
DERIVATIONS AND RATIONAL POWERS OF IDEALS

CĂTĂLIN CIUPERCĂ

Abstract. If A is a commutative noetherian ring and δ is a derivation on A, we study

the integral closure, coefficient ideals, and rational powers of the ideals I of A satisfying

δ(I) ⊆ I.

1. Introduction

Let A be a commutative noetherian ring and δ : A → A a derivation on A. We say

that an ideal I of A is δ-invariant if δ(I) ⊆ I, where δ(I) is the ideal generated by all the

elements δ(f) for f ∈ I. The study of these ideals was initiated by Seidenberg [11] and we

refer the reader to his original paper for some classical results regarding δ-invariant ideals.

In particular, if the ring A contains a field of characteristic zero, Seidenberg proved that

all the associated prime ideals of I are δ-invariant and I has a primary decomposition with

δ-invariant primary components. More recently, a study of Miranda Neto [8] obtains several

interesting results about δ-invariant ideals.

While the δ-invariant ideals have been studied extensively since their introduction, the

current results in the literature do not address the properties of their integral closures or

other related closures. On the other hand, in the context of rings, a well known theorem of

Seidenberg [10, Section 3] shows that if D is a derivation on the quotient field of a noetherian

domain A containing a field of characteristic zero and D(A) ⊆ A, then D(A) ⊆ A, where A

is the normalization of A.

The rational powers Iα of an ideal I are generalizations of the integral closures In of the

power ideals of I (2.1). If A contains a field of characteristic zero, δ is a derivation on A, and

I is an ideal of A, it is the main aim of this paper to study the behavior of the ideals δ(Iα).
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In Theorem 2.4 we prove that if I is δ-invariant, then Iα is δ-invariant for every rational

α ≥ 0. In particular, the integral closure of a δ-invariant ideal is δ-invariant.

In Corollary 2.5 we prove that the following are equivalent: (a) δ(I) ⊆ I; (b) δ(Iα) ⊆ Iα

for every rational α ≥ 0; (c) δ(In) ⊆ In for some integer n ≥ 1. Further refinements of these

equivalences are obtained in Theorem 2.14 and Corollary 2.15. For an arbitrary ideal I, we

show that

I : δ(I) ⊆ I2 : δ(I2) ⊆ . . . ⊆ In : δ(In) ⊆ I : δ(I) ⊆ Iα : δ(Iα)

for every integer n ≥ 1 and every rational α ≥ 0. Moreover,

I : δ(I) = In : δ(In)

for every integer n ≥ 1. In particular, if In is δ-invariant for some n ≥ 1, then I is δ-

invariant. The main results are obtained by applying Seidenberg’s theorem [10, Section 3] to

various Rees-like algebras. Some properties can be recovered by using a different approach

that involves the use of the Rees valuations of the ideal I (2.6).

We also show that there are examples of monomial ideals I in a polynomial ringK[X1, . . . , Xd]

with δ(I) * δ(I), where δ = ∂i is a partial derivation (Remark 2.8). Moreover, for the ideal

∂(I) generated by all the partial derivatives of the elements of I, the inclusion ∂(I) ⊆ ∂(I)

also fails in general, even for monomial ideals (Remark 2.13).

From a different perspective of looking at integral closure, in Section 3 we consider the

coefficient ideals associated with an arbitrary ideal in a noetherian domain A. Using the

approach of Corso, Polini, and Vasconcelos in [3], for each j = 1, . . . , d = dimA, the j-th

coefficient ideal of I is defined by I{j} = {a ∈ A | ht(R :R at) ≥ j} where R = A[It, t−1].

Under some mild conditions on the domain A, the coefficient ideals give a filtration between

I and its integral closure I

I ⊆ I{d} ⊆ I{d−1} ⊆ . . . ⊆ I{1} ⊆ I,

where I{d} recovers the Ratliff-Rush ideal ∪n≥1(In+1 : In) of I [9]. The construction of the

coefficient ideals is of such a nature that one may view the integral closure I as the 0-th

coefficient ideal I{0}.
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We look at the behavior of these ideals under derivations and show, in particular, that if I

is δ-invariant, then all the coefficient ideals I{j} (1 ≤ j ≤ d) are δ-invariant (Corollary 3.10).

