ASYMPTOTIC PRIMES OF S_2-FILTRATIONS

CĂTĂLIN CIUPERCĂ

Abstract. Let A be a noetherian ring with total ring of fractions $Q(A)$ and $S = \oplus_{n \in \mathbb{Z}} I_n t^n$ a noetherian graded ring such that $A[t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}]$ and S satisfies the (S_2) property of Serre. Under mild conditions on the ring A, we study the behavior of the sets of associated prime ideals Ass$(A/I_n \cap A)$ for $n \geq 1$. In particular, we consider the case when S is the S_2-ification of the extended Rees algebra of an ideal I. As applications, we obtain several results regarding the asymptotic behavior of Ass(A/I^n) for certain ideals of analytic deviation one. We also prove several consequences about the symbolic powers of a prime ideal.

1. Introduction

Let A be a noetherian ring and I an ideal in A. Answering a question of Ratliff regarding the behavior of Ass(A/I^n) for n large, Brodmann proved that the sequence of sets Ass(A/I^n) stabilizes for n large enough. In the same vein, if we consider the filtration of integral closures $\{\overline{I^n}\}_{n \geq 1}$, results of Ratliff show that the sets Ass$(A/\overline{I^n})$ stabilize as well. Moreover, Ass$(A/\overline{I^n}) \subseteq$ Ass$(A/\overline{I^{n+1}})$ for all n, a property which is not always satisfied by the sets Ass(A/I^n). If $A^*(I)$ and $\overline{A}^*(I)$ denote the stabilizing sets of Ass(A/I^n) and Ass$(A/\overline{I^n})$, respectively, it is also known that $\overline{A}^*(I) \subseteq A^*(I)$. We refer to the monograph of McAdam [15] for a detailed exposition of these properties.

The asymptotic behavior of these sets of associated primes is best studied by considering the extended Rees algebra $R = A[It, t^{-1}]$. If \overline{R} denotes the integral closure of R in its total quotient ring, we have $\overline{R} \subseteq Q(A)[t, t^{-1}]$, where $Q(A)$ is the total ring of fractions of A, and $\overline{R} \cap A[t, t^{-1}] = \oplus_{n \in \mathbb{Z}} \overline{I^n} t^n$. The properties (R_1) and (S_2) of Serre derived from the integral closedness of the ring \overline{R} can then be exploited to deduce the nice behavior of the sets Ass$(A/\overline{I^n})$. In this paper we consider finite graded extensions $S = \oplus_{n \in \mathbb{Z}} I_n t^n$ of the extended

2010 Mathematics Subject Classification. 13A15, 13A30, 13B22.
Rees algebra \(A[It, t^{-1}] \) inside \(Q(A)[t, t^{-1}] \) that only satisfy the \((S_2)\) property of Serre. Under mild conditions on the ring \(A \), we show that the filtration of ideals \(\{I_n \cap A\}_{n \geq 1} \), which we refer to as an \(S_2 \)-filtration, has similar asymptotic properties with respect to its associated prime ideals. More precisely, the sets \(\text{Ass}(A/I_n \cap A) \) form an increasing sequence that eventually stabilizes and \(\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) = \bigcup_{n \geq 1} \text{Ass}(A/I^n) \) (Corollary 2.8). It is not the purpose of this note to recover the already known results about the asymptotic behavior of \(\text{Ass}(A/I^n) \).

In fact, many of our arguments assume that the ring \(A \) is a universally catenary domain, a constraint not imposed in the work of Ratliff regarding the behavior of \(\text{Ass}(A/I^n) \). Our main goal is to apply these properties in a minimal finite birational extension of \(R \) that satisfies the \((S_2)\) property, the so-called \(S_2 \)-ification of \(R \) (Corollary 2.15). With respect to the arguments used in our proofs, since we are only assuming the \((S_2)\) property, we can no longer employ the use of certain discrete valuation rings which, in the case of the filtration \(\{I_n\}_{n \geq 1} \), were obtained by localizing \(R \) at the minimal prime ideals of \(t^{-1}R \) (cf. \([15, 3.1–3.3]\)). Additionally, some other mild assumptions on the ring need to be made in order to ensure the existence of an \(S_2 \)-ification.

