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Abstract. Let (A, m, k) be a d-dimensional (d ≥ 1) quasi-unmixed
analytically unramified local domain with infinite residue field. If I is
an m-primary ideal, Shah defined the first coefficient ideal of I to be the
largest ideal I{1} containing I such that ei(I) = ei(I{1}) for i = 0, 1.

Assume that A is (S2) and let S̃ = ⊕n∈ZIntn be the S2-ification of the
extended Rees algebra S = A[It, t−1]. We prove that In = (In){1} for
every n ≥ 1. One of the consequences is a procedure of computing first
coefficient ideals.

Introduction

Let (A,m, k) be a quasi-unmixed local ring and let I be an m-primary ideal
of A. Shah [15, Theorem 1] proved that there exists a unique ideal I{1}, the
first coefficient ideal of I, that is maximal among the ideals containing I for
which the first two Hilbert coefficients are equal to those of I. The structure
and properties of these first coefficient ideals have been extensively analyzed
by Heinzer, Lantz, Johnston, and Shah ([15], [7], [8], [9]).

The purpose of this note is to find a procedure of computing first coef-
ficient ideals. We do this by proving that for a large class of rings, (In){1}
is exactly the homogeneous part of degree n of the S2-ification of the Rees
algebra R = A[It]. This reduces the problem to the computation of the
ring of endomorphisms of the canonical ideal of R. The construction of the
S2-ification of a Rees algebra has also been studied by Noh and Vasconcelos
in [14].

In the first section we establish the notation and introduce the main
concepts. Section 2 contains the main result of this note. Let (A,m, k) be a
d-dimensional (d ≥ 1) quasi-unmixed, analytically unramified local domain
with infinite residue field that satisfies the condition (S2), and I an m-
primary ideal. Then the homogeneous component of degree n ≥ 1 of the S2-
ification of S = A[It, t−1] is equal to (In){1}. If ht I ≥ 2 a similar statement
holds for the S2-ification of R = A[It]. The last section contains some
applications of this result and an explicit way to compute first coefficient
ideals.
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1. Preliminaries

1.1. The (S2) property of Serre. Let A be a Noetherian ring and let M
be a finitely generated A-module. We say that M satisfies Serre’s (S2)
property if for every prime ideal p of A

depthMp ≥ inf{2,dimMp}. (∗)

We say that the ring A satisfies (S2) if it satisfies (S2) as an A-module (no
embedded prime ideals and ht p = 1 for all p ∈ Ass(A/xA) for any regular
element x ∈ A). In the literature there is another definition for the (S2)
property where the condition (∗) is replaced by

depthMp ≥ inf{2,ht p}. (∗∗)

In general (∗∗) implies (∗) and if M is a faithful A-module, (∗) is equivalent
to (∗∗).

1.2. Remark. [6, (EGA) 5.7.11] Let A ↪→B be a finite extension of rings.
If B satisfies (S2) as an A-module then B satisfies (S2) as a ring (irrespective
of the chosen definition). The reverse implication is also true if, for example,
B is local and catenary (therefore equidimensional).

Following [10] we now define the S2-ification of a Noetherian domain.

1.3. Definition. Let A be a Noetherian domain with quotient field Q(A).
We say that a domain B is an S2-ification of A if:

(1) A ⊆ B ⊆ Q(A) and B is module-finite over A,
(2) B is (S2) as an A-module, and
(3) for all b in B \A, htD(b) ≥ 2 where D(b) = {a ∈ A | ab ∈ A}.

1.4. Remark. ([10, 2.4]) In general, the S2-ification of a domain might not
exist, but if there is one, then it must be unique. Denote

C := {b ∈ Q(A) | htD(b) ≥ 2}.

Note that C can also be written C =
⋂{

Ap | ht p = 1
}

.
Then A has an S2-ification Ã if and only if C is a finite extension of A, in

which case Ã = C. It is also easy to observe that Ã is a finite extension of
A inside the quotient field, minimal with the property that it has the (S2)
property as an A-module. In many instances we will see it in this way.

1.5. Remark. If A is a universally catenary, analytically unramified do-
main, then A has an S2-ification ([6, (EGA) 5.11.2]).

1.6. Remark. ([10, 2.7]) If (A,m, k) is a local domain and ω is a canonical
module for A, then A ↪→HomA(ω, ω) is an S2-ification of A.

For more results about S2-ification we refer to [1], [2], and [10].