This property, as mentioned earlier in this section, is also satisfied by the integral closure

I. More generally, we are able to prove that if I and J are ideals of a universally catenary

domain A such that I + δ(I) ⊆ J ⊆ I, then δ(I{j}) ⊆ J{j} for every j = 1, . . . , d.

Throughout this paper, all rings are commutative with identity. For a ring A, a derivation

δ : A→ A is a Z-module homomorphism that satisfies the equality δ(ab) = aδ(b) + δ(a)b for

every a, b ∈ A. We denote by Der(A) the A-module of derivations on A.

2. Derivations and rational powers of ideals

If A is a subring of B, the set of all elements x ∈ B that satisfy an equation of integral

dependence xn +a1x
n−1 + · · ·+an = 0 with coefficients ai ∈ A is a subring of B, the integral

closure of A in B.

2.1 (Integral closure and rational powers of ideals). For an ideal I in a noetherian ring A, an

element x ∈ A is said to be integral over I if it satisfies an equation of integral dependence

xn+a1x
n−1+· · ·+an = 0 with coefficients ai ∈ I i. The elements that are integral over I form

an ideal I of A, which we refer to as the integral closure of I. A different way to think about

the integral closure of an ideal I is by using the (extended) Rees algebra R = A[It, t−1]. The

integral closure of R in A[t, t−1] is R = ⊕n∈ZIntn, where In = A for n ≤ 0.

If α = p
q

is a rational number with p and q positive integers, the α-th rational power of an

ideal I is defined by Iα := {x ∈ A | xq ∈ Ip}. It can be seen that the definition depends only

on the quotient p/q. Moreover, Iα is an ideal of A that is always integrally closed, Iα ⊆ Iβ

for α ≥ β, and IαIβ ⊆ Iα+β for every α, β. When α = m is a positive integer, we have

Im = Im, so one may view rational powers as generalizations of the integral closures of the

powers of an ideal. Moreover, (In) 1
n

= I for every positive integer n. We refer the reader to

[7, 10.5] for a more detailed account of the rational powers and their properties.

Remark 2.2. For a positive integer a, denote Ra = A[Ita, t−1] = ⊕n∈ZVntn and let Ra be its

integral closure in A[t, t−1]. First note that Vn = Id
n
a
e for n ≥ 1, where d e is the upper ceiling

function. Then Ra = ⊕n∈ZKnt
n is a graded ring and Kn = In/a for every n ≥ 1. Indeed,
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if f ∈ Kn, then fatna ∈ Knat
na, hence fatna satisfies an equation of integral dependence

(fatna)s + a1(f
atna)s−1 + · · · + as = 0 with ai ∈ Ra. By taking the homogeneous part of

t-degree nas in this equation, we may actually assume that ai ∈ Initnai for i = 1, . . . , s.

Writing ai = bit
nai with bi ∈ Ini produces an equation of integral dependence of fa over In,

hence f ∈ In
a
. Conversely, if f ∈ In

a
, an equation of integral dependence of fa over In gives

an equation (fatna)s + b1t
na(fatna)s−1 + · · ·+ bst

nas = 0 with bi ∈ Ini, which shows that ftn

is integral over Ra = A[Ita, t−1]. Thus f ∈ Kn.

Remark 2.3. The study of the integral closure of an ideal I in a noetherian ring A can often be

reduced to the case when A is an integral domain. In general, x ∈ I if and only if x ∈ I(A/p)

for every minimal prime ideal p of A ([7, Proposition 1.1.5]). It follows immediately from

definition that a similar property holds for any rational power of I, that is, x ∈ Iα if and

only if x ∈ (I(A/p))α for every minimal prime ideal p of A.

The next result is a consequence of Seidenberg’s theorem [10, Section 3] applied to the

algebra Ra = A[Ita, t−1].

Theorem 2.4. Let A be a noetherian ring containing a field of characteristic zero, δ ∈

Der(A), and I a δ-invariant ideal of A. Then Iα is δ-invariant for every non-negative

α ∈ Q. In particular, the integral closure I is δ-invariant.

