
ASYMPTOTIC PRIMES OF S2-FILTRATIONS

CĂTĂLIN CIUPERCĂ

Abstract. Let A be a noetherian ring with total ring of fractions Q(A) and S = ⊕n∈ZInt
n

a noetherian graded ring such that A[t−1] ⊆ S ⊆ Q(A)[t, t−1] and S satisfies the (S2)

property of Serre. Under mild conditions on the ring A, we study the behavior of the sets of

associated prime ideals Ass(A/In ∩ A) for n ≥ 1. In particular, we consider the case when

S is the S2-ification of the extended Rees algebra of an ideal I. As applications, we obtain

several results regarding the asymptotic behavior of Ass(A/In) for certain ideals of analytic

deviation one. We also prove several consequences about the symbolic powers of a prime

ideal.

1. Introduction

Let A be a noetherian ring and I an ideal in A. Answering a question of Ratliff regarding

the behavior of Ass(A/In) for n large, Brodmann proved that the sequence of sets Ass(A/In)

stabilizes for n large enough. In the same vein, if we consider the filtration of integral

closures {In}n≥1, results of Ratliff show that the sets Ass(A/In) stabilize as well. Moreover,

Ass(A/In) ⊆ Ass(A/In+1) for all n, a property which is not always satisfied by the sets

Ass(A/In). If A∗(I) and A
∗
(I) denote the stabilizing sets of Ass(A/In) and Ass(A/In),

respectively, it is also known that A
∗
(I) ⊆ A∗(I). We refer to the monograph of McAdam

[15] for a detailed exposition of these properties.

The asymptotic behavior of these sets of associated primes is best studied by considering

the extended Rees algebra R = A[It, t−1]. If R denotes the integral closure of R in its

total quotient ring, we have R ⊆ Q(A)[t, t−1], where Q(A) is the total ring of fractions of

A, and R ∩ A[t, t−1] = ⊕n∈ZInt
n. The properties (R1) and (S2) of Serre derived from the

integral closedness of the ring R can then be exploited to deduce the nice behavior of the sets

Ass(A/In). In this paper we consider finite graded extensions S = ⊕n∈ZInt
n of the extended
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Rees algebra A[It, t−1] inside Q(A)[t, t−1] that only satisfy the (S2) property of Serre. Under

mild conditions on the ring A, we show that the filtration of ideals {In∩A}n≥1, which we refer

to as an S2-filtration, has similar asymptotic properties with respect to its associated prime

ideals. More precisely, the sets Ass(A/In ∩ A) form an increasing sequence that eventually

stabilizes and
⋃

n≥1 Ass(A/In∩A) =
⋃

n≥1 Ass(A/In) (Corollary 2.8). It is not the purpose of

this note to recover the already known results about the asymptotic behavior of Ass(A/In).

In fact, many of our arguments assume that the ring A is a universally catenary domain,

a constraint not imposed in the work of Ratliff regarding the behavior of Ass(A/In). Our

main goal is to apply these properties in a minimal finite birational extension of R that

satisfies the (S2) property, the so-called S2-ification of R (Corollary 2.15). With respect to

the arguments used in our proofs, since we are only assuming the (S2) property, we can no

longer employ the use of certain discrete valuation rings which, in the case of the filtration

{In}n≥1, were obtained by localizing R at the minimal prime ideals of t−1R (cf. [15, 3.1–

3.3]). Additionally, some other mild assumptions on the ring need to be made in order to

ensure the existence of an S2-ification.

Another motivating result for our study is a characterization due to Ratliff [17, Theorem

4.3] of the Cohen-Macaulay rings in terms of the sets A∗(I) and A
∗
(I). More precisely,

if A is a locally formally equidimensional ring, then A is Cohen-Macaulay if and only if

A∗(I) = A
∗
(I) for all ideals I of the principal class. By using our results regarding A∗(I)

when R satisfies (S2), we conclude that A is Cohen-Macaulay if and only if A[It, t−1] satisfies

(S2) for every ideal I of the principal class (Proposition 2.17).

All these results are obtained in Section 2 where we develop the main ideas in the general

context of graded noetherian algebras S = ⊕n∈ZInt
n such that A[t−1] ⊆ S ⊆ Q(A)[t, t−1]

and S satisfies the (S2) property. In Section 3 we obtain several consequences regarding

the symbolic powers of a prime ideal. In particular, if p is a prime ideal in a universally

catenary domain A such that the associated graded ring GpAp(Ap) satisfies (S1), we show

that A
∗
(p) = {p} if and only if the n-th symbolic power p(n) coincides with the degree n

component in A of the S2-ification of R for all n ≥ 1 (Theorem 3.4). This improves a similar

characterization of Huckaba who, under the global assumption that Gp(A) satisfies (S1),

proved that A
∗
(p) = {p} if and only if p(n) = pn for all n (Corollary 3.5). We note that
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the equimultiple ideals are important cases of ideals that satisfy the condition A
∗
(p) = {p}.

