz′ and z′ /∈ (x). Note that i + 1 > n, otherwise I would be
principal. Then I = xnI ′ where I ′ = (xi+1−n, z′), and since x is not a zero-divisor,
I ′ is also integrally closed. Write z′ = αx + βyt, with α, β ∈ A and β unit, so that
I ′ + (x) = (x, yt). Then we must have t = 1, otherwise yt ∈ m2 ⊆ (x), contradicting
z′ /∈ (x). In conclusion, I ′ is an ideal of type (1). �

For a hypersurface ring, the following proposition gives an effective way of deciding
when an ideal of the form (xi+1, a1, . . . , ad) is integrally closed.

Proposition 3.6. Let S = k[x1, x2, . . . , xd+1], R = S/(F ), where F ∈ m2, m =
(x1, . . . , xd+1), and let Ii+1 := (xi+1

1 , x2, . . . , xd+1)R. Consider the weighted grading
given by deg x1 = 1 and deg x2 = . . . = deg xd+1 = i and write F = Ft +Ft+1 + . . .+Fn,
where Fj is a homogeneous polynomial (in the above grading) of degree j (Ft 6= 0). Then
Ii+1 is integrally closed if and only if Ft(x1, 0, . . . , 0) = 0.

Proof. Note that Ii+1 is integrally closed if and only if Ii+1Rm is integrally closed.
Also, it follows from the proof of Theorem 3.2 that Ii+1 is integrally closed if and only

if xi
1 /∈ (x2, . . . , xd+1)R.
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First assume that xi
1 ∈ (x2, . . . , xd+1)R. Then

xin
1 + f1x

i(n−1)
1 + . . . + fn = FH,

for some fj ∈ (x2, . . . , xd+1)
j and H ∈ k[x1, x2, . . . , xd+1].

Using the homogeneous lexicographical monomial order with x1 < x2 < . . . < xd+1

and deg x1 = 1, deg x2 = . . . = deg xd+1 = i, the smallest monomial on the left
hand side of the above equality is xin

1 . This implies that the homogeneous part of
smallest degree of F must contain a term of the form a0x

t
1 with a0 ∈ k, a 6= 0, i.e.,

Ft(x1, 0, . . . , 0) 6= 0.
Conversely, assume that Ft(x1, 0, . . . , 0) 6= 0, i.e., one of the terms of Ft is of the form

a0x
t
1 with a0 ∈ k, a0 6= 0. Denote K = (x2, . . . , xd+1). For each j ∈ {t, . . . , n}, we can

write Fj = aj−tx
j
1 +F ′

j with aj−t ∈ k and F ′
j ∈ xt−i

1 K +xt−2i
1 K2 + · · ·+xt−si

1 Ks +Ks+1,
where s is the integer part of t/i.

Since F (x1, . . . , xd+1) = 0, we get an equation of the form

xt
1(a0 + a1x1 + · · ·+ an−tx

n−t
1 ) + g1x

t−i
1 + · · ·+ gsx

t−si
1 + gs+1 = 0,

where gj ∈ Kj, aj ∈ k, and s is the integer part of t/i. Note that u = (a0 + a1x1 +
· · ·+ an−tx

n−t
1 ) is a unit in Rm, so the equation[

xt
1u + g1x

t−i
1 + · · ·+ gsx

t−si
1 + gs+1

]i
= 0

gives the integral dependence of xi
1 over (x2, . . . , xd+1) in Rm. This shows that xi

1 ∈
(x2, . . . , xd+1)R. �

Remark 3.7. The ideals described in Theorem 3.2 are not necessarily normal. In fact,
for a hypersurface ring, in [2], there are necessary and sufficient conditions for the
maximal ideal m to be normal.
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