Proof. We first note that we can assume that A is an integral domain. Indeed, every minimal

prime ideal p of A is also δ-invariant [11, Theorem 1], so δ induces a derivation δp : A/p →

A/p. The ideal I(A/p) is δp-invariant and, if the theorem holds for integral domains, it

follows that

δ(Iα)A/p ⊆ δp((I(A/p))α) ⊆ (I(A/p))α

for every minimal prime ideal p. By Remark 2.3 this implies that δ(Iα) ⊆ Iα.

We now assume that A is an integral domain. We start by writing α = N
a

with N, a

positive integers. Let Ra = A[Ita, t−1] = ⊕n∈ZVntn and denote by Ra the integral closure

of R in A[t, t−1]. Then Ra = ⊕n∈ZKnt
n is a graded subalgebra of A[t, t−1] with Kn = A for

n ≤ 0 and Kn = In
a

for n ≥ 1.
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Applying δ coefficient-wise, the derivation δ : A → A extends to a derivation on A[t]

and, through the quotient rule, to a derivation on Q(A)(t) which we denote D. Since I is

δ-invariant, we have δ(Ik) ⊆ Ik−1δ(I) ⊆ Ik, so all the powers of I are δ-invariant. This

means that D(Ra) ⊆ Ra and from Seidenberg’s theorem [10, Section 3] it follows that D

maps the integral closure of Ra in its quotient field to itself. But D(A[t, t−1]) ⊆ A[t, t−1], so

that D(Ra) ⊆ Ra. From this we obtain D(Knt
n) ⊆ Knt

n, or equivalently, δ(Kn) ⊆ Kn, for

all n. Since Iα = IN
a

= KN , the conclusion follows. �

Corollary 2.5. Let A be a noetherian ring containing a field of characteristic zero. Let I

be an ideal of A and δ ∈ Der(A). The following are equivalent:

(1) δ(I) ⊆ I;

(2) δ(Iα) ⊆ Iα for every rational α ≥ 0;

(3) δ(In) ⊆ In for every integer n ≥ 1;

(4) δ(In) ⊆ In for some integer n ≥ 1.

Proof. Since the rational powers of I and I are the same, the implication (1)⇒(2) follows

from Theorem 2.4 applied to the integral closure I. We obtain (4)⇒(1) by applying the

same theorem for α = 1
n

to the ideal In and using the fact that (In) 1
n

= (In) 1
n

= I. �

2.6 (Derivations and Rees valuation rings). Let A be noetherian ring containing a field of

characteristic zero, δ ∈ Der(A), and I a δ-invariant ideal. We will use the Rees valuations of

I to show that δ(In) ⊆ In. This will also establish the implication (1)⇒(3) from Corollary

2.5.

Following the same type of argument used at the beginning of the proof of Theorem 2.4,

we can assume that A is an integral domain. We then extend the derivation δ to the quotient

field Q(A) of A and construct the Rees valuations of I as follows. If I = (a1, . . . , as), for each

i let Si = A[I/ai] and Si the integral closure of Si. The set Rees(I) of the Rees valuations of

I consists of all discrete valuation domains (Si)p, where i varies from 1 to s and p varies over

all the prime ideals of Si minimal over aiSi. We refer the reader to [7, Section 10.2] for a

detailed description of this construction. Let V = A[I/a]p ∈ Rees(I), where a ∈ I. We claim

that δ(V ) ⊆ V . It is enough to prove that δ(A[I/a]) ⊆ A[I/a]. Indeed, by Seidenberg’s
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theorem [10, Section 3], δ(A[I/a]) ⊆ A[I/a] and through the quotient rule δ(V ) ⊆ V . As

A[I/a] = ∪n≥0(In/an), let f ∈ In. Then

δ
( f
an

)
=
δ(f)an − nan−1δ(a)f

a2n
.

Since δ(f) ∈ In−1δ(I) ⊆ In and δ(a) ∈ δ(I) ⊆ I, it follows that δ(f/an) ∈ I2n/a2n, and

therefore δ(A[I/a]) ⊆ A[I/a].

