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Abstract. We study several aspects of the weak normalization in a graded extension of

commutative rings. Applied to the Rees algebra of an ideal in a noetherian ring, the results

obtained allow us to prove several properties of the weak subintegral closure of an ideal, a

concept introduced by Vitulli and Leahy. The same methods are also used to eliminate one

of the hypotheses in a theorem of Gaffney and Vitulli.

1. Introduction

The weak normalization of an abstract scheme was introduced by Andreotti and Bombieri

[1] as a generalization of the weak normalization of a complex analytic variety defined earlier

by Andreotti and Norguet [2]. About the same time, the related and more algebraic notion

of seminormalization was introduced by Traverso [19]. In a geometric context, when passing

from an algebraic variety X to its normalization X, one point in the original variety may split

into several points in the normalization, which may not be desirable in certain situations.

This type of problem, also encountered by Andreotti and Norguet [2], is avoided if one passes

instead to the weak normalization of X. This is an intermediate variety between X and its

normalization which is obtained through a process that glues in X all the points that have

the same image in X. The weak normalization of X satisfies universal mapping properties

and has geometric and functorial properties that normalization usually lacks. From a more

algebraic perspective, the properties and applications of the weak normalization and the

closely related concept of seminormalization have been studied, among others, by Swan [18],

Leahy and Vitulli [12, 20], Manaresi [14], and Yanagihara [23]. The survey paper of Vitulli
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[21] provides a comprehensive account of the work done in this area. More recently, the

concept of seminormalization has been used in the minimal model program [11].

In this paper we look at weak normalization from an algebraic point of view that relies upon

a characterization given by Manaresi [14] (see 1.2.1). Given an arbitrary graded extension

of commutative rings A ⊆ B, we describe several properties of the weak normalization of

A in B and its relation to the weak normalization in the induced extension of diagonal

subalgebras A∆ ⊆ B∆. We also establish several properties of the related notion of weak

subintegral closure of an ideal, a concept introduced by Vitulli and Leahy [22]. From one

point of view, the weak subintegral closure of the ideal I of the ring A is obtained from the

weak normalization of the Rees algebra A[It] the same way the integral closure I is obtained

from the integral closure of A[It]. It is a closure operation on ideals whose relation to integral

closure has been studied by Gaffney and Vitulli in [7]. With the different perspective provided

by Manaresi’s criterion, it is the main goal of this paper to better understand this closure

operation and provide more insight into its relation with the integral closure of ideals as well

as other closures related to it, particularly Epstein’s notion of special integral closure [5] and

the inner integral closure. We also hope that the general results regarding weak normalization

in graded extensions provide useful insight into the behavior of weak normalization in both

algebraic and geometric contexts.

We begin by recalling several concepts needed to build the definition of the weak subin-

tegral closure of an ideal. Throughout, all rings are commutative and have an identity

element.

Definition 1.1. Let A ⊆ B be an integral extension of rings. The weak normalization ∗BA

and the seminormalization +
BA of A in B are defined by

∗
BA = {b ∈ B | for every p ∈ Spec(A) there exists n ∈ N such that (b/1)p

n ∈ Ap + Rad(Bp)}

and

+
BA = {b ∈ B | (b/1) ∈ Ap + Rad(Bp) for every p ∈ Spec(A)},

where p is the characteristic exponent of the field k(p) = Ap/pAp and Rad(Bp) is the Jacobson

radical of Bp.
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Different characterizations of ∗BA and +
BA are obtained by considering weakly subintegral

and subintegral extensions, respectively.

Definition 1.2 ([23]). An extension A ⊆ B is said to be weakly subintegral if

(a) A ⊆ B is integral;

(b) The induced map Spec(B)→ Spec(A) is bijective; and

(c) For every q ∈ Spec(B), the field extension k(q ∩ A)→ k(q) is purely inseparable.

If in condition (c) one requires that the field extensions k(q ∩ A) → k(q) be isomorphisms,

the extension is said to be subintegral ([18]).

The notions of weak normalization and seminormalization are essentially the notions of

weak subintegral closure and subintegral closure, respectively. More precisely, for an integral

extension A ⊆ B, it is known that ∗BA is the largest weakly subintegral extension of A in B.

Similarly, +
BA is the largest subintegral extension of A in B. If all the residue field extensions

are separable (e.g., A contains a field of characteristic zero), the notions of subintegral and

weakly subintegral extensions coincide, and +
BA coincides with ∗BA. We refer the reader to

[13,17,18,21–23] for extensive accounts of these notions.

In [14, Theorem I. 6] Manaresi proved the following characterization of weak normalization:

If A ⊆ B is an integral extension, then

(1.2.1) ∗
BA = {b ∈ B | b⊗ 1− 1⊗ b is nilpotent in B ⊗A B}.

This description will play a crucial role in our approach to studying the weak normalization

of a graded ring and the associated notion of weak subintegral closure of an ideal.

Remark 1.3. If A ⊆ B is an extension of rings that is not necessarily integral, then one can

define ∗BA as ∗B′A, where B′ = A
B

is the integral closure of A in B. In this context, since

every weakly subintegral extension of A in B is contained in A
B

, it is still true that ∗BA is

the largest weakly subintegral extension of A in B. Moreover, Manaresi’s characterization

of weak normalization becomes

(1.3.1) ∗
BA = {b ∈ AB | b⊗ 1− 1⊗ b is nilpotent in A

B ⊗A A
B}.
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Remark 1.4. The characterization (1.2.1) is only valid for integral extensions A ⊆ B. For

arbitrary extensions we do need to consider only the elements b ∈ A
B

as in (1.3.1). In

general, b ⊗ 1 − 1 ⊗ b nilpotent in B ⊗A B does not imply that b is integral over A. For

example, consider the birational extension A = k[x, xy, xz] ⊆ B = k[x, y, z] where k is a

field. The ring A is isomorphic to a polynomial ring, hence it is normal. In B⊗AB we have

xyz ⊗ 1 = y ⊗ xz = yx⊗ z = 1⊗ xyz, but xyz is not integral over A.

Reid, Roberts, and Singh [17] provided an elementwise equational characterization of weak

subintegrality as follows. If A ⊆ B is an extension of rings, an element b ∈ B is said to

be weakly subintegral over A if there exist q ≥ 0 and a1, . . . , a2q+1 ∈ A such that for every

n ∈ {q + 1, . . . , 2q + 1} the element b satisfies the equations

(1.4.1) bn +
n∑
i=1

(
n

i

)
aib

n−i = 0.

Note that every element b ∈ B that is weakly subintegral over A must be integral over A.