We also provide an example of an equimultiple ideal p in a Cohen-Macaulay domain such

that GpAp(Ap) satisfies (S1) but Gp(A) does not, and compute several symbolic powers of p

by using the S2-ification of its extended Rees algebra. In Section 4 we recover a result of

Brodmann showing that, for an almost complete intersection ideal I, the sets Ass(A/In) form

an increasing sequence and the height of any prime in A∗(I) is at most ht I + 1 (Proposition

4.3). Similar properties are also obtained for certain ideals I of analytic spread `(I) = ht I+1

(Proposition 4.4). In both situations, the main observation is that the extended Rees algebras

of the ideals involved satisfy the (S2) property, which allows us to apply Corollary 2.10.

2. S2-filtrations

Throughout this paper all the rings are commutative with identity. A noetherian local

ring (A,m) is said to be formally equidimensional if all the minimal primes of the completion

Â have the same dimension. A noetherian ring is called locally formally equidimensional if

all of its localizations are formally equidimensional. It is known that a locally formally

equidimensional ring is universally catenary and, if A is a noetherian domain, A is locally

formally equidimensional if and only if A is universally catenary. We refer to the Appendix

of [12] for a brief account of these properties and for terminology and concepts not otherwise

explained in this paper.

2.1. The (Si) property. Let M be a finitely generated module over a noetherian ring A.

We say that M satisfies Serre’s (Si) property if for every p ∈ Spec(A) we have

depthMp ≥ min{i, dimMp}.

We caution that a slightly different definition is sometimes used in the literature by requiring

the stronger condition depthMp ≥ min{i, ht p}. The conditions are clearly equivalent if

AnnAM = (0).

We say that the ring A satisfies the (S2) property if A satisfies the (S2) property as an

A-module. Equivalently, A has no embedded prime ideals (i.e. A satisfies the (S1) property)

and, for every regular element x ∈ A, the ring A/xA has no embedded prime ideals.
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2.2. If A ↪→B is a finite extension of noetherian rings and B satisfies the (S2) property as

an A-module, then B satisfies the (S2) property as a ring.

Moreover, if the extension satisfies the condition

ht q1 = ht q2 for every q1, q2 ∈ SpecB with q1 ∩ A = q2 ∩ A,

then the converse also holds, i.e., B satisfies (S2) as a ring if and only if B satisfies (S2) as

an A-module ([14, 5.7.11]). In particular, if A is a universally catenary domain and A ↪→B

is a finite birational extension, since ht q = ht(q ∩ A) for every q ∈ SpecB ([12, 4.8.6], it

follows that B satisfies (S2) as a ring if and only if B satisfies (S2) as an A-module.

In the above context, when we say that B satisfies the (S2) property we mean that B

satisfies the (S2) property as a ring.

Definition 2.3. Let A be a noetherian ring with total ring of fractions Q(A). If S =

⊕n∈ZInt
n is a noetherian graded ring with A[t−1] ⊆ S ⊆ Q(A)[t, t−1] and S satisfies the (S2)

property, we say that the family of ideals F = {In ∩A}n≥1 is an S2-filtration of ideals in A.

The following Proposition contains results that are well-known in the case when S is the

integral closure of an extended Rees algebra A[It, t−1]. Our statements are adaptations for

the more general context of certain graded algebras that only satisfy the (S2) property. Most

arguments used in its proof are also variations of known techniques.

Proposition 2.4. Let A be a noetherian ring and S = ⊕n∈ZInt
n a noetherian graded ring

such that A[t−1] ⊆ S ⊆ Q(A)[t, t−1] and S satisfies the (S2) property. Let Q1, Q2, . . . , Qm be

the minimal prime ideals of the S-module S/t−1S. The following are true:

(a) In ∩ A =
⋂m

i=1 t
−nSQi

∩ A for all n ≥ 1;

(b)
⋃

n≥1 Ass(A/In ∩ A) ⊆ {Q1 ∩ A, . . . , Qm ∩ A};

(c) If S ⊆ A[t, t−1], then

⋃
n≥1

Ass(A/In) = {Q1 ∩ A, . . . , Qm ∩ A};
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(d) If A is a universally catenary domain, S is a finitely generated A-algebra, and S is finite

over S ∩ A[t, t−1], then

⋃
n≥1

Ass(A/In ∩ A) = {Q1 ∩ A, . . . , Qm ∩ A}.

Proof. (a) Since S satisfies the (S2) property, for each n ≥ 1 we have Ass(S/t−nS) =

Min(S/t−1S) = {Q1, . . . , Qm}, so t−nS =
⋂m

i=1 t
−nSQi

∩ S. As In = t−nS ∩ Q(A), the

conclusion follows.

(b) The ideal t−nSQi
is a QiSQi

-primary ideal in SQi
, so t−nSQi

∩ A is a primary ideal in

A. Then, for each n,

In ∩ A =
m⋂
i=1

(t−nSQi
∩ A)

is a (possibly redundant) primary decomposition of In ∩ A, and therefore

⋃
n≥1

Ass(A/In ∩ A) ⊆ {Q1SQ1 ∩ A, . . . , QmSQm ∩ A} = {Q1 ∩ A, . . . , Qm ∩ A}.