Since δ(I) ⊆ I and δ(V ) ⊆ V , it follows that δ(IV ) ⊆ IV , for if x =
∑

i aivi with

vi ∈ V , then δ(x) =
∑

i δ(ai)vi +
∑

i aiδ(vi) ∈ IV . Moreover, for every n ≥ 1, δ(InV ) ⊆

In−1V δ(IV ) ⊆ InV .

Finally, from [7, Theorem 10.2.2], for every n ≥ 1 we obtain

δ(In) ⊆
⋂

V ∈Rees(I)

δ(InV ) ∩ A ⊆
⋂

V ∈Rees(I)

InV ∩ A = In.

For computing concrete examples in polynomial rings, we will often use the following

immediate observation.

Remark 2.7. Let A = K[X1, . . . , Xd] be a polynomial ring over a field K of characteristic zero

and δ = ∂
∂Xj

(1 ≤ j ≤ d). Let I be a monomial ideal with I = (Xn1
j m1, . . . , X

nk
j mk,mk+1, . . . ,ms)

where n1, . . . , nk ≥ 1 and the monomials mi (1 ≤ i ≤ s) are not divisible by Xj. Then

δ(I) = (Xn1−1
j m1, . . . , X

nk−1
j mk,mk+1, . . . ,ms).

Indeed, Xni−1
j mi = 1

ni
δ(Xni

j mi) for 1 ≤ i ≤ k and mi = δ(Xjmi) for k + 1 ≤ i ≤ s, and

the inclusion ⊇ follows. The other inclusion can also be checked immediately by considering

δ(m) for arbitrary monomials m ∈ I.

Remark 2.8. We have seen already in Theorem 2.4 that if δ(I) ⊆ I, then δ(I) ⊆ I. It is worth

mentioning that a more general result of the type “if δ(I) ⊆ J , then δ(I) ⊆ J ” does not hold.

In particular, it is not always true that δ(I) ⊆ δ(I), as one can see in the following example.

Let K be a field of characteristic zero, A = K[X, Y ] with the derivation δ = ∂
∂X

: A → A,

and I = (X3, X2Y, Y 4). Note that I = (X3, X2Y,XY 3, Y 4). From Remark 2.7 it follows that

δ(I) = (X2, XY, Y 4) and δ(I) = (X2, XY, Y 3). The ideal δ(I) = (X2, XY, Y 4) is integrally

closed and we can see that Y 3 ∈ δ(I) \ δ(I).
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Remark 2.9. In general, δ(I) is not contained in δ(I). In particular, if I is integrally closed,

then δ(I) is not necessarily integrally closed. Consider for example the ideal I = (X, Y ) in

K[X, Y ] (charK = 0) and the derivation δ = X2 ∂
∂X

+ Y 2 ∂
∂Y

. Then δ(I) = (X2, Y 2), which

is not integrally closed.

Remark 2.10. The ideal I can be δ-invariant even when I is not. For example, let I =

(X2, Y 2) in K[X, Y ] (charK = 0) and let δ = X( ∂
∂X

+ ∂
∂Y

). Then I = (X2, XY, Y 2) and

δ(I) = X(X, Y ), so I is δ-invariant. On the other hand, we also have δ(I) = X(X, Y ), so I

is not δ-invariant.

We now present several results regarding derivations of integral closures and rational

powers of arbitrary ideals. For polynomial rings and partial derivatives, the following result

was proved in [2, Theorem 4.3]. Essentially the same proof works in the case stated below.

For convenience, we present a brief outline of it.

Theorem 2.11. Let A be a noetherian ring containing a field of characteristic zero. Let I

be an ideal of A and δ ∈ Der(A). Then, for every α ∈ Q with α ≥ 1, we have

δ(Iα) ⊆ Iα−1.

Proof. With the same type of argument used at the beginning of the proof of Theorem 2.4,

we can assume that A is an integral domain.