1.7. Coefficient ideals. Let (A,m, k) be a local ring and I an m-primary
ideal. For sufficiently large values of n, λ(R/In) is a polynomial PI(n) in n



FIRST COEFFICIENT IDEALS 3

of degree d, the Hilbert polynomial of I. We write this polynomial in terms
of binomial coefficients:

PI(n) = e0(I)
(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2
d− 1

)
+ · · ·+ (−1)ded(I)

The coefficients ei(I) are integers and we call them the Hilbert coefficients
of I.

In [15] the following theorem is proved.

1.8. Theorem (Shah). Let (A,m, k) be a quasi-unmixed local ring of di-
mension d > 0 with infinite residue field and I an m-primary ideal. Then
for each integer k in {0, 1, . . . , d} there exists a unique largest ideal I{k}
containing I such that

ei(I) = ei(I{k}) for i = 0, 1, . . . , k.

The ideal I{k} is called the k-th coefficient ideal of I.

I{0} is the integral closure of I and if I contains a regular element, then I{d}
is the Ratliff-Rush closure of I.

1.9. For an ideal I of a local domain A, the blowup B(I) of I is the model

B(I) = {A[I/x]P | 0 6= x ∈ I and P ∈ Spec(A[I/x])}.
B(I) is the set of all local rings between A and Q(A) minimal with respect
to domination in which the extension of I is a principal ideal. For the basic
facts on models we refer the reader to [18, Chapter VI].

In [7, 3.2] the first coefficient domain D1 of I is defined to be the inter-
section of the local domains on the blowup B(I) of dimension at most 1 in
which the maximal ideal is minimal over the extension of I. By [8, Theorem
3.17] it follows that I{1} = ID1∩A. It is also observed that since k is infinite
one can choose an element a of I such that each of the local domains in B(I)
with maximal ideal minimal over I is a localization of the same affine piece
A[I/a].

1.10. Remark. As noted in [8], the conclusion of [8, Theorem 3.17] makes
sense even for not necessarily m-primary ideals, so one can consider I{1} =
ID1 ∩ A as the definition for the first coefficient ideal of I when I is not
necessarily m-primary. Our results will be valid in this more general context.

2. The S2-ification of a Rees algebra

Throughout this section R = A[It] and S = A[It, t−1] will denote the
Rees algebra and respectively the extended Rees algebra associated to the
ideal I of a Noetherian domain A.

2.1. Lemma. Let A be a Noetherian domain that has an S2-ification Ã.
Then for any nonzero element a ∈ A

a
(⋂{

Ap| p minimal over (a)
})
∩A = aÃ ∩A.
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Proof. Denote by p1, p2, . . . , pn the minimal prime ideals over the ideal gen-
erated by a. Let x = ab ∈ A with b ∈ ∩{Api | i = 1, . . . , n}. For each
i ∈ {1, . . . , n} there exist ri ∈ A and si /∈ pi such that b = ri/si. Since
(s1, s2, . . . , sn) * p1 ∪ p2 ∪ · · · ∪ pn there exist t1, t2, . . . , tn such that

s := t1s1 + t2s2 + · · ·+ tnsn /∈ p1 ∪ p2 ∪ · · · ∪ pn

and we can write

b =
t1r1 + t2r2 + · · ·+ tnrn
t1s1 + t2s2 + · · ·+ tnsn

.

Then ht(a, s) ≥ 2 and (a, s)b ⊆ A which implies b ∈ Ã.

2.2. Remark. Let A be a Noetherian domain and let I be an ideal in A.
If p1, . . . , pn are prime ideals of A, then

I
( n⋂

i=1

Api

)
=

n⋂
i=1

(
IApi

)
.

Let a ∈ ∩n
i=1IApi . For each i ∈ {1, . . . , n} there exist ri ∈ I and si /∈ pi such

that a = ri/si. As in 2.1 we can find r ∈ I and s /∈ ∪n
i=1pi with a = r/s.

2.3. Assume that S = A[It, t−1] has an S2-ification S̃. Then S̃ is a graded
subring of Q(A)[t, t−1]. We thank the referee for suggesting the following
proof.

Given a prime ideal p in S, let p∗ denote the prime ideal generated by the
homogeneous elements of p. If p is not homogeneous, then ht p = ht p∗ + 1
[3, 1.5.8]. Consider the S-module

S′ =
⋂

ht p∗≤1

Sp.