They proved that the extension A ⊆ A[b] is weakly subintegral if and only if b is weakly

subintegral over A. Therefore,

∗
BA = {b ∈ B | b satisfies equations of the type (1.4.1)}.

Based on this characterization, given a ring extension A ⊆ B and an ideal I of A, Vitulli

and Leahy [22, Definition 2.1] introduced the following notion of weak subintegral closure of

I in B.

Definition 1.5. An element b ∈ B is said to be weakly subintegral over I if there exist

q ≥ 0 and ai ∈ I i (1 ≤ i ≤ 2q + 1) such that b satisfies the equations (1.4.1) for all

n ∈ {q + 1, . . . , 2q + 1}. The weak subintegral closure ∗BI of I in B is the set of all elements

in B that are weakly subintegral over I. For B = A, the notation ∗I will be used instead of

∗
AI.

Vitulli and Leahy proved that ∗BI is an ideal of ∗BA [22, Proposition 2.11]. Moreover, for

every n ≥ 1, the ideal ∗B(In) coincides with the homogeneous component of degree n of the

weak normalization of the Rees algebra A[It] in B[t] [22, Theorem 3.3], a property that
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parallels a well known characterization of the integral closure In. We do note, however, that

the proofs from [22] of these properties are rather technical.

In this paper we revisit the concept of weak subintegral closure of an ideal from a different

perspective. Instead of relying upon the elementwise characterization of weak normalization

given by Reid, Roberts, and Singh [17], which inspired the definition of Vitulli and Leahy

in the ideal case, we follow the characterization (1.3.1) of Manaresi and apply it directly to

the Rees algebra of the ideal I.

The technical aspects involved when working with tensor products are detailed in Section

2 which also contains a study of the weak normalization in a graded extension of rings. If

Σ is an additive abelian group, ∆ = Zε ⊆ Σ is the subgroup generated by some ε ∈ Σ,

and A =
⊕

i∈Σ Ai is a Σ-graded ring, we denote by A∆ the Σ-graded subring of A whose

homogeneous components [A∆]i vanish for i /∈ ∆ and coincide with Ai for i ∈ ∆. We

refer to A∆ as the diagonal subalgebra of A along ∆. If A =
⊕

i∈Σ Ai ⊆ B =
⊕

i∈Σ Bi is

an extension of Σ-graded rings and Σ is torsion-free, one of the main consequences of the

technical results from Section 2 shows that ∗BA is a Σ-graded subring of B and [∗BA]nε =

[∗B∆(A∆)]nε for all n ∈ Z (Theorem 2.14). In particular, if A ⊆ B is an extension of N-

graded rings which induces a graded extension of the d-th Veronese subrings A(d) ⊆ B(d),

then [∗BA]nd = [∗
B(d)A

(d)]n for all n ≥ 0. Applied to the Rees algebra R(I) = A[It] of an

ideal I of an arbitrary ring A and the extension A[It] ⊆ B[t] induced by a ring extension

A ⊆ B, this implies that the homogeneous component Id of ∗B[t]A[It] =
⊕

n≥0 Int
n coincides

with the homogeneous component of degree one of the weak normalization of R(Id) in B[t]

(Theorem 2.18). This recovers a consequence of [22, Theorem 3.3] of Vitulli and Leahy who

showed that Id coincides with ∗B(Id) (see Definition 1.5). By using Theorem 2.14 we also

describe the weak normalization of the multi-Rees algebra associated to a finite family of

ideals (Theorem 5.1). In Section 6 we show that extended Rees algebra A[It, t−1] and the

Rees algebra A[It] have the same homogeneous components in positive degrees.

In Section 3 we present a first application of looking at ∗I as

∗I = {x ∈ I | xt⊗ 1− 1⊗ xt nilpotent in A[It]⊗A[It] A[It]},
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where A[It] is the integral closure of A[It] in A[t]. If (A,m) is a local ring with algebraically

closed residue field k = A/m and char k = 0, and J is a minimal reduction of an m-primary

ideal I, an interesting result of Gaffney and Vitulli [7, Theorem 4.6] shows that ∗J = I>+J ,

where I> is the ideal of A consisting of all the elements a such that v(a) > v(I) for all

the Rees valuations v of I. Using a technical result detailed in Lemma 3.1 and the tensor

product characterization of ∗I, we give a modified proof of their result that does not require

that the residue field be algebraically closed.

Using the same characterization for ∗I, in Section 4 we obtain several new results regarding

the weak subintegral closure of an ideal. We show, for example, that if A ⊆ B is a weakly

subintegral extension and I is an ideal of A, then ∗(IB) ∩ A = ∗I (Theorem 4.2), mirroring

a similar result that holds for integral extensions and integral closure of ideals. We also note

that several other results already obtained by Vitulli and Leahy in [22] can be recovered with

this approach.

2. Weak normalization in graded extensions

We begin with a few elementary remarks regarding tensor products and morphisms be-

tween spectra of rings.

2.1. If A ⊆ B is an integral extension such that the induced map f : SpecB → SpecA

is bijective and p1, p2 ∈ SpecA with p1 ⊆ p2, then f−1(p1) ⊆ f−1(p2). Indeed, from the

going-up property of integral extensions, there exists q ∈ SpecB with q ⊇ f−1(p1) such that

f(q) = p2. Then q = f−1(p2), and the conclusion follows.

2.2. Let B
φ−→ C be a ring homomorphism such that the induced morphism SpecC → SpecB

is surjective. If φ(b) = c, then b is nilpotent if and only if c is nilpotent. In particular, Kerφ

is nilpotent.

2.3. If B ⊆ C is an integral extension of A-algebras, then the kernel of the canonical

ring homomorphism B ⊗A B → C ⊗A C is nilpotent. Indeed, the SpecA-morphism of

affine schemes SpecC → SpecB is surjective, hence the morphism SpecC ⊗SpecA SpecC →

SpecB ⊗SpecA SpecB is surjective ([8, Chapitre I, Prop. 3.6.1]), i.e., Spec(C ⊗A C) →

Spec(B ⊗A B) is surjective. The conclusion follows from (2.2).
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2.4. If A ⊆ B ⊆ C are ring extensions, the kernel of the canonical ring homomorphism

C ⊗A C → C ⊗B C is generated by {b⊗ 1− 1⊗ b | b ∈ B}.

We now state a known lemma that gives an equational characterization of when a sum of

simple tensors in a tensor product is equal to zero. For a proof we refer to [15,16]. A slightly

different version of this lemma can also be found in [3, Chapter I, §2.11].