(c) Let Q be a minimal prime ideal of S/t−1S. Write Q = (t−1S :S at
s) for some homoge-

neous element ats ∈ S (a ∈ Is). Then

Q ∩ A = (t−1S :A at
s) = (Is+1 :A a),

which shows that Q ∩ A ∈ Ass(A/Is+1).

(d) Let Q be a minimal prime ideal of S/t−1S. Denote S ′ = S ∩A[t, t−1] and Q′ = Q∩S ′.

Since A ⊆ S ′ ⊆ S, S is a finitely generated A-algebra, and S is a module-finite extension

of S ′, by a result of Artin and Tate [1, Theorem 1], the ring S ′ is a finitely generated A-

algebra, and therefore a universally catenary domain. Then, by [12, Proposition 4.8.6], we

have htQ′ = htQ = 1, so Q′ is a minimal prime of S ′/t−1S ′. As in part (c), we can now

write Q′ = (t−1S ′ :S′ ats) for some homogeneous element ats ∈ S ′ (a ∈ Is ∩ A). Then

Q ∩ A = Q′ ∩ A = (t−1S ′ :A at
s) = ((Is+1 ∩ A) :A a),

which shows that Q ∩ A ∈ Ass(A/Is+1 ∩ A). �
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Remark 2.5. A similar argument to the one used above in part (c) shows that for every ideal

I in a noetherian ring A we have⋃
n≥1

Ass(A/In) ⊇ {P1 ∩ A, . . . , Pr ∩ A},

where {P1, . . . , Pr} = Min(A[It, t−1]/(t−1)).

In order to prove the main results of this section we need the following lemma.

Lemma 2.6. Let (A,m) be a formally equidimensional local ring and let S = ⊕n∈ZInt
n

be a noetherian graded ring such that A[t−1] ⊆ S ⊆ Q(A)[t, t−1] and ht(I1 ∩ A) ≥ 1. Let

R = A[(I1 ∩ A)t, t−1] ⊆ S. Assume that S is integral over R and that either

(i) A is a domain; or

(ii) S ⊆ A[t, t−1].

Then

ht((I1 ∩ A)t, t−1)S ≥ 2.

Proof. By contradiction, assume that there exists a prime Q containing ((I1∩A)t, t−1)S such

that htQ = 1. Let P = Q ∩R.

If the condition (i) is satisfied, then R is a universally catenary domain and R ↪→S is an

integral extension. By using again [12, 4.8.6], we obtain htP = htQ = 1, so P is a prime in

the extended Rees algebra R that is minimal over t−1R. As A is formally equidimensional,

by [12, 5.4.8] we have dimR/P = dimA. On the other hand, since R/((I1 ∩ A)t, t−1)R ∼=

A/I1 ∩ A, we have dimR/P ≤ dimA/I1 ∩ A. This implies I1 ∩ A = (0), contradiction.

We now assume that the condition (ii) is satisfied. We first show that every minimal

prime ideal of S is of the form pA[t, t−1] ∩ S with p a minimal prime of A. To see this, for

every ideal J in A, denote JS = JA[t, t−1] ∩ S. One can immediately check that if p is a

prime ideal in A, then pS is a prime ideal in S, and if q is a p-primary ideal in A, then qS

is a pS-primary ideal in S. Moreover, JS ∩ A = J for every ideal J in A. Consequently,

if (0) = q1 ∩ . . . ∩ qr is an irredundant primary decomposition of the zero ideal in A, then

(0) = (q1)S ∩ . . .∩ (qr)S is an irredundant primary decomposition of the zero ideal in S. This
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shows that the ideals {pS | p ∈ Min(A)} are all the minimal prime ideals of S. Similarly, the

ideals {pR | p ∈ Min(A)} are all the minimal prime ideals of R.

Now let pS = pA[t, t−1] ∩ S be a minimal prime ideal of S such that Q ⊇ pS. Then

pR = pS ∩R is a minimal prime ideal of R that is contained in P . Note that

R/pR = R/(pA[t, t−1] ∩R) ∼= (A/p)
[I1 ∩ A+ p

p
t, t−1

]
is the extended Rees algebra of the ring A/p with respect to the image of the ideal I1 ∩ A.

In particular,

dimR/pR = dimA/p + 1 = dimA+ 1.

As A/p is a formally equidimensional local domain and hence universally catenary, R/pR is

also universally catenary. Then, if M = ((I1 ∩ A)t,m, t−1)R denotes the maximal homoge-

neous ideal of R, we have

(2.6.1) dimA+1 = dimR/pR = ht(M/pR) = ht(M/P )+ht(P/pR) = dimR/P+ht(P/pR).

Moreover, since R/pR ↪→S/pS is an integral extension, by [12, 4.8.6] we have ht(P/pR) =

ht(Q/pS) = 1. Therefore (2.6.1) implies that dimR/P = dimA. However, since R/((I1 ∩

A)t, t−1)R ∼= A/I1 ∩A, we have dimR/P ≤ dimA/I1 ∩A, contradicting ht(I1 ∩A) ≥ 1. �

Theorem 2.7. Let A be a locally formally equidimensional ring and let S = ⊕n∈ZInt
n be a

noetherian graded ring such that A[t−1] ⊆ S ⊆ Q(A)[t, t−1] and S satisfies the (S2) property.