Clearly S′ ⊆ ∩{Sp | ht p = 1} = S̃. The subset Z := {p ∈ SpecS | ht p∗ ≥ 2}
of SpecS is closed under specialization and by [6, (EGA) 5.10.10] it follows
that depthS′p ≥ 2 when ht p∗ ≥ 2. On the other hand, by [3, 1.5.9]

depthS′p = depthSp = depthSp∗ + 1 ≥ 2

if ht p∗ = 1, but p is not homogeneous. So for any prime p with ht p ≥ 2
we have depthS′p ≥ 2, which means that S′ satisfies the (S2) property as an
S-module, hence S′ = S̃.

For any open set U ⊇ {p ∈ SpecS | ht p∗ ≤ 1} there exists a homogeneous
ideal a ⊂ S such that ht a ≥ 2 and {p ∈ SpecS | ht p∗ ≤ 1} ⊆ D(a) ⊆ U
where D(a) = {p ∈ SpecS | p 6⊇ a}. Indeed, if U = D(b) for some ideal
b ⊂ S, we can take a = q∗1 ∩ . . . q∗r where q1, . . . , qr denote the minimal
primes of b. By [6, (EGA) 5.9.3] it follows that

S̃ = lim
−→
a

Γ(D(a),OD(a)) (a homogeneous, ht a ≥ 2)

where Γ(D(a),OD(a)) =
⋂

p∈D(a) Sp.
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But if a is generated by the homogeneous elements f1, . . . , fk ∈ S, then

Γ(D(a),OD(a)) =
k⋂

i=1

Sfi ,

which implies that Γ(D(a),OD(a)) is a graded submodule of Q(A)[t, t−1].
Then the same is true for S̃.

Note that in the case when A has a canonical module one can also show
that S̃ is a graded submodule of Q(A)[t, t−1] by identifying S̃ with the ring
of endomorphisms of the (graded) canonical module of S (1.6).

So we can write S̃ = ⊕nInt
n with the components In contained in the

quotient field of A. We now prove that if A has the (S2) property, then
these components are actually ideals in A. If A is integrally closed this is
obvious since S̃ ⊆ S = ⊕Intn (In = A for n < 0).

2.4. Lemma. Let A be a Noetherian domain that has an S2-ification Ã.
We also assume that S = A[It, t−1] has an S2-ification S̃ = ⊕n∈ZInt

n where
In ⊆ Q(A). Then In ⊆ Ã for all n.

Proof. For a an ideal in A we will denote a′ = aA[t, t−1] ∩A[It, t−1].
Let x ∈ In. Then there exists a height 2 ideal J of A[It, t−1] such that
Jxtn ⊆ A[It, t−1]. Consider c(J) the ideal of A generated by the coefficients
of all the elements of J . It is easy to see that c(J)x ⊆ A. We also have
JA[t, t−1] ⊆ c(J)A[t, t−1], so J ⊆ c(J)A[t, t−1] ∩ A[It, t−1] = c(J)′ which
implies ht c(J)′ ≥ 2. Let p be a minimal prime over c(J) such that ht p =
ht c(J). Then

2 ≤ ht c(J)′ ≤ ht p′ = ht p = ht c(J)
where the equality ht p′ = ht p is a result proved in [13, page 121]. We now
have ht c(J) ≥ 2 and c(J)x ⊆ A, implying that x ∈ Ã.

We now prove the main ingredient necessary to reduce the computation
of the first coefficient ideals to the computation of the canonical ideal of the
Rees algebra.

2.5. Theorem. Let (A,m, k) be a quasi-unmixed, analytically unramified
local domain with infinite residue field and positive dimension. Let S̃ =
⊕n∈ZInt

n be the S2-ification of S = A[It, t−1]. Then

In ∩A = (In){1} for all n ≥ 1.

In particular, if A has the (S2) property, then In = (In){1} for all n ≥ 1.

Proof. Choose an element a of I as in 1.9. To simplify the notation we will
denote by Λ1(C) the set of height 1 prime ideals of a ring C. By the main
theorem of [8] we have:

(In){1} = an
(⋂{

A[I/a]p|p ∈ Λ1(A[I/a]), a ∈ p
})
∩A
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One easily verifies that

A[I/a]p = A[I/a][at, (at)−1]pA[I/a][at,(at)−1] ∩Q(A) = (Sat)pSat ∩Q(A).