Lemma 2.5. Let R be a commutative ring and let M and N be R-modules. Assume that

{mλ}λ∈Λ and {nγ}γ∈Γ are families of generators for M and N , respectively. Let {xλ}λ∈Λ be

a family with finite support of elements in N . Then
∑

λ∈Λmλ ⊗ xλ = 0 if and only if there

exists a family {aλγ}λ∈Λ,γ∈Γ with finite support of elements in R such that

xλ =
∑
γ∈Γ

aλγnγ for all λ ∈ Λ and(2.5.1)

∑
λ∈Λ

mλaλγ = 0 for all γ ∈ Γ.(2.5.2)

Remark 2.6. As one can check immediately, the direction “if” from the above Lemma holds

for arbitrary families {mλ}λ∈Λ and {nγ}γ∈Γ of elements. For the “only if” direction however,

the requirement that the elements {mλ}λ∈Λ generate M is essential.

We will need a graded version of the above lemma, which we state and prove below for

Σ-graded rings and modules, where Σ is an abelian group. Recall that if R is a Σ-graded

commutative ring and M and N are Σ-graded R-modules, then the tensor product M ⊗RN

is Σ-graded with homogeneous components [M ⊗R N ]σ = {
∑n

i=1 mi ⊗ ni | n ∈ N,mi ∈

M,ni ∈ N, degmi + deg ni = σ} for σ ∈ Σ.

Lemma 2.7. Let R be a Σ-graded commutative ring and let M and N be Σ-graded R-

modules. Assume that {mλ}λ∈Λ and {nγ}γ∈Γ are families of non-zero homogeneous gener-

ators for M and N , respectively. Let y =
∑

λ∈Λmλ ⊗ xλ ∈ [M ⊗R N ]σ be a homogeneous

element in the graded tensor product M ⊗A N where {xλ}λ∈Λ is a family with finite support

of homogeneous elements in N . Then y = 0 if and only if there exists a family {aλγ}λ∈Λ,γ∈Γ

with finite support of homogeneous elements in R with aλγ ∈ Rσ−degmλ−degnγ such that the

equations (2.5.1) and (2.5.2) are satisfied.
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Proof. We only need to prove the “only if” direction. From Lemma 2.5 we know that there

exists a family {aλγ}λ∈Λ,γ∈Γ with finite support of elements in R such that the equations

(2.5.1) and (2.5.2) are satisfied. Let a′λγ be the homogeneous component in Rσ−degmλ−degnγ

of aλγ. We will show that after replacing the elements aλγ with a′λγ the equations (2.5.1) and

(2.5.2) still hold.

The sum
∑

γ∈Γ a
′
λγnγ is the homogeneous component in Nσ−degmλ of the right hand side

of each equation in (2.5.1). Since xλ ∈ Nσ−degmλ we obtain

(2.7.1) xλ =
∑
γ∈Γ

a′λγnγ for all λ ∈ Λ.

On the other hand, the sum
∑

λ∈Λmλa
′
λγ is the homogeneous component in Mσ−degnγ of

the right hand side of each equation in (2.5.2), hence

(2.7.2)
∑
λ∈Λ

mλa
′
λγ = 0 for all γ ∈ Γ.

�

2.8 (Notation). Let Σ be an additive abelian group and ∆ ⊆ Σ a subgroup. If A =
⊕

i∈ΣAi

is a Σ-graded ring, let A∆ =
⊕

i∈Σ[A∆]i denote the graded subring of A with [A∆]i = Ai

for i ∈ ∆ and [A∆]i = 0 for i ∈ Σ \∆. When A =
⊕

i≥0Ai is N-graded and d is a positive

integer, we denote by A[d] the graded subring ⊕i≥0Adi with the grading [A[d]]di = Adi for all

i ≥ 0 and [A[d]]i = 0 for i not divisible by d. We also denote by A(d), and refer to it as the

d-th Veronese subring, the same ring with the grading [A(d)]i = Adi for all i.

Lemma 2.9. Let A =
⊕

i∈Σ Ai ⊆ B =
⊕

i∈Σ Bi be a Σ-graded extension of rings and ∆ ⊆ Σ

a subgroup. Then the canonical ring homomorphism

B∆ ⊗A∆ B∆ ψ∆−→ A[B∆]⊗A A[B∆]

is injective.

Proof. As B∆ is a ring, note that the ring A[B∆] coincides with the A-submodule of B

generated by B∆. Let {bλ}λ∈Λ be a family of non-zero homogeneous generators of B∆ as an

A∆-module. This family also generates A[B∆] as an A-module. If σ ∈ ∆ and y ∈ [Kerψ∆]σ is

a homogeneous element, write y =
∑

λ∈Λ bλ⊗xλ where {xλ}λ∈Λ is a family with finite support
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of homogeneous elements in B∆ with xλ ∈ [B∆]σ−deg bλ . Then 0 = ψ∆(y) =
∑

λ∈Λ bλ ⊗ xλ in

A[B∆] ⊗A A[B∆]. By Lemma 2.7 there exists a family {aλγ}λ∈Λ,γ∈Λ with finite support of

homogeneous elements in A with aλγ ∈ Aσ−deg bλ−deg bγ such that

xλ =
∑
γ∈Λ

aλγbγ for all λ ∈ Λ and(2.9.1)

∑
λ∈Λ

bλaλγ = 0 for all γ ∈ Λ.(2.9.2)

Since σ ∈ ∆ and deg bλ ∈ ∆ for all λ ∈ Λ, we have aλγ ∈ A∆ for all λ, γ ∈ Λ. Applying

again Lemma 2.7 we obtain that
∑

λ∈Λ bλ ⊗ xλ = 0 in B∆ ⊗A∆ B∆. �

For Σ = Z and ∆ = dZ, we record the following consequence for the Veronese subrings of

graded rings with no components in negative degrees.

Corollary 2.10. Let A =
⊕

i≥0Ai ⊆ B =
⊕

i≥0Bi be a graded extension of rings. For

d ≥ 1, let A(d) =
⊕

i≥0Adi and B(d) =
⊕

i≥0Bdi be the d-th Veronese subrings of A and B,

respectively. Then the canonical ring homomorphism

B(d) ⊗A(d) B(d) ψd−→ A[B(d)]⊗A A[B(d)]

is injective.

For an abelian group Σ and a subgroup ∆ ⊆ Σ we also have the following.

Lemma 2.11. Let A ⊆ B be an integral graded extension of Σ-graded rings. Then the kernel

of the canonical ring homomorphism

B∆ ⊗A∆ B∆ ϕ∆−→ B ⊗A B

is nilpotent.