Let R = A[(I1 ∩ A)t, t−1] ⊆ S. Assume that S is integral over R and that either

(i) A is a domain; or

(ii) S ⊆ A[t, t−1] and ht I1 ≥ 1.

Then

Ass(A/In ∩ A) ⊆ Ass(A/In+1 ∩ A) for all n ≥ 1.

Proof. First note that under the assumption (i) we may also assume that ht(I1∩A) ≥ 1, i.e.

I1 ∩ A 6= (0), for otherwise we must have In = 0 for all n ≥ 1.

Let Q ∈ Ass(A/In ∩ A). After localizing at Q we may assume that A is a formally

equidimensional local ring with maximal ideal Q. Moreover, by passing to the faithfully flat

extension A[X]QA[X], we may also assume that the residue field of A is infinite. Write Q =
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((In∩A) :A b) = (t−nS :S b)∩A for some b ∈ A. Since S satisfies the (S2) property, by Lemma

2.6 and homogeneous prime avoidance, there exists at ∈ (I1∩A)t that does not belong to any

of the prime ideals in Ass(S/t−nS) = Min(S/t−1S). As Ass(S/(t−nS :S b)) ⊆ Ass(S/t−nS),

the element at is a non-zero-divisor on S/(t−nS :S b), so we have Q = (t−nS :S abt) ∩ A.

Then Q = ((In+1 ∩ A) :A ab), which shows that Q ∈ Ass(A/In+1 ∩ A). �

Corollary 2.8. Let A be a locally formally equidimensional domain, I an ideal in A, and

S = ⊕n∈ZInt
n a noetherian graded ring such that A[It, t−1] ⊆ S ⊆ Q(A)[t, t−1] and S satisfies

the (S2) property. Assume that S is a finite extension of A[It, t−1]. Then the following hold:

(a) Ass(A/In ∩ A) ⊆ Ass(A/In+1 ∩ A) for all n ≥ 1;

(b)
⋃

n≥1 Ass(A/In ∩ A) = {Q ∩ A | Q ∈ Min(S/t−1S)};

(c)
⋃

n≥1 Ass(A/In ∩ A) =
⋃

n≥1 Ass(A/In).

Proof. Parts (a) and (b) are immediate consequences of Theorem 2.7 and Proposition 2.4

(d).

For part (c), let T = A[It, t−1] be the integral closure of A[It, t−1] in its quotient field. Note

that S ⊆ T = ⊕n∈ZInAt
n ⊆ Q(A)[t, t−1] ([12, 5.2.4]) and T ∩ A[t, t−1] = ⊕n∈ZInt

n. From

the classical result regarding the asymptotic primes of the filtration {In}n≥1 we know that⋃
n≥1 Ass(A/In) = {Q ∩ A | Q ∈ Min(T/t−1T )} (see, for example, [15, Proposition 3.18]).

Because of (b), if we show that the contractions to S of all the primes in MinT (T/t−1T )

give us all the primes in MinS(S/t−1S), the proof is finished. For this, note that S is a

universally catenary domain and S ⊆ T is an integral extension. By [12, 4.8.6], for every

prime Q minimal over t−1T we have ht(Q ∩ S) = htQ = 1, so Q ∩ S is minimal over t−1S.

Moreover, if P is a prime minimal over t−1S, by the lying over property for integral extensions

there exists a prime Q containing t−1T such that P = Q ∩ S. We also have htQ ≤ htP , so

Q must be minimal over t−1T . �

When A is not necessarily a domain, but S ⊆ A[t, t−1], we obtain similar conclusions in

parts (a) and (b), and only one inclusion in part (c).

Corollary 2.9. Let A be a locally formally equidimensional ring, I an ideal in A, and

S = ⊕n∈ZInt
n a noetherian graded ring such that A[It, t−1] ⊆ S ⊆ A[t, t−1], ht I1 ≥ 1, and
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S satisfies the (S2) property. Assume that S is a finite extension of A[It, t−1]. Then the

following hold:

(a) Ass(A/In) ⊆ Ass(A/In+1) for all n ≥ 1;

(b)
⋃

n≥1 Ass(A/In) = {Q ∩ A | Q ∈ Min(S/t−1S)};

(c)
⋃

n≥1 Ass(A/In) ⊆
⋃

n≥1 Ass(A/In).

Proof. Parts (a) and (b) follow from Theorem 2.7 (ii) and Proposition 2.4 (c). Moreover, by

following the line of proof of part (c) of Corollary 2.8 without assuming that A is domain,

it is still true that every minimal prime of S/t−1S is contracted from a minimal prime of

T/t−1T , and therefore ⋃
n≥1

Ass(A/In ∩ A) ⊆
⋃
n≥1

Ass(A/In).

�

In particular, when S is an extended Rees algebra, we have the following.