Write α = N/a with a,N positive integers and let Ra = A[Ita, t−1] = ⊕n∈ZVntn. Let

Ra = ⊕n∈ZKnt
n denote the integral closure of Ra in A[t, t−1]. After extending the derivation

δ to Q(A)(t), consider the derivation

D =
1

ta
δ : Q(A)(t)→ Q(A)(t).

As already noted in Remark 2.2, Vn = Id
n
a
e, so that δ(Vn) ⊆ Vn−a. This means that

D(Ra) ⊆ Ra and since D(A[t, t−1]) ⊆ A[t, t−1], by Seidenberg’s theorem [10, Section 3]

we obtain D(Ra) ⊆ Ra, or equivalently, δ(Kn) ⊆ Kn−a for every integer n. On the other

hand, as explained in Remark 2.2, we have KN = IN/a = Iα and KN−a = I(N−a)/a = Iα−1,

so ∂(Iα) ⊆ Iα−1. �
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Example 2.12. For a derivation δ and an ideal I, we know that δ(In) ⊆ In−1δ(I) ⊆ In−1

and Theorem 2.11 shows that δ(In) ⊆ In−1 for every n ≥ 1. It is perhaps worth noting

that the inclusion δ(In) ⊆ In−1δ(I) does not hold in general. We present an example

where δ(I2) 6⊆ Iδ(I). We need to start with an ideal I such that I2 6= (I)2. For this,

we take I = (X2, Y 3, Z7) ⊆ K[X, Y, Z] where K is a field of characteristic zero, an ideal

that appears in [7, Exercise 1.14, Section 1.8], and δ = ∂
∂X

. First note that (XY 2Z6)20 =

(Y Z)(X2)10(Y 3)13(Z7)17 ∈ I40. Then XY 2Z6 ∈ I2, so Y 2Z6 ∈ δ(I2). On the other hand, I =

(X2, Y 3, XY 2, XY Z2, XZ4, Y 2Z3, Y Z5, Z7), δ(I) = (X, Y 2, Y Z2, Z4) and Y 2Z6 /∈ Iδ(I).

The computations were also checked with Macaulay2 [4].

Remark 2.13. Regarding Remark 2.8, even if we consider the ideal ∂(I) generated by all the

partial derivatives of the elements of an ideal I in a polynomial ring K[X1, . . . , Xd], it is

still not necessarily true that ∂(I) ⊆ ∂(I). This fails even for monomial ideals. Consider

again the ideal I = (X2, Y 3, Z7) ⊆ K[X, Y, Z] from Example 2.12, where K is a field of

characteristic zero. Since (XY Z2)6 = Z5(X2)3(Y 3)2Z7 ∈ I6, we have XY Z2 ∈ I. Thus

Y Z2 = ∂
∂X

(XY Z2) ∈ ∂(I). On the other hand, using Remark 2.7, we obtain ∂(I) = ∂1(I) +

∂2(I) +∂3(I) = (X, Y 2, Z6) and therefore ∂(I) = (X, Y 2, Z6, Y Z3). Then Y Z2 ∈ ∂(I)\∂(I).

The following results improve the conclusions obtained in Corollary 2.5.

Theorem 2.14. Let A be a noetherian ring containing a field of characteristic zero and I

an ideal of A. Let δ ∈ Der(A). Then

(a) I : δ(I) ⊆ I : δ(I);

(b) I : δ(I) ⊆ Iα : δ(Iα) for every rational α ≥ 0;

(c) In : δ(In) ⊆ In+1 : δ(In+1) for every integer n ≥ 1.

Proof. (a) Let f ∈ I : δ(I) and let δf : A → A be the derivation defined by δf (g) = fδ(g).

Then δf (I) ⊆ I and from Theorem 2.4 we obtain δf (I) ⊆ I. Thus fδ(I) ⊆ I.