Proof. The homomorphism ϕ∆ factors as

B∆ ⊗A∆ B∆ ψ∆−→ A[B∆]⊗A A[B∆] −→ B ⊗A B,

where ψ∆ is the injective map from Lemma 2.9 and the other map is induced by the integral

extension A[B∆] ⊆ B. By (2.3), the kernel of A[B∆]⊗AA[B∆] −→ B⊗AB is nilpotent. Then

Kerϕ∆ is nilpotent as well. �
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For Veronese subrings the extension A[B(d)] ⊆ B is integral because B is integral over

B(d) and we do not need to assume that the extension A ⊆ B is integral.

Corollary 2.12. Let A ⊆ B be an N-graded extension rings and let ϕd : B(d) ⊗A(d) B(d) →

B ⊗A B be the canonical graded ring homomorphism. Then Kerϕd is nilpotent.

Remark 2.13. Let A ⊆ B be a Σ-graded extension of rings. Also, assume that Σ is torsion-

free if the extension is not integral. Then ∗BA is a Σ-graded subring of B. Indeed, since Σ is

torsion-free, the integral closure A
B

of A in B is Σ-graded. (See [10, Sec. 2.5, 2.22] and also

[10, Example 2.3.3] for an example where this fails when Σ is not torsion-free.)

From (1.3.1) we have ∗BA = {b ∈ AB | b⊗ 1− 1⊗ b is nilpotent in A
B⊗AA

B} = {b ∈ AB |

f(b) = g(b)} where f, g : A
B → (A

B⊗AA
B

)red are the graded ring homomorphisms given by

f(b) = b ⊗ 1 and g(b) = 1 ⊗ b, respectively. If F ⊆ Σ is a finite subset, b =
∑

σ∈F bσ ∈ A
B

with bσ ∈ Bσ, and f(b) = g(b), then f(bσ) = g(bσ) ∈ [(A
B ⊗A A

B
)red]σ, so bσ ∈ ∗BA for all

σ ∈ F . Therefore ∗BA is a Σ-graded subring of B. Using a different approach, for Σ = Z,

this was also proved in [22, Proposition 3.1].

We obtain the following result regarding the homogeneous components of the weak nor-

malization in a graded ring extension.

Theorem 2.14. Let A ⊆ B be an Σ-graded extension of rings. Let ε ∈ Σ and ∆ = Zε.

Additionally, assume that Σ is torsion-free if the extension is not integral. Then [∗BA]nε =

[∗B∆(A∆)]nε for all n ∈ Z, i.e., (∗BA)∆ = ∗
(B∆)(A

∆).

Proof. As noted in Remark 2.13, the integral closure A
B

of A in B is a Σ-graded subring of

B. Using equations of integral dependence one can see that (A∆)
B∆

=
(
A
B)∆

, and hence,

by Remark 1.3, we may replace B with A
B

and assume that A ⊆ B is an integral extension.

For b ∈ [∗BA]nε ⊆ Bnε, there exists k such that (b ⊗ 1 − 1 ⊗ b)k = 0 in B ⊗A B, so

(b⊗ 1− 1⊗ b)k ∈ Kerϕ∆, where ϕ∆ is the homomorphism from Lemma 2.11. It follows that

b ⊗ 1 − 1 ⊗ b is a nilpotent element in B∆ ⊗A∆ B∆, hence b ∈ [∗B∆A
∆]nε. For the opposite

inclusion, it is clear that if b⊗1−1⊗b is nilpotent in B∆⊗A∆B∆, then b⊗1−1⊗b ∈ B⊗AB

is also nilpotent, showing that [∗B∆A
∆]nε ⊆ [∗BA]nε. �
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With the notational conventions introduced in 2.8, in the case of N-graded rings we have

the following.

Corollary 2.15. Let A ⊆ B be an N-graded extension of rings. Then

[∗BA]nd = [∗B[d]A
[d]]nd = [∗B(d)A

(d)]n

for all n.

Remark 2.16. If A is a reduced Z-graded ring, a similar result for the Veronese subrings of

the seminormalization +A of A in its integral closure A was proved by Leahy and Vitulli

[13, Proposition 2.7]. Their proof relies upon Hamann’s criterion for seminormality and an

adaptation of a construction of Swan to describe +A.

For an arbitrary extension of rings A ⊆ B and an ideal I of A we apply Theorem 2.14 to

the induced t-graded extension A[It] ⊆ B[t].

We begin with the following remark that applies to the case when I = A.

Remark 2.17. If A ⊆ B is an extension of rings, then ∗
B[t]A[t] = (∗BA)[t]. In particular,

if A ⊆ B is a weakly subintegral extension (i.e., B = ∗
BA), then A[t] ⊆ B[t] is weakly

subintegral. Indeed, if we denote B′ = A
B

, it is known that A[t]
B[t]

= B′[t]. From the

canonical isomorphism B′[t]⊗A[t] B
′[t] ∼= (B′ ⊗A B′)[t] that maps btn ⊗ ctm to (b⊗ c)tn+m it

follows that atn ⊗ 1− 1⊗ atn is nilpotent in B′[t]⊗A[t] B
′[t] if and only if (a⊗ 1− 1⊗ a)tn

is nilpotent in (B′ ⊗A B′)[t]. By (1.3.1), the conclusion follows.

Theorem 2.18. Let A ⊆ B be an extension of rings. For every ideal I of A, let R(I) = A[It]

and let

∗
B[t]R(I) = ⊕n≥0Int

n ⊆ B[t]

be the weak normalization of R(I) in B[t]. Then Id coincides with the homogeneous com-

ponent of degree one of ∗B[t]R(Id) for all d ≥ 1. Moreover, Id is an ideal of ∗BA for every

d ≥ 1.

Proof. By Corollary 2.15, [∗B[t]R(I)]d = [∗
B[t][d]
R(I)[d]]d, so Id coincides with the homoge-

neous component of degree d of the weak normalization of R(I)[d] = ⊕n≥0I
ndtnd in B[t][d] =
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⊕n≥0Bt
nd. By substituting t for td, this means that Id coincides with the homogeneous com-

ponent of degree one of the weak normalization of ⊕n≥0I
ndtn = R(Id) in ⊕n≥0Bt

n = B[t].

We also have ∗B[t]R(I) ⊆ ∗B[t]A[t] = ⊕n≥0(∗BA)tn by Remark 2.17. Moreover, I0 = ∗
BA. From

the graded structure of ∗B[t]R(I) it now follows immediately that Id is an ideal of ∗BA. �

Remark 2.19. As we will see later in Section 6, if we consider the weak normalization of

the extended Rees algebra A[It, t−1] in B[t, t−1], then we obtain the same homogeneous

components in non-negative degrees.