Corollary 2.10. Let A be a locally formally equidimensional ring and I an ideal in A with

ht I ≥ 1. Assume that the extended Rees algebra A[It, t−1] satisfies the (S2) property. The

following hold:

(a) Ass(A/In) ⊆ Ass(A/In+1) for every n ≥ 1;

(b)
⋃

n≥1 Ass(A/In) = {Q ∩ A | Q ∈ Min(A[It, t−1]/(t−1));

(c)
⋃

n≥1 Ass(A/In) =
⋃

n≥1 Ass(A/In).

Proof. Parts (a) and (b) are direct consequences of Corollary 2.9. From the classical result of

Ratliff we have
⋃

n≥1 Ass(A/In) = A
∗
(I) ⊆ A∗(I) and, by part (a), A∗(I) =

⋃
n≥1 Ass(A/In).

This shows the inclusion “⊇” of part (c). The other inclusion follows from Corollary 2.9(c).

�

2.11. The S2-ification of a noetherian domain. For a noetherian domain A with quo-

tient field Q(A), an S2-ification of A is a birational extension S2(A) of A that is minimal

among the finite birational extensions of A that satisfy the (S2) property as A-modules. If

A has an S2-ification, then it is unique. More precisely, A has an S2-ification S2(A) if and

only if C :=
⋂

ht p=1Ap is a finite extension of A, in which case C is the S2-ification of A.
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If A is a universally catenary domain such that the extension A ⊆ A is finite (which holds,

for instance, when A is an analytically unramified local domain), then A has an S2-ification

[14, 5.11.2]. Also, if A has a canonical module ω, then HomA(ω, ω) is the S2-ification of A

[16, Theorem 1.3]. We refer to [6, 16, 19] for detailed accounts on S2-ification.

2.12. The S2-ification of A[It, t−1]. Let A be a noetherian domain and I an ideal in A.

Assume that R = A[It, t−1] has an S2-ification S2(R). (The S2-ification S2(R) exists for

a large class of rings; it does, for example, when A is a universally catenary analytically

unramified local domain.) As explained in [4, 2.3], S2(R) is a graded subring of Q(A)[t, t−1],

so that we can write S2(R) = ⊕n∈ZInt
n ⊆ Q(A)[t, t−1]. The A-modules In are contained in

the S2-ification S2(A) of A [4, Lemma 2.4]. In particular, if A satisfies (S2), then In is an

ideal in A for all n ≥ 1.

Definition 2.13. For every ideal I in a ring A such that the conditions in (2.12) are satisfied

we define S2(I) := I1 ∩ A, the S2-closure of I.

Remark 2.14. Since the n-th Veronese subring of S2(A[It, t−1]) is the S2-ification of the n-th

Veronese subring of A[It, t−1], we have S2(I
n) = In ∩ A for all n ≥ 1.

From Corollary 2.8 we have the following consequence regarding the asymptotic primes of

the S2-filtration S2(I
n).

Corollary 2.15. Let A be a universally catenary domain and I an ideal of A. Assume that

the extended Rees algebra R = A[It, t−1] has an S2-ification . Then:

(a) Ass(A/S2(I
n)) ⊆ Ass(A/S2(I

n+1)) for every n ≥ 1;

(b)
⋃
n≥1

Ass(A/S2(I
n)) =

⋃
n≥1

Ass(A/In).

Remark 2.16. Let A be a noetherian ring that satisfies the (S2) property and I an ideal.

Consider the statements: (a) A[It, t−1] satisfies the (S2) property; (b) GI(A) satisfies the

(S1) property ; and (c) A[It] satisfies the (S2) property. The following are true:

(1) (a) ⇐⇒ (b), because GI(A) ∼= A[It, t−1]/(t−1);

(2) If ht I ≥ 1, then (c) =⇒ (b) ([3, Theorem 1.5]).
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(3) If Ip is principal for every p ∈ Spec(A) with ht p = 1, then (b) =⇒ (c) ([3, Theorem

1.5]); in particular, if ht I ≥ 2, then (b) ⇐⇒ (c).

The equivalence (a) ⇐⇒ (e) in the following Proposition was originally established by

Ratliff in [17]. In view of our study of the asymptotic primes of S2-filtrations, we are able

to add several equivalent statements. In particular, the equivalence (a) ⇐⇒ (c) gives a

characterization of the Cohen-Macaulay rings in terms of the (S2) property of their extended

Rees algebras with respect to ideals of the principal class. Recall that an ideal I is said to

be of the principal class if I can be generated by ht I elements.

Proposition 2.17. Let A be a locally formally equidimensional ring. The following are

equivalent:

(a) A is Cohen-Macaulay;

(b) R = A[It, t−1] is Cohen-Macaulay for every ideal I of the principal class;

(c) R = A[It, t−1] satisfies the (S2) property for every ideal I of the principal class;

(d)
⋃
n≥1

Ass(A/In) =
⋃
n≥1

Ass(A/In) for every ideal I of the principal class;

(e) A∗(I) = A
∗
(I) for every ideal I of the principal class.