(b) As above, for f ∈ I : δ(I) consider the derivation δf = f · δ : A→ A. Then δf (I) ⊆ I

and by applying Theorem 2.4 for the ideal I we obtain δf (Iα) ⊆ Iα. Since the rational

powers of I and I coincide, this shows that fδ(Iα) ⊆ Iα for every f ∈ I : δ(I).
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(c) For x1, . . . , xn+1 ∈ I denote x̂i = x1 · · ·xi−1xi+1 · · ·xn+1. Then we have

(n+ 1)δ(x1x2 · · · xn+1) =
n+1∑
i=1

δ(xix̂i)

=
n+1∑
i=1

xiδ(x̂i) +
n+1∑
i=1

δ(xi)x̂i

=
n+1∑
i=1

xiδ(x̂i) + δ(x1x2 · · ·xn+1),

so nδ(x1x2 · · ·xn+1) =
∑n+1

i=1 xiδ(x̂i). For f ∈ In : δ(In), we then obtain

nfδ(x1x2 · · ·xn+1) =
n+1∑
i=1

xifδ(x̂i) ∈
n+1∑
i=1

xiI
n ⊆ In+1.

Since this holds for arbitrary x1, . . . , xn+1 ∈ I, it follows that fδ(In+1) ⊆ In+1. �

Corollary 2.15. Let A a noetherian ring containing a field of characteristic zero and I an

ideal of A. Let δ ∈ Der(A). Then

(a) I : δ(I) = In : δ(In) for every n ≥ 1;

(b) In : δ(In) ⊆ I : δ(I) for every n ≥ 1;

(c) If In is δ-invariant for some n ≥ 1, then I is δ-invariant;

(d) If Im is integrally closed for some m ≥ 1, then I : δ(I) = In : δ(In) for every n ≥ m.

Proof. (a) The inclusion I : δ(I) ⊆ In : δ(In) follows directly from Theorem 2.14 (b). If we

apply Theorem 2.14 (b) to the ideal In for α = 1
n

we also obtain

In : δ(In) ⊆ (In) 1
n

: δ((In) 1
n
),

and since (In) 1
n

= I, the proof is finished.

(b) From part (a) and Theorem 2.14 (a) we have

In : δ(In) ⊆ In : δ(In) = I : δ(I),

which also proves part (c).

(d) From parts (a), (b) and Theorem 2.14 (c) we have

Im : δ(Im) ⊆ Im+1 : δ(Im+1) ⊆ . . . ⊆ I : δ(I) = Im : δ(Im).
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Since Im is integrally closed, the conclusion follows. �

3. Derivations and coefficient ideals

3.1. We begin by describing a slight modification of a construction detailed in the work of

Corso, Polini and Vasconcelos [3, p. 216]. Let R be a noetherian domain of dimension d

with quotient field K = Q(R). For each integer j = 1, . . . , d + 1, define R(j) = {x ∈ K |

ht(R :R x) ≥ j} so that we obtain a chain of rings

R = R(d+1) ⊆ R(d) ⊆ . . . ⊆ R(2) ⊆ R(1) = K.

Also recall that an S2-ification S2(R) of R is a birational extension of R that is minimal

among the finite birational extensions that satisfy the (S2) property of Serre as R-modules.

If R has an S2-ification, then it is unique and S2(R) = R(2) [6, Proposition 2.4]. We also

note that the S2-ification S2(R) exists for a large class of rings R. It exists, for example,

when R is a universally catenary domain such that the extension R ⊆ R is finite, where R

is the integral closure of R in its quotient field [5, 5.11.2].

Theorem 3.2. Let R ⊆ S be a birational integral extension of noetherian domains with

quotient field K. Additionally, if R 6= S, assume that R is universally catenary. Let δ :

K → K be a derivation such that δ(R) ⊆ S. Then δ(R(j)) ⊆ S(j) for every j = 1, . . . , d+ 1.

Proof. Let α ∈ R(j), set I = (R :R α), and let x ∈ I. Since xα ∈ R we obtain αδ(x)+xδ(α) ∈

S, and therefore xαδ(x) + x2δ(α) ∈ S. But xα ∈ R and δ(x) ∈ S, so that x2δ(α) ∈ S. If we

denote J := 〈x2 | x ∈ I〉 ⊆ R, this shows that

(3.2.1) JSδ(α) ⊆ S for every α ∈ R(j).