Therefore we have

(In){1} ⊇ an
(⋂{

(Sat)q ∩Q(A)|q ∈ Λ1(Sat), a ∈ q
})
∩A

⊇ an
((⋂{

Sq∩S |q ∈ Λ1(Sat), a ∈ q
})

at
∩Q(A)

)
∩A

⊇ an
((⋂{

Sq|q ∈ Λ1(S), a ∈ q
})

at
∩Q(A)

)
∩A.

On the other hand,⋂{
Sq|q ∈ Λ1(S)

}
= S̃ = · · ·+At−1 +A+ I1t+ I2t

2 + · · · ,
so

(In){1} ⊇ an(S̃at ∩Q(A)) ∩A

= an
((⋃

k

Ik
ak

)
[at, (at)−1] ∩Q(A)

)
∩A

= an
(⋃

k

Ik
ak

)
∩A ⊇ In ∩A.

To prove the other inclusion let us observe first that if q is a minimal prime
of t−1A[It, t−1] = t−1S then Sq ∩ Q(A) is a local domain whose maximal
ideal is minimal over the extension of I. Moreover, every local domain in
B(I) whose maximal ideal is minimal over the extension of I can be obtained
in this way.

Using again [8, Theorem 3.17] we obtain

(In){1} = In
(⋂{

Sq|q minimal prime over t−1S
}
∩Q(A)

)
∩A

⊆ t−n
(⋂{

Sq|q minimal prime over t−1S
})
∩A.

Using Lemma 2.1 we now get

(In){1} ⊆ t−nS̃ ∩A = In ∩A
and the proof is finished.

Shah [15, Theorem 4] has proved that (In){1} = In for all n if and only
if the associated graded ring GI(A) has no embedded prime ideals. By
a result of Brumatti, Simis, and Vasconcelos [4, 1.5], if ht I ≥ 2 this is
equivalent to the fact that R = A[It] has the (S2) property. Our statement
is a generalization of Shah’s result since R̃ and S̃ have the same homogeneous
components in positive degree, an observation which is proved below.

2.6. Proposition. Let (A,m, k) be local domain with the (S2) property,
R = A[It] and S = A[It, t−1]. Assume that R and S have the S2-ifications
R̃ and S̃ respectively.
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i) If R̃ = ⊕n≥0Int
n then S̃ ⊆ ⊕n∈ZInt

n where In = A for n < 0.
ii) If ht I ≥ 2 and S̃ = ⊕n∈ZInt

n, then R̃ ⊆ ⊕n≥0Int
n.

Consequently, if ht I ≥ 2, then R̃ and S̃ have the same homogeneous com-
ponents in positive degree.

Proof. i) Let S̃ = ⊕Jnt
n be the S2-ification of S and take ftn ∈ S̃, f ∈ A

and n > 0. Then there exists a height 2 ideal J of A[It, t−1] such that
Jftn ⊆ A[It, t−1]. Let J+ be the ideal of A[It] generated by the elements
g ∈ A[It] such that there exists b1, . . . , bm with

m∑
j=1

bjt
−j + g ∈ J ⊆ A[It, t−1].

Note that for any such generator g of J+ we have gftn ∈ A[It], i.e.

J+ftn ⊆ A[It].

Since J ⊆ (t−1)+J+A[It, t−1] we have ht((t−1)+J+A[It, t−1]) ≥ 2, hence
ht J+GI(A) ≥ 1. The algebra S̃ = ⊕Jnt

n is a finite extension of S so there
exists k such that Js+k ⊆ Is for all s ≥ 1. Then IkA[It]ftn ⊆ A[It], so

(J+ + IkA[It])ftn ⊆ A[It].

Since ht J+GI(A) ≥ 1 we obtain that ht(J+ + IkA[It]) ≥ 2 and therefore
ftn ∈ R̃.

ii) If S̃ = ⊕Intn is the S2-ification of the extended Rees algebra then
⊕n≥0In/In+1 has the (S1) property. By a straightforward generalization to
filtrations of [4, 1.5], T := ⊕n≥0Int

n has the (S2) property and therefore R̃ ⊆
⊕n≥0Int

n. (Once one observes that if P is a prime ideal of T = ⊕n≥0Int
n,

then P ⊇ It implies P ⊇ ⊕n>0Int
n, basically since In ⊆ In, the argument

for the I-adic filtration given in the paper mentioned before can be followed
word by word.)