Proof. The implication (a) =⇒ (b) holds because in a Cohen-Macaulay ring an ideal of

the principal class is generated by a regular sequence. By Corollary 2.10, we also obtain (c)

=⇒ (d). For (d) =⇒ (e) note that A∗(I) ⊆
⋃

n≥1 Ass(A/In) =
⋃

n≥1 Ass(A/In) = A
∗
(I) ⊆

A∗(I), hence A∗(I) = A
∗
(I). For the implication (e) =⇒ (a) we refer to the original paper

of Ratliff [17, Theorem 4.3] or [15, Theorem 8.12]. �

3. Symbolic Powers of Ideals

In this section we obtain several consequences regarding the behavior of the symbolic pow-

ers of a prime ideal. We begin with a well-known observation that will be used extensively.

Remark 3.1. Let A be a locally formally equidimensional ring and I an ideal in A. The

following are equivalent:

(a) `(IAq) < dimAq for every prime q ∈ V (I) \Min(A/I);
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(b) A
∗
(I) = Min(A/I).

The equivalence follows from a well-known result of McAdam that states that q ∈ A∗(I)

if and only if `(IAq) = dimAq ([15, Proposition 4.1]). The importance of the condition (a)

in the context of symbolic powers of ideals has been documented in many instances (e.g.

[7,8,10]). If I = p is a prime in a locally formally equidimensional ring A, the condition also

implies that the p-adic topology and the p-symbolic topology on A are linearly equivalent,

i.e. there exists k such that p(n+k) ⊆ pn for all n ≥ 1 ([18, Corollary 1]). We also note that

if I is an equimultiple ideal in a local ring, then I satisfies the condition (a).

Recall that for an ideal I in a noetherian ring A, the unmixed part Iunm is the intersection

of the primary components of I that correspond to the minimal prime ideals over I. For

n ≥ 1 and a prime ideal p, the ideal (pn)unm is referred to as the n-th symbolic power of p

and is typically denoted by p(n).

We now state a non-local version of a result we proved in [5].

Proposition 3.2. Let A be a locally formally equidimensional domain and I an ideal in A

such that `(IAq) < dimAq for every prime q ∈ V (I) \Min(A/I). Assume that the extended

Rees algebra R = A[It, t−1] has an S2-ification S2(R) =
⊕
n∈Z

Int
n. Then, for n ≥ 1,

(In)unm ⊆ S2(I
n).

Proof. Since `(IAq) = `(InAq) and the n-th Veronese subring of S2(R) is an S2-ification of

the n-th Veronese subring of R, it is enough to prove the conclusion for n = 1. Furthermore,

it is enough to prove that for every prime p that contains I we have (Ip)
unm ⊆ (I1)p. We

may also assume that p /∈ Min(A/I), for otherwise (Ip)
unm = Ip and the inclusion is clear.

We now note that if p ∈ Spec(R), then
⊕
n∈Z

(In)pt
n is an S2-ification of Ap[Ipt, t

−1]. Hence,

after localizing at p, we may assume that (A,m) is a formally equidimensional ring and I is

an ideal in A such that `(IAq) < dimAq for every prime q ∈ V (I) \Min(A/I); we need to

show that Iunm ⊆ I1∩A. This was proved in [5, Lemma 3.10]. Even though the statement of

[5, Lemma 3.10] assumes that I is equimultiple, the proof given there works for any ideal I

such that `(IAq) < dimAq for every prime q ∈ V (I) \Min(A/I). Also, in [5], the additional
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conditions on the ring were imposed just to guarantee the existence of the S2-ification of the

extended Rees algebra. �

Remark 3.3. In the previous proposition, the requirement that A be a domain was imposed

just to ensure that we are in the setup used in the description of the S2-ification process

in (2.12) where we construct the S2-ification S2(R) inside the quotient field Q(R). If the

extended Rees algebra R already satisfies the (S2) property, a particular case in which

Proposition 3.2 will be applied subsequently, there is no need to assume that A is a domain.

We now consider a prime ideal p that satisfies the equivalent conditions in Remark 3.1.

Under mild conditions on the ring A, the next result shows that if the associated graded ring

GpAp(Ap) satisfies (S1), then the filtration of symbolic powers coincides with the S2-filtration

S2(p
n). As discussed in more detail at the end of the proof of this result, previous results in

the literature established that p(n) = pn for all n if Gp(A) satisfies (S1), and p(n) = pn for all

n if GpAp(Ap) is reduced.

Theorem 3.4. Let A be a locally formally equidimensional domain and p a prime ideal in

A such that the extended Rees algebra A[pt, t−1] has an S2-ification. Assume that GpAp(Ap)

satisfies (S1). The following are equivalent:

(a) A
∗
(p) = {p};

(b) p(n) = S2(p
n) for all n ≥ 1;

(c) p(n) = S2(p
n) for infinitely many n.

Proof. We first prove (a) ⇒ (b). By Remark 3.1, we can apply Proposition 3.2 and obtain

that p(n) ⊆ S2(p
n). To show S2(p

n) ⊆ p(n), it is enough to prove that S2(p
n)Ap ⊆ pnAp.

To see this, note that since GpAp(Ap) satisfies (S1), the extended Rees algebra Ap[pApt, t
−1]

satisfies (S2) (Remark 2.16), so S2(p
nAp) = pnAp. As S2(p

nAp) = S2(p
n)Ap, the inclusion

follows.