Remark 2.20. It was proved by Vitulli and Leahy [22, Theorem 3.3] that the ideal I1, as

defined in Theorem 2.18, coincides with the ideal consisting of all the elements b ∈ B such

that there exist q ≥ 0 and ai ∈ I i (1 ≤ i ≤ 2q + 1) such that b satisfies the equations

bn +
∑n

i=1

(
n
i

)
aib

n−i = 0 for every n ∈ {q + 1, . . . , 2q + 1}, an ideal which they called the

weak subintegral closure of I in B and denoted ∗BI (Definition 1.5). We subsequently adopt

the same terminology and notation ∗BI for I1, the homogeneous component of degree one of

the weak normalization of A[It] in B[t], and therefore

∗
BI = {x | xt⊗ 1− 1⊗ xt is nilpotent in S(I)⊗A[It] S(I)},

where S(I) is the integral closure of R(I) in B[t].

For B = A we obtain the weak subintegral closure ∗I = ∗
AI of I (in A). In fact, as the

following Corollary shows, we can always reduce to this case, as ∗BI coincides with ∗(IC)

where C = ∗
BA.

Corollary 2.21. Let A ⊆ B be an extension of rings and I an ideal of A. Let C = ∗
BA.

Then:

(a) ∗B[t](A[It]) = ∗
C[t](C[(IC)t]);

(b) ∗BI = ∗(IC).

Proof. (a) We begin with the following observation: If A ⊆ B ⊆ D are ring extensions,

x ∈ D, and A ⊆ B is weakly subintegral, then A[x] ⊆ B[x] is weakly subintegral, too. To

see this, let J be the kernel of the natural surjection B[X] → B[x]. By Remark 2.17, the
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extension A[X]→ B[X] is weakly subintegral. Then so is the extension A[X]/(J ∩A[X]) ⊆

B[X]/J , i.e., A[x] ⊆ B[x] is weakly subintegral.

From this observation it follows that the extension A[It] ⊆ C[(IC)t] is weakly subinte-

gral, which implies that ∗B[t](A[It]) = ∗
B[t](C[(IC)t]). On the other hand, ∗B[t](C[(IC)t]) ⊆

∗
B[t](C[t]) = (∗BC)[t] = C[t], hence ∗B[t](C[(IC)t]) = ∗

C[t](C[(IC)t]), which establishes (a).

Part (b) follows from (a) and Theorem 2.18. �

3. Inner and special integral closures

For an ideal I in a noetherian ring A and an element a ∈ A, we denote ordI(a) = sup{n |

a ∈ In} ∈ N ∪ {∞}. The limit vI(a) := limn→∞ ord(an)/n always exists (possibly infinite),

and defines the so-called asymptotic Samuel function of the ideal I. Moreover, vI(a) ≥ k if

and only if a ∈ Ik. We refer the reader to [10, Section 6.9 and Chapter 10] for a detailed

discussion of the properties of this function.

In [7, Section 4] Gaffney and Vitulli considered the ideal I> consisting of all the elements

a ∈ A such that vI(a) > 1 and studied its relation to the weak subintegral closure ∗I of I

in A. The ideal I> is a particular case of the ideals I>α (α ∈ Q) discussed in [10, Section

10.5] where I> = I>1. It is also a special case of the J-special integral closure IJ−sp of I

defined in [6, Section 5] where I> is recovered for J = I and is referred to as the inner

integral closure of I. For equivalent descriptions of I> we refer the reader to [5, Proposition

5.3] and [6, Theorem 5.4]. Another case of the J-special integral closure that is of interest

to us is obtained in a local ring (A,m) by taking J = m. This is the so-called special part

of the integral closure I−sp, as defined in [5, Section 5], and is the ideal consisting of all the

elements x ∈ A such that xn ∈ mIn for some n. As noted in [5, Proposition 5.3], if I is

m-primary, then I> = I−sp.

Using the equational definition of ∗I (Definition 1.5), Gaffney and Vitulli [7, Proposition

4.4] observed that I> ⊆ ∗I for every ideal I in a noetherian ring. (This inclusion can also

be obtained by using the tensor product characterization of ∗I; see Remark 4.9.) Moreover,

Gaffney and Vitulli proved that if (A,m, k) is a local ring such that the residue field k is

algebraically closed of characteristic zero and J is a minimal reduction of an m-primary ideal
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I, then J + I> = ∗J ([7, Theorem 4.6]). Note that this is in fact a statement about ideals

generated systems of parameters, for it is equivalent to saying that J + J> = ∗J for every

m-primary parameter ideal J . Indeed, J is a minimal reduction of an m-primary ideal if and

only if J is generated by a full system of parameters, and since J ⊆ I is a reduction we have

J> = I>.

Gaffney and Vitulli also noted that their proof required that the residue field be alge-

braically closed ([7, p. 2105]). By using the characterization ∗I = {x ∈ I | xt ⊗ 1 − 1 ⊗

xt nilpotent in A[It] ⊗A[It] A[It], where A[It] is the integral closure of A[It] in A[t], we are

able to give a modified proof of their result [7, Theorem 4.6] that eliminates this restriction

on the residue field. (This also eliminates the same restriction from several consequences of

this theorem that were discussed in [7, §4].)

We begin with a technical lemma that is essential for establishing the result when the

residue field is not necessarily algebraically closed.

Lemma 3.1. Let k be a field with char k = 0 and let F (X,T ) = T s + F1(X)T s−1 + · · · +

Fs(X) ∈ k[X1, . . . , Xd, T ] be an irreducible homogeneous polynomial of degree s ≥ 1, where

Fi(X) = Fi(X1, . . . , Xd) is homogeneous of degree i. If there exists n ≥ 1 such that

(T1 − T2)n ∈ 〈F (X,T1), F (X,T2)〉 ⊆ k[X1, . . . , Xd, T1, T2],

then s = 1.

Proof. Let R = k[X1, . . . , Xd]. If Q(R) denotes the quotient field of R, the polynomial

F (X,T ) ∈ R[T ] is also irreducible in Q(R)[T ], hence Q(R)[T ]/〈F (X,T )〉 is an integral

domain. As charQ(R) = 0, this implies that the ring

Q(R)[T1]/〈F (X,T1)〉 ⊗Q(R) Q(R)[T2]/〈F (X,T2)〉 ∼= Q(R)[T1, T2]/〈F (X,T1), F (X,T2)〉

is reduced ([4, Chapter 5, §15]), so T1 − T2 ∈ 〈F (X,T1), F (X,T2)〉Q(R)[T1, T2]. Then there

exist h(X) ∈ R \ {0} and g1(X,T1, T2), g2(X,T1, T2) ∈ R[T1, T2] such that

(3.1.1) h(X)(T1 − T2) = g1(X,T1, T2)F (X,T1) + g2(X,T1, T2)F (X,T2).
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The field k is infinite and h(X) 6= 0, so there exist α1, . . . , αd ∈ k such that h(α1, . . . , αd) 6=

0. Let k be an algebraic closure of k and choose β ∈ k such that F (α1, . . . , αd, β) = 0. If we

set Xi = αi (1 ≤ i ≤ d) and T2 = β in (3.1.1), in the ring k[T1] we have

h(α1, . . . , αd)(T1 − β) = g1(α1, . . . , αd, T1, β)F (α1, . . . , αd, T1).