2.7. Remark. Note that the first part of Proposition 2.6 implies that if
A[It] is (S2) then A[It, t−1] is (S2) and therefore GI(A) is (S1), which is the
other implication of [4, 1.5].

2.8. Remark. If a Noetherian domain R has an S2-ification R̃, then for
every multiplicatively closed subset T of R, T−1R̃ is an S2-ification of T−1R.
Indeed, T−1R̃ is S2 over T−1R, module-finite, and for every element s/t ∈
T−1R̃, D(s/t) = D(s/1) = T−1D(s) ⊆ T−1R has height at least 2.

If we apply this observation to the ring A[It, t−1] with T = A \ p where p
is a prime ideal of A, by Theorem 2.5 we get that (Ip){1} = (I{1})p.

2.9. Remark. It is known that if I is an ideal in A, then x ∈ I if and
only if there exists a height 1 ideal a of A such that axm ⊆ Im for all m.
We obtain a similar conclusion for first coefficient ideals, but only in one
direction.
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Let (A,m, k) be a quasi-unmixed, analytically unramified local domain
with infinite residue field and I an ideal of height at least 2. Then there
exists an ideal a in A of height 2 such that

a(Im){1} ⊆ Im for all m.

In particular, if x ∈ I{1}, then there exists a height 2 ideal a of A such that
axm ∈ Im for all m.

Since R̃ is a finite extension of R = A[It] there exists a height 2 ideal J
of R such that JR̃ ⊆ R. Let x ∈ (Im){1}. Then xtm ∈ R̃, so Jxtm ⊆ R. We
now have c(J)x ⊆ Im and ht c(J) ≥ 2. Indeed, if there exists a height one
prime ideal p in A with c(J) ⊆ p then ht pA[t] ∩A[It] = 1 and

J ⊆ JA[t] ∩A[It] ⊆ c(J)A[t] ∩A[It] ⊆ pA[t] ∩A[It]

contradicting the fact that ht J ≥ 2.
However, the existence of a height 2 ideal a such that axm ⊆ Im for all

m does not imply that x ∈ I{1} as the following easy example shows. Let
A = k[x, y] and I = (x3, y3). Then R = A[It] is a Cohen-Macaulay ring and
by Theorem 2.5 we have I{1} = I. On the other hand, (x, y)x2my2m ⊆ Im

for all m ≥ 1, but x2y2 6∈ I{1} = (x3, y3).

If I is an ideal in a Noetherian ring we define Iunm to be the intersection
of the primary components coresponding to the minimal prime ideals over
I. Let us recall that an ideal I is called equimultiple if `(I) = ht I where
`(I) = dimGI(A)/mGI(A) is the analytic spread of I.

In [14, 2.5], Noh and Vasconcelos proved that if A is a Cohen-Macaulay
ring and I is an equimultiple ideal of positive height such that A[It] has the
(S2) property, then all the powers In are unmixed ideals. Using a technique
employed in [12] by Huneke (see also [11, exercise 10.11]) we will extend this
result.

2.10. Proposition. Let A be a quasi-unmixed, analytically unramified local
domain with the (S2) property and let I be an equimultiple ideal of height at
least 2. If R̃ = ⊕n≥0Int

n is the S2-ification of the Rees algebra R = A[It],
then

(In)unm ⊆ In.

Proof. Since `(I) = `(In) and In = (In){1} it follows that it is enough
to prove the statement for n = 1. We may also assume that ht I < dimA,
otherwise there is nothing to prove. Let I = (J1∩· · ·∩Jk)∩(Jk+1∩· · ·∩Jn) be
an irredundant primary decomposition of I, where

√
J i = pi and p1, . . . , pk

are the minimal primes of I. Then Iunm = J1 ∩ · · · ∩ Jk and to simplify the
notation denote it by J .

Suppose there exists a prime p in A such that Jp * (I{1})p and choose
one minimal with this property. Then localize at p and in this way the
problem reduces to the case Supp(J{1}/I{1}) = {m}. Indeed, if q ⊂ p, q 6= p,
then Iq ⊆ Jq ⊆ (I{1})q = (Iq){1} which by [8, Proposition 3.2] implies
(Jq){1} = (Iq){1}. By Remark 2.8 we then get (J{1})q = (I{1})q. The ideal
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I is still equimultiple and ht I < dimA since the prime p was not minimal
over I (Jpi = Ipi). Since J{1}/I{1} has finite length there exists n such that
mnJ{1} ⊆ I{1}. Then for any x ∈ J we have mnx ∈ I{1}, so mnxt ∈ R̃.