By [7, 4.8.6 and B.5.1], for every prime ideal Q of S we have htQ = ht(Q ∩ R). Since

ht J = ht I ≥ j, this implies that htQ ≥ j for every prime Q ⊇ JS, so ht JS ≥ j. From

(3.2.1) it now follows that δ(R(j)) ⊆ S(j). �

Remark 3.3. The assumption that R is universally catenary is only used to conclude that

htQ = ht(Q ∩R) for every prime ideal Q of S. For S = R this assumption is not needed.
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Remark 3.4. The original construction in [3] considers the chain of rings given by {x ∈ R |

dim(R/(R :R x)) ≤ d− j} (1 ≤ j ≤ d+ 1), where R is the integral closure of R in K.

Remark 3.5. If R is a noetherian domain containing a field of characteristic zero and δ :

K → K is a derivation with δ(R) ⊆ R, by Seidenberg’s theorem [10, Section 3] we know

that δ(R) ⊆ R and therefore δ(R(j)∩R) ⊆ R(j)∩R. Moreover, if R has an S2-ification, then

S2(R) = R(2) is a finite extension of R, and therefore R(j) ⊆ R for j ≥ 2.

Remark 3.6. For a derivation δ on K, while Seidenberg’s theorem shows that δ(R) ⊆ R

implies δ(R) ⊆ R, a more general result of the type “if R ⊆ S is a birational extension

and δ(R) ⊆ S, then δ(R) ⊆ S ”, does not hold in general. A counterexample can be

constructed from the ideal I = (X3, X2Y, Y 4) ⊆ A = K[X, Y ] (charK = 0) considered

in Remark 2.8. Let R = A[It, t−1], δ : Q(A)(t) → Q(A)(t) the derivation induced by the

derivation δ = ∂
∂X

: A → A, and S = A[δ(I)t, t−1]. We have already seen in Remark 2.8

that δ(I) = (X2, XY, Y 4), so I ⊆ δ(I). This implies that δ(In) ⊆ In−1δ(I) ⊆ δ(I)n for

every n ≥ 1, so δ(R) ⊆ S. On the other hand, from the same Remark 2.8 we know that

Y 3 ∈ δ(I) \ δ(I), so Y 3t ∈ δ(R) but Y 3t /∈ S.

3.7 (Coefficient ideals). Let A be a noetherian domain of dimension d and let R = A[It, t−1]

be the extended Rees algebra of I.

As in [3], using the construction 3.1 in the context of extended Rees algebras, for j =

1, . . . , d+ 1 define

I{j} = {a ∈ A | at ∈ R(j+1)},

which produces a chain of ideals

I = I{d+1} ⊆ I{d} ⊆ . . . ⊆ I{1}.

We refer to I{j} as the j-th coefficient ideal of I. We can also define I{0} := I, the integral

closure of I. If R has an S2-ification S2(R), we have S2(R) = R(2) ⊆ R, hence I{1} ⊆ I{0} =

I.

The S2-ification ofR exists, for example, when A is a formally equidimensional analytically

unramified local domain. Under these assumptions on the ring A, if I is an ideal primary

to the maximal ideal of A, it is proved in [1, Theorem 2.5] that I{1} is the largest ideal
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containing I such that e0(I) = e0(I{1}) and e1(I) = e1(I{1}), where e0, . . . , ed denote the

Hilbert coefficients of I. More generally, in [3, Theorem 4.2], it is proved that I{j} is the

largest ideal containing I such that ei(I) = ei(I{j}) for i = 0, . . . , j, and therefore the ideals

I{j} coincide with the coefficient ideals introduced by Shah in [12]. (Note that [3] uses a

different notational convention for the coefficient ideals.)

The following is an immediate consequence of Theorem 3.2.

Theorem 3.8. Let A be a noetherian domain of dimension d, δ ∈ Der(A), and I and J

ideals of A such that I + δ(I) ⊆ J ⊆ I. Additionally, if I 6= J , assume that A is universally

catenary. Then δ(I{j}) ⊆ J{j} for every j = 1, . . . , d.