Since h(α1, . . . , αd) 6= 0, the degree in T1 on the right hand side must be one. On the other

hand, F (α1, . . . , αd, T1) is a monic polynomial of degree s, so s = 1. �

We are now able to prove the theorem of Gaffney and Vitulli without assuming that the

residue field is integrally closed. We also state a version of the theorem for arbitrary ideals

that involves the special part of the integral closure. If I is m-primary, then I> = I−sp and

one recovers the original conclusion J + I> =∗ J .

Theorem 3.2. Let (A,m, k) be a local noetherian ring such that char k = 0. Let I be an

ideal of A and let J be a minimal reduction of I. Then

J + I> ⊆ ∗J ⊆ J + I−sp.

Proof. The inclusion I> = J> ⊆ ∗J was proved in [7, Proposition 4.4] for an arbitrary ideal

in a noetherian ring, not necessarily local. See also Remark 4.9 for a different approach.

For the second inclusion, we begin the proof exactly as in [7, Theorem 4.6] by following the

standard argument of considering the fiber cone of the ideal I and its Noether normalization

given by the minimal generators of the minimal reduction J . Let x1, . . . , xl be a minimal set

of generators of J , where l = `(I) is the analytic spread of I. Let y ∈ ∗J , K := J + yA, and

consider the integral extension of Rees algebras A[Jt] ⊆ A[Kt].

Since J is a minimal reduction, the fiber ring F (J) = A[Jt]/mA[Jt] is a polynomial ring

k[X1, . . . , Xl] where Xi is the image of xi in J/mJ . In particular, mA[Jt] is a prime ideal in

A[Jt]. Since y ∈ ∗J , A[Kt] is contained in the weak normalization of A[Jt] in A[t], so there

exists a unique prime ideal q ∈ SpecA[Kt] with q ∩ A[Jt] = mA[Jt]. Moreover, q is the

unique minimal prime over mA[Kt]. Indeed, if q′ is any minimal prime over mA[Kt], then

q′ ∩ A[Jt] ⊇ mA[Jt] = q ∩ A[Jt]. By (2.1) we have q′ ⊇ q, and therefore q′ = q.
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The integral extension A[Jt] ⊆ A[Kt] induces an integral extension of integral domains

k[X1, . . . , Xl] = F (J) ↪→ F (K)/qF (K) = k[X1, . . . , Xl, ȳ] ∼= k[X1, . . . , Xl, T ]/〈F (X,T )〉,

where F (X,T ) is an irreducible homogeneous polynomial in k[X1, . . . , Xl, T ] that is monic

in T . This follows from the fact that y satisfies an equation of integral dependence over

(x1, . . . , xl) = J .

At this point we deviate from the original proof of Gaffney and Vitulli. The condition

y ∈ ∗J means that yt⊗1−1⊗yt is nilpotent in A[Jt]⊗A[Jt]A[Jt], where A[Jt] is the integral

closure of A[Jt] in A[t]. As A[Jt] ⊆ A[Kt] ⊆ A[Jt], by (2.3) it follows that yt ⊗ 1 − 1 ⊗ yt

is nilpotent in A[Kt]⊗A[Jt] A[Kt], too.

Then the image of yt⊗ 1− 1⊗ yt in

[F (K)/qF (K)]⊗F (J) [F (K)/qF (K)] ∼= k[X1, . . . , Xl, T1, T2]/〈F (X,T1), F (X,T2)〉

is also nilpotent, which means that T1 − T2 is nilpotent in the ring

k[X1, . . . , Xl, T1, T2]/〈F (X,T1), F (X,T2)〉.

By Lemma 3.1, this implies that the degree of F (X,T ) in T is one, so there exist a1, . . . , al ∈

A such that ȳ − (ā1x̄1 + · · · + ālx̄l) ∈ qF (K). Since qF (K) is the unique minimal prime of

F (K), the element ȳ−(ā1x̄1+· · ·+ālx̄l) is nilpotent in F (K), so [y−(a1x1+· · ·+alxl)]n ∈ mKn

for some n. This means that y − (a1x1 + · · · + alxl) ∈ K−sp and therefore y ∈ J + K−sp ⊆

J + I−sp. �

4. Properties of the weak subintegral closure of an ideal

If A ⊆ B is an integral extension and I is an ideal of A, it is known that I = IB ∩ A

([10, Proposition 1.6.1]). In particular, every element of IB ∩ A belongs to the integral

closure of I. In what follows we show that a similar result holds for the weak subintegral

closure of an ideal. We first note the persistence property of the weak subintegral closure.

Proposition 4.1. If f : A → B is a ring homomorphism, I is an ideal of A and a ∈ ∗I,

then f(a) ∈ ∗(IB).
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Proof. Let A[It] and B[(IB)t] denote the integral closures of A[It] and B[(IB)t] in A[t] and

B[t], respectively. The map f induces the natural map

A[It]⊗A[It] A[It]
f̃−→ B[(IB)t]⊗B[(IB)t] B[(IB)t].

Since at ⊗ 1 − 1 ⊗ at is nilpotent in A[It] ⊗A[It] A[It], it follows that f̃(at ⊗ 1 − 1 ⊗ at) =

[f(a)t]⊗ 1− 1⊗ [f(a)t] is nilpotent as well, and therefore f(a) ∈ ∗(IB). �

Theorem 4.2. Let A ⊆ B be a weakly subintegral extension of rings and I an ideal of A.

Then ∗(IB) ∩ A = ∗I.

Proof. With the same notation used above, consider the natural maps

A[It]⊗A[It] A[It]
φ−→ B[(IB)t]⊗A[It] B[(IB)t]

θ−→ B[(IB)t]⊗B[(IB)t] B[(IB)t].

Since A ⊆ B is integral, the extension A[It] ⊆ B[(IB)t] is integral, too. By (2.3) it follows

that the map φ has nilpotent kernel. We next show that Ker θ is nilpotent as well. By (2.4),

Ker θ is generated by {c ⊗ 1 − 1 ⊗ c | c ∈ B[(IB)t]}, so it is enough to show that every

element of the form βtn⊗ 1− 1⊗ βtn with β ∈ InB is nilpotent in B[(IB)t]⊗A[It] B[(IB)t].