We now prove (c)⇒ (a). For n large enough, by Corollary 2.15 we have

A
∗
(p) = Ass(A/S2(p

n)) = Ass(A/p(n)) = {p}.

�
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The implication (a)⇒ (c) of the next Corollary recovers a result of Huckaba [8, Theorem

2.1]. His result, even though it was stated under the assumption Gp(A) Cohen-Macaulay,

has a proof that only requires that Gp(A) satisfy (S1).

Corollary 3.5. Let A be a locally formally equidimensional ring and p a prime ideal in A.

Assume that Gp(A) satisfies the (S1) property. The following are equivalent:

(a) A
∗
(p) = {p};

(b) A∗(p) = {p};

(c) p(n) = pn for all n ≥ 1;

(d) p(n) = pn for infinitely many n.

Proof. Since Gp(A) satisfies (S1), the extended Rees algebra A[pt, t−1] satisfies (S2). For

(a) =⇒ (c), note that, by Proposition 3.2 and Remark 3.3, we have p(n) ⊆ pn for every

n ≥ 1, and hence equality holds. To see (d) =⇒ (b), note that for n large enough we

have A∗(p) = Ass(A/pn) = Ass(A/p(n)) = {p}. Finally, as A
∗
(p) ⊆ A∗(p), the implication

(b) =⇒ (a) also follows. �

Remark 3.6. Let A be a Cohen-Macaulay ring and p a prime ideal of height h > 0 such

that Ap is regular and p is generated by h + 1 elements. By [3, Proposition 2.6], the Rees

algebra A[pt] satisfies (S2), hence Gp(A) satisfies (S1) (Remark 2.16), so the conclusions

of Corollary 3.5 follow. This recovers results from [2, 11]. For the local case, Huneke and

Huckaba [9, Theorem 2.5] obtained the same conclusions of Corollary 3.5 under the weaker

assumption that the analytic spread `(p) = h+ 1.

Remark 3.7. Let A be a locally formally equidimensional domain and p a prime ideal in A.

Assume that GpAp(Ap) is reduced. By a result of Huckaba [7, Theorem 1.4] (which extends

work of Huneke [10, Theorem 2.1]), the following are equivalent:

(a) A
∗
(p) = {p};

(b) p(n) = pn for all n ≥ 1.

Since GpAp(Ap) is reduced, it satisfies the (S1) property. Therefore, by Theorem 3.4,

the above equivalent conditions imply that S2(p
n) = pn for all n ≥ 1. If A is a normal

domain, this shows that the extended Rees algebra A[pt, t−1] is regular in codimension one.
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Indeed, if Q is a height one prime ideal in A[pt, t−1], then A[pt, t−1]Q ∼= S2(A[pt, t−1]Q) ∼=

S2(A[pt, t−1])Q which is a local integrally closed ring because S2(A[pt, t−1]) coincides with

the integral closure of A[pt, t−1].

The following example is a modification of [7, Example 1.6]. It describes a situation where

all the hypotheses of Theorem 3.4 are satisfied for an equimultiple prime ideal p, and hence

p(n) = S2(p
n) for all n ≥ 1. On the other hand, the associated graded ring Gp(A) does not

satisfy the (S1) property.

Example 3.8. Let A = k[u, v, w, z, r](u,v,w,z,r)/(w
7 − u35z2 + u30v, v3 − wz) and the prime

ideal p = (u, v, w, r)A. Using Macaulay2 [13] one can check that A is a three dimensional

Cohen-Macaulay domain and ht p = `(p) = 2, so p is an equimultiple ideal. This also

implies that A
∗
(p) = {p}. The associated graded ring Gp(A) has a unique minimal prime

ideal (v∗, w∗)Gp(A), where v∗, w∗ ∈ p/p2 ⊆ Gp(A) are the images of v and w, respectively.

Moreover, the associated prime ideals of Gp(A) are (v∗, w∗)Gp(A) and (v∗, w∗, z∗)Gp(A), and

hence Gp(A) does not satisfy Serre’s (S1) property.

In the local ring Ap we have w = (1/z)v3, so w7−u35z2+u30v = (1/z7)(v21−u35z9+u30vz7)

and therefore

Ap
∼= k[u, v, z, r](u,v,r)/(v

21 − u35z9 + u30vz7).

Since Ap is a hypersurface R/(f), where R = k[u, v, z, r](u,v,r) and f = v21 − u35z9 + u30vz7

with initial term f ∗ = v21, it follows that GpAp(Ap) ∼= k[u, v, z, r](u,v,r)/(v
21). Note that

GpAp(Ap) is not reduced, but it has a unique minimal prime ideal and no embedded associated

prime ideals, so it satisfies the (S1) property. This implies that the extended Rees algebra

Ap[pApt, t
−1] satisfies the (S2) property, and therefore S2(p

nAp) = pnAp for all n ≥ 1.