Proof. First note that δ(In) ⊆ In−1δ(I) ⊆ Jn for every n ≥ 1. Then, for the integral

birational extension A[It, t−1] ⊆ A[Jt, t−1] and the extension of the derivation δ to Q(A)(t),

we have δ(A[It, t−1]) ⊆ A[Jt, t−1]. For a ∈ I{j} we have at ∈ (A[It, t−1])(j+1), and hence, by

Theorem 3.2, δ(a)t ∈ (A[Jt, t−1])(j+1), i.e., δ(a) ∈ J{j}. �

Applying Theorem 3.8 for J = I + δ(I) we obtain the following immediate consequences.

Corollary 3.9. Let A be a universally catenary domain of dimension d, I an ideal of A and

δ ∈ Der(A). If δ(I) ⊆ I, then δ(I{j}) ⊆ (I + δ(I)){j} for every j = 1, . . . , d.

Corollary 3.10. Let A be a noetherian domain of dimension d, δ ∈ Der(A), and I a δ-

invariant ideal of A. Then I{j} is δ-invariant for every j = 1, . . . , d.

We now recall same elementary properties of the Veronese subring of a graded ring.

3.11 (Veronese subrings). If S = ⊕n∈ZSn is a graded ring, for k ≥ 1 let S[k] = ⊕n∈ZSkn be the

k-th Veronese subring. There is a one-to-one inclusion preserving correspondence between

the set H(S) of homogeneous prime ideals of S and the set H(S[k]) of homogeneous prime

ideals of S[k]. If ϕ : H(S)→ H(S[k]) is defined by ϕ(P ) = P ∩ S[k] and ψ : H(S[k])→ H(S)

is defined by ψ(Q) =
√
QS, then ϕ and ψ are inverses of each other. In particular, if I

and J are a homogeneous ideals of S and S[k], respectively, then ht I = ht(I ∩ S[k]) and

ht J = ht(JS).
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Before proving an analogue of Theorem 2.11 for coefficient ideals we need to establish the

following.

Proposition 3.12. Let A be an noetherian domain of dimension d, I an ideal of A, and

R = A[It, t−1]. Then, for j = 1, . . . , d and every m ≥ 1, we have

(Im){j} = {a ∈ A | atm ∈ R(j+1)}.

Proof. We can identify the extended Rees algebra R(Im) of Im with R[m] = ⊕n∈ZImntmn.

For αtm ∈ A[t, t−1], let J = (R :R αtm) ⊆ R and L = (R[m] :R[m] αtm) ⊆ R[m]. Note that

L = J ∩ R[m], so by 3.11 we have htL = htJ . Therefore, for a ∈ A, we have atm ∈ R(j+1)

if and only if atm ∈ R[m](j+1)
, or equivalently, a ∈ (Im){j}. �

Theorem 3.13. Let A be a noetherian domain of dimension d, I an ideal of A, and δ ∈

Der(A). Then, for j ∈ {1, . . . , d+ 1} and n ≥ 2, we have

δ((In){j}) ⊆ (In−1){j}.

Proof. As done before, we extend the derivation δ to a derivation on Q(A)(t). Let R =

A[It, t−1] and consider the derivation D = t−1δ : Q(A)(t) → Q(A)(t). Since D(R) ⊆

R, by Theorem 3.2 we have D(R(j+1)) ⊆ R(j+1), which by Proposition 3.12 implies that

δ((In){j}) ⊆ (In−1){j}. �
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[1] Cătălin Ciupercă, First coefficient ideals and the S2-ification of a Rees algebra, J. Algebra 242 (2001),

no. 2, 782–794, DOI 10.1006/jabr.2001.8835. MR1848972 ↑11

[2] , Integral closure of strongly Golod ideals, to appear in Nagoya Math. J., DOI

10.1017/nmj.2019.22. ↑7

[3] Alberto Corso, Claudia Polini, and Wolmer V. Vasconcelos, Multiplicity of the special fiber of blowups,

Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 2, 207–219, DOI 10.1017/S0305004105009023.

MR2212275 ↑2, 10, 11, 12

[4] Daniel R. and Stillman Grayson Michael E., Macaulay2, a software system for research in algebraic

geometry, Available at https://www.math.uiuc.edu/Macaulay2/. ↑8
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