We show this by induction on n. For n = 0, since β ∈ B and the extension A ⊆ B is weakly

subintegral, the element β⊗1−1⊗β is nilpotent in B⊗AB, hence in B[(IB)t]⊗A[It]B[(IB)t].

For n = 1, let β ∈ IB. After choosing a set of generators for the ideal I, say I = (a1, . . . , ak),

write β = a1b1 + · · · + akbk for some b1, . . . , bk ∈ B. Then, in B[(IB)t] ⊗A[It] B[(IB)t], we

have

βt⊗ 1− 1⊗ βt =
k∑
i=1

[(aibit)⊗ 1− 1⊗ (aibit)] =
k∑
i=1

[(aibit)⊗ 1− (ait)⊗ bi]

=
k∑
i=1

((ait)⊗ 1)(bi ⊗ 1− 1⊗ bi).

However, since the extension A ⊆ B is weakly subintegral, every element bi⊗ 1− 1⊗ bi is

nilpotent in B ⊗A B, and therefore βt⊗ 1− 1⊗ βt is nilpotent in B[(IB)t]⊗A[It] B[(IB)t].
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For n ≥ 2, it is enough to prove that (β1 · · · βn)tn ⊗ 1 − 1 ⊗ (β1 · · · βn)tn is nilpotent in

B[(IB)t]⊗A[It] B[(IB)t] for every β1, . . . , βn ∈ IB. Since

(β1 · · · βn)tn ⊗ 1− 1⊗ (β1 · · · βn)tn = [(β1 · · · βn−1)tn−1 ⊗ 1− 1⊗ (β1 · · · βn−1)tn−1](βnt⊗ 1)

+ (βnt⊗ 1− 1⊗ βnt)[1⊗ (β1 · · · βn−1)tn−1],

this follows from the induction hypothesis.

Now let α ∈ ∗(IB)∩A. Note that α ∈ IB ∩A, hence α ∈ I. The element αt⊗ 1− 1⊗ αt

is nilpotent in B[(IB)t] ⊗B[(IB)t] B[(IB)t] and since the map θ ◦ φ has nilpotent kernel, it

follows that αt ⊗ 1 − 1 ⊗ αt is nilpotent in A[It] ⊗A[It] A[It], showing that α ∈ ∗I. The

inclusion ∗I ⊆ ∗(IB) ∩ A follows from Proposition 4.1. �

Proposition 4.3. Let A ⊆ B be an extension of rings and let z ∈ A such that z is not a

zero-divisor of B. Then

∗
Bz(Az) ∩B = (∗BA :B z).

Proof. Let α ∈ ∗
Bz

(Az) ∩ B, so α ⊗ 1 − 1 ⊗ α is nilpotent in Bz ⊗Az Bz
∼= (B ⊗A B)z.

Then there exists n such that zn(α⊗ 1− 1⊗ α) is nilpotent in B ⊗A B, which implies that

z(α⊗ 1− 1⊗α) is nilpotent in B⊗AB. This shows that αz ∈ ∗BA. The other inclusion also

follows immediately. If α ∈ (∗BA :B z), then zα⊗ 1− 1⊗ zα = z(α⊗ 1− 1⊗ α) is nilpotent

in B ⊗A B, which implies that α⊗ 1− 1⊗ α is nilpotent in Bz ⊗Az Bz. �

Corollary 4.4. Let I be an ideal of A and z ∈ A a regular element. Then

(∗I)z ∩ I = (∗I : z) ∩ I.

Proof. We apply the previous proposition for the ring extension A[It] ⊆ A[It], where A[It] is

the integral closure of A[It] in A[t]. By considering the equality obtained for the homogeneous

components in t-degree one, the conclusion follows. �

Proposition 4.5. Let I, J be ideals of a noetherian ring A such that J contains a regular

element. Then

(∗I : J∞) ∩ I = (∗I : J) ∩ I.
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Proof. If J is principal, say J = (z) where z is a regular element, this follows immediately

from Corollary 4.4, as (∗I)z ∩ A = (∗I : z∞). For the general case, since J contains regular

elements, from the implication (1⇒ 4) of [9, Theorem 7.2] it follows that there exist z1, . . . , zn

regular elements with J = (z1, . . . , zn) . Then (∗I : J∞) ∩ I =
⋂n
i=1(∗I : z∞i ) ∩ I =

⋂n
i=1(∗I :

zi) ∩ I = (∗I : J) ∩ I. �

Corollary 4.6. Let (A,m) be a local ring of positive depth and I an ideal of A. If the length

λ(I/∗I) is finite, then mI ⊆ ∗I.

Proof. If λ(I/∗I) < ∞, then I ⊆ (∗I : m∞). By Proposition 4.5 we then obtain I ⊆ (∗I :

m). �

Remark 4.7. In the case when I is m-primary, the inclusion mI ⊆ ∗I also follows from

[5, Proposition 5.3], as mI ⊆ mI ⊆ I−sp = I> ⊆ ∗I.

We also have the following.

Corollary 4.8. For every regular ideal I of a noetherian ring A, the ideal (∗I : I) is radical.

In particular,

I
√
I : I ⊆ ∗I.

Proof. Let J =
√
∗I : I. Note that I ⊆ J , so J contains a regular element. Since I ⊆ (∗I :

J∞), by Proposition 4.5 we have I ⊆ (∗I : J), hence J ⊆ (∗I : I). �

Remark 4.9. As we already mentioned, Gaffney and Vitulli [7, Proposition 4.4] proved that

I> ⊆ ∗I by using the equational description of ∗I. Equivalently, if an ∈ In+1 for n � 0,

then a ∈ ∗I. In fact, a careful examination of their argument shows that if an ∈ In for

n� 0, then a ∈ ∗I. We note here that the same result can also be recovered from the tensor

product characterization of ∗I. Indeed, assume that there exists n0 such that an ∈ In for

n ≥ n0. We claim that (at ⊗ 1 − 1 ⊗ at)2n0−1 = 0 in A[It] ⊗A[It] A[It], and hence a ∈ ∗I.

First note that from an ∈ In for n ≥ n0 we have a ∈ I. For 0 ≤ k ≤ n0 − 1 we have
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(at)n0+k, (at)2n0−1 ∈ A[It] and therefore

(at)n0+k ⊗ (at)n0−1−k = 1⊗ [(at)n0+k(at)n0−1−k]

= 1⊗ (at)2n0−1 = (at)2n0−1 ⊗ 1

= (at)n0−1−k ⊗ (at)n0+k.