We have dimA > `(I) = dimR/mR ≥ dimR/mR̃∩R = dim R̃/mR̃, thus
ht mR̃ ≥ 2. But mnRxt ⊆ R̃ which implies that xt ∈ R̃, i.e. x ∈ I{1}.

2.11. Remark. Note that the assumption I equimultiple can be replaced
by the condition

`(Ip) < dimAp for all primes p ⊇ I, p not minimal over I,

and the conclusion still holds.

3. Computing first coefficient ideals

The purpose of this section is to present a procedure to compute first
coefficient ideals using the canonical ideal of the Rees algebra.

Let A = k[X1, X2, . . . , Xn](n ≥ 2) and m = (X1, . . . , Xn). Then for an
m-primary ideal I one can define I{1} in a similar way since λ(A/In) =
λ(Am/I

nAm). As usual denote R = A[It].
Let ωR be the canonical ideal of R. Since ωR is a monomial ideal (in t)

of R = A[It] ⊆ A[t] we can write

ωR = U1t
sR+ U2t

s+1R+ · · ·+ Ukt
s+k−1R

where U1, U2, . . . , Uk are ideals in A.
In [9], following an idea of K. Smith, Heinzer and Lantz prove that if

I is a monomial ideal in a polynomial ring, then I{1} is also a monomial
ideal. Using Theorem 2.5 we are able to generalize this to any grading on
the polynomial ring. The proof is obvious once one identifies I{1} with the
homogeneous component of degree 1 of R̃.

3.1. Proposition. Let A = k[X1, X2, . . . , Xn] be a polynomial ring and I
a graded ideal of A. Then I{1} is also a graded ideal.

3.2. Proposition. Let A = k[X1, X2, . . . , Xn] and I an ideal of A. For
i ∈ {1, 2, . . . , k} denote

Vi = (U1I
m+i−1 + U2I

m+i−2 + · · ·+ Um+i) : Ui

where Uj = 0 for j > k. Then for all m we have

(Im){1} = V1 ∩ V2 ∩ · · · ∩ Vk.

Proof. By Theorem 2.5 and Proposition 2.6, a ∈ (Im){1} if and only if
atm ∈ R̃. We also have

R̃ ∼= HomR(ωR, ωR) ∼= (ωR :Q(R) ωR).

But atm ∈ (ωR :Q(R) ωR) if and only if

atmUit
s+i−1 ⊆ (U1t

s + U2t
s+1 + · · ·+ Ukt

s+k−1)A[It]
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for all i = 1, 2, . . . , k, i.e.

aUi ⊆ (U1I
m+i−1 + U2I

m+i−2 + · · ·+ Um+i) = Vi

for all i = 1, 2, . . . , k.

For a procedure to compute the canonical ideal of an affine algebra we
refer the reader to [17, Theorem 6.3.4].

3.3. Example. Let A = k[x, y], I = (x8, x3y2, x2y4, y8), and R = A[It].
Using the procedure mentioned above, a computation with Macaulay 2
shows that:

ωR = (U1 + U4t
3)R ⊆ R, where

U1 = (x6y4, x5y6, x4y8, x3y10) ⊆ A and

U4 = (x12y16, x11y18, x10y20, x9y22) ⊆ A.

Then

I{1} = [(U1I) : U1] ∩ [(U1I
4 + U4I) : U4]

= (x8, x3y2, x2y4, xy6, y8).

Using one of the methods presented in [17] one could check that A[I{1}t]
has the (S2) property and therefore R̃ = A[I{1}t]. Note that R̃ is not a
Cohen-Macaulay ring (depth R̃ = 2).

We now consider an ideal which is not primary for the maximal homoge-
neous ideal (using the definition adopted in 1.10):

3.4. Example. Let A = k[x, y, z] and I = (x3, y3, xyz). In this case

ωR = (U1 + U2t)R, where

U1 = (yz, zx) ⊆ A and

U2 = (xy2z, x2yz) ⊆ A.

Then

I{1} = [(U1I + U2) : U1] ∩ [(U1I
2 + U2I) : U2]

= (x3, y3, xyz, x2y2)

In this case A[I{1}t] is a Cohen-Macaulay ring (it has depth 4), so R̃ =
A[I{1}t].
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