On the other hand, let us note that the ideal pAp is not normal, i.e. not all of its powers

are integrally closed. This follows from the criterion for normality of the maximal ideal in a

hypersurface that is proved in [3, 2.4]. In fact, in the ring A one can check with Macaulay2

that w7 ∈ p28 and w /∈ p2. Then w ∈ p4 ⊆ p2, hence p2 6= p2. Using the procedure outlined

in [4, Proposition 3.2] (which is valid in any affine domain), by identifying the S2-ification of

the Rees algebra A[pt] with the ring of endomorphisms of the canonical ideal of A[pt], after
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lengthy computations with Macaulay2 we were able to obtain

S2(p
2) =p2 + (w),

S2(p
3) =p3 + (w) ) pS2(p

2),

S2(p
4) =p4 + (wr,w2, vw, uw) = pS2(p

3) + (S2(p
2))2, and

S2(p
5) =p5 + (w2, wr2, vwr, v2w, uvw, u2w, uwr) = pS2(p

4) + S2(p
2)S2(p

3).

One can also check that w /∈ S2(p
4). As noticed before, w ∈ p4 \ p2, so we have the strict

inclusions

p4 ( S2(p
4) ( p4.

On the other hand, since GpAp(Ap) satisfies (S1), by Theorem 3.4 we know that p(n) =

S2(p
n) for all n ≥ 1. In fact, in this particular example, for i ∈ {2, 3, 4, 5} we have

Ass(A/pi) = {p,m), where m = (u, v, w, z, r)A, so p(i) = (pi : m∞). Compared to S2(p
i), the

saturations (pi : m∞) are much easier to compute in Macaulay2 and we double checked that

the ideals (pi : m∞) coincide with the ideals S2(p
i) (2 ≤ i ≤ 5) computed above.

4. Other Applications

Proposition 4.1. Let (A,m) be a formally equidimensional local ring and I an ideal of

positive height and analytic spread `(I) < dimA. Assume that A[It, t−1] satisfies the (S2)

property. Then

(In : m∞) = In for all n ≥ 1,

i.e., m /∈
⋃

n≥1 Ass(A/In).

Proof. By Corollary 2.10, we have A
∗
(I) =

⋃
n≥1 Ass(A/In) and m ∈ A

∗
(I) if and only if

`(I) = dimA ([15, Proposition 4.1]). �

Remark 4.2. If the ring A is also a domain, by using very different methods we already

obtained the above result in [5, Corollary 3.15].

We are also able to recover the following result of Brodmann regarding the asymptotic

primes of an almost complete intersection ideal.
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Proposition 4.3. [2, Proposition 3.9] Let A be a Cohen-Macaulay ring and I an ideal of

height h that can be generated by h + 1 elements. Moreover, assume that I is generically a

complete intersection. Then

(a) Ass(A/In) ⊆ Ass(A/In+1) for all n ≥ 1;

(b) ht p ≤ h+ 1 for all p ∈ A∗(I).

Proof. Note that we may assume h ≥ 1, for otherwise I = (0) and the conclusions clearly

follow. Under the given assumptions on the ideal I, by [3, Proposition 2.6], the Rees algebra

A[It] satisfies (S2). Then A[It, t−1] satisfies (S2) as well (Remark 2.16), and (a) follows

from the first part of Corollary 2.10. By the same Corollary 2.10, we note that A∗(I) =⋃
n≥1 Ass(A/In) =

⋃
n≥1 Ass(A/In) = A

∗
(I). Then, for p ∈ A∗(I) = A

∗
(I), we have ht p =

`(Ip) ([15, Proposition 4.1]). Since I is generated by h + 1 elements, we also have `(Ip) ≤

µ(Ip) ≤ h+ 1, and part (c) follows. �

Using a result of Zarzuela [20], we obtain a similar conclusion for certain ideals of analytic

deviation one.

Proposition 4.4. Let (A,m) be a local Cohen-Macaulay ring with infinite residue field and

I an ideal of height h ≥ 1 and analytic spread `(I) = h + 1. Assume that I is generically

a complete intersection, the reduction number r(I) is at most one, and A/I satisfies (S1).

Then

(a) Ass(A/In) ⊆ Ass(A/In+1) for all n ≥ 1;

(b) ht p ≤ h+ 1 for all p ∈ A∗(I).

Proof. By [20, Theorem 4.4], the associated graded ring GI(A) satisfies (S1), or equivalently,

A[It, t−1] satisfies (S2). Then part (a) follows from the first part of Corollary 2.10. For part

(b), as in the proof of Proposition 4.3 we note that A∗(I) = A
∗
(I) and for p ∈ A∗(I) we have

ht p = `(Ip) ≤ `(I) = h+ 1. �

In the case of a prime ideal in a regular local ring, we record the following Corollary.

Corollary 4.5. Let (A,m) be a local Cohen-Macaulay ring and p a prime ideal of height h

such that Ap is a regular local ring. Assume that either
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(i) µ(p) = h+ 1 or

(ii) A/m is infinite, `(p) = h+ 1 and r(p) ≤ 1.

Then:

(a) Ass(A/pn) ⊆ Ass(A/pn+1) for all n ≥ 1;

(b) ht q ≤ h+ 1 for all q ∈ A∗(p).
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