From the binomial expansion we then obtain

(at⊗1−1⊗at)2n0−1 =

n0−1∑
k=0

(−1)n0−k
(

2n0 − 1

n0 + k

)[
(at)n0+k⊗(at)n0−k−1−(at)n0−k−1⊗(at)n0+k

]
= 0.

5. Weak normalizations of multi-Rees algebras

Our main goal in this section is to describe the weak normalization of a multi-Rees algebra

R(I1, . . . , Ik) = A[I1t1, . . . , Iktk] in A[t1, . . . , tk]. For integral closure, it is well known that

R(I1, . . . , Ik) = ⊕m1,...,mk≥0I
m1
1 · · · I

mk
k tm1

1 · · · t
mk
k . We obtain a similar characterization for

the weak normalization.

Theorem 5.1. Let A ⊆ B be a ring extension. Let I1, . . . , Ik be ideals of A with multi-Rees

algebra R = R(I1, . . . , Ik) = A[I1t1, . . . , Iktk] Then

∗
B[t1,...,tk]R =

⊕
(m1,...,mk)∈Nk

∗
B(Im1

1 · · · I
mk
k )tm1 · · · tmkk .

Proof. Let Σ = Zk. For i = (m1, . . . ,mk) ∈ Nk, we denote ti = tm1
1 · · · t

mk
k and I i =

Im1
1 · · · I

mk
k . Also denote by S the integral closure of R in B[t1, . . . , tk]. Since ∗B[t1,...,tk]R

is a Σ-graded subring of S ⊆ B[t1, . . . , tk], we can write ∗B[t1,...,tk]R =
⊕

i∈Σ Lit
i. Fix ε =

(m1, . . . ,mk) ∈ Nk. For ∆ = Zε, by Theorem 2.14, we have Lε = [∗(S∆)(R
∆)]ε. On the

other hand, R∆ =
⊕

n∈N I
nεtnε is the classic (single) Rees algebra of the ideal Iε, and S∆

is its integral closure in B[tε]. If we consider these algebras with their natural N-grading,

i.e., [R∆]n = Inεtnε, then Lε is obtained from degree one component of ∗(S∆)(R
∆), and by

Theorem 2.18 and Remark 2.20 it follows that Lε = ∗
B(Iε) = ∗

B(Im1
1 · · · I

mk
k ), finishing the

proof. �
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The following immediate consequence recovers a result of Vitulli and Leahy [22, Proposi-

tion 2.11], who obtained it by using very technical characterizations of ∗BI (see [22, Theorem

2.10]).

Corollary 5.2. Let A ⊆ B be a ring extension and let I, J be ideals of A. Then

(∗BI)(∗BJ) ⊆ ∗B(IJ),

and therefore

∗
B

(
(∗BI)(∗BJ)

)
= ∗

B(IJ).

Proof. From the graded structure of ∗B[t1,t2]A[It1, Jt2] proved in Theorem 5.1 it follows that

(∗BIt1)(∗BJt2) ⊆ ∗B(IJ)t1t2. �

6. The weak normalization of the extended Rees algebra

It is well known that the integral closures of the Rees and extended Rees algebras have

identical homogeneous components of non-negative degree. A similar property holds for their

weak normalizations.

Proposition 6.1. Let A ⊆ B be a ring extension and I an ideal of A. The weak normaliza-

tions of A[It] and A[It, t−1] in B[t] and B[t, t−1], respectively, have the same homogeneous

components of degree n > 0.

Proof. Let C := ∗
BA. From part (a) of Corollary 2.21 we have ∗B[t](A[It]) = ∗

C[t](C[(IC)t]);

similarly, one can also show that ∗B[t,t−1](A[It, t−1]) = ∗
C[t,t−1](C[(IC)t, t−1]). Therefore, after

replacing C with A, it is enough to prove that [∗A[t](A[It])]n = [∗A[t,t−1](A[It, t−1])]n for n ≥ 1.

The inclusion “⊆” follows right away. Indeed, if αtn⊗1−1⊗αtn is nilpotent in A[It]⊗A[It]

A[It], it is also nilpotent in A[It, t−1]⊗A[It,t−1] A[It, t−1].

Assume now that αtn ∈ [∗A[t,t−1](A[It, t−1])]n, i.e., (αtn⊗1−1⊗αtn)k0 = 0 inA[It, t−1]⊗A[It,t−1]

A[It, t−1] for some k0 ≥ 1. Then (αtn⊗ 1− 1⊗αtn)k0 = 0 in S ′⊗A[It,t−1] S
′ for some finitely

generated A[It, t−1]-submodule of A[It, t−1], so there exists u ≥ 1 such that (αtn ⊗ 1− 1⊗

αtn)k0 = 0 in A[It, . . . , Iutu, t−1] ⊗A[It,t−1] A[It, . . . , Iutu, t−1]. Let T := A[It, . . . , Iutu] and
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T ′ := A[It, . . . , Iutu, t−1] and consider the canonical graded homomorphism

T ⊗A[It] T
η−→ T ′ ⊗A[It,t−1] T

′.

Let {mi}1≤i≤r be a finite set of non-zero homogeneous generators of T as an A[It]-module

and let s = max{degmi | 1 ≤ i ≤ r}. Note that {mi}1≤i≤r also generate T ′ as an A[It, t−1]-

module. We claim that for k ≥ 2s every homogeneous element from [Ker η]k is zero.

Let y =
∑r

i=1mi ⊗ xi ∈ [Ker η]k with xi ∈ Tk−degmi homogeneous elements. By Lemma

2.7, there exist homogeneous elements aij ∈ [A[It, t−1]]k−degmi−degmj (1 ≤ i, j ≤ r) such that

xi =
∑r

j=1 aijmj for every i and
∑r

i=1miaij = 0 for every j. However, since k ≥ 2s, we have

k − degmi − degmj ≥ 0 for all i, j, so aij ∈ A[It]. By Lemma 2.7 again, this implies that

y =
∑r

i=1 mi ⊗ xi = 0 in T ⊗A[It] T .

Now let k ≥ max{k0, 2s}. We have (αtn ⊗ 1 − 1 ⊗ αtn)k = 0 in T ′ ⊗A[It,t−1] T
′, so

(αtn⊗ 1− 1⊗αtn)k ∈ Ker η. Since nk ≥ 2s, from what we just proved above it follows that

(αtn ⊗ 1− 1⊗ αtn)k = 0 in T ⊗A[It] T . Then (αtn ⊗ 1− 1⊗ αtn)k = 0 in A[It]⊗A[It] A[It],

too, showing that αtn ∈ [∗A[t](A[It])]n. �
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