Another motivating result for our study is a characterization due to Ratliff \([17, \text{Theorem 4.3}]\) of the Cohen-Macaulay rings in terms of the sets \(A^*(I) \) and \(\overline{A}^*(I) \). More precisely, if \(A \) is a locally formally equidimensional ring, then \(A \) is Cohen-Macaulay if and only if \(A^*(I) = \overline{A}^*(I) \) for all ideals \(I \) of the principal class. By using our results regarding \(A^*(I) \) when \(R \) satisfies \((S_2)\), we conclude that \(A \) is Cohen-Macaulay if and only if \(A[It, t^{-1}] \) satisfies \((S_2)\) for every ideal \(I \) of the principal class (Proposition 2.17).

All these results are obtained in Section 2 where we develop the main ideas in the general context of graded noetherian algebras \(S = \bigoplus_{n \in \mathbb{Z}} I_n t^n \) such that \(A[t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}] \) and \(S \) satisfies the \((S_2)\) property. In Section 3 we obtain several consequences regarding the symbolic powers of a prime ideal. In particular, if \(p \) is a prime ideal in a universally catenary domain \(A \) such that the associated graded ring \(G_{pA_p}(A_p) \) satisfies \((S_1)\), we show that \(\overline{A}^*(p) = \{p\} \) if and only if the \(n \)-th symbolic power \(p^{(n)} \) coincides with the degree \(n \) component in \(A \) of the \(S_2 \)-ification of \(R \) for all \(n \geq 1 \) (Theorem 3.4). This improves a similar characterization of Huckaba who, under the global assumption that \(G_p(A) \) satisfies \((S_1)\), proved that \(\overline{A}^*(p) = \{p\} \) if and only if \(p^{(n)} = p^n \) for all \(n \) (Corollary 3.5). We note that
the equimultiple ideals are important cases of ideals that satisfy the condition \(A^*(p) = \{p\} \).

We also provide an example of an equimultiple ideal \(p \) in a Cohen-Macaulay domain such that \(G_{p,A_p}(A_p) \) satisfies \((S_1)\) but \(G_p(A) \) does not, and compute several symbolic powers of \(p \) by using the \(S_2 \)-ification of its extended Rees algebra. In Section 4 we recover a result of Brodmann showing that, for an almost complete intersection ideal \(I \), the sets \(\text{Ass}(A/I^n) \) form an increasing sequence and the height of any prime in \(A^*(I) \) is at most \(\text{ht} I + 1 \) (Proposition 4.3). Similar properties are also obtained for certain ideals \(I \) of analytic spread \(\ell(I) = \text{ht} I + 1 \) (Proposition 4.4). In both situations, the main observation is that the extended Rees algebras of the ideals involved satisfy the \((S_2)\) property, which allows us to apply Corollary 2.10.

2. \(S_2 \)-filtrations

Throughout this paper all the rings are commutative with identity. A noetherian local ring \((A, m)\) is said to be formally equidimensional if all the minimal primes of the completion \(\hat{A} \) have the same dimension. A noetherian ring is called locally formally equidimensional if all of its localizations are formally equidimensional. It is known that a locally formally equidimensional ring is universally catenary and, if \(A \) is a noetherian domain, \(A \) is locally formally equidimensional if and only if \(A \) is universally catenary. We refer to the Appendix of [12] for a brief account of these properties and for terminology and concepts not otherwise explained in this paper.

2.1. The \((S_i)\) property. Let \(M \) be a finitely generated module over a noetherian ring \(A \). We say that \(M \) satisfies Serre’s \((S_i)\) property if for every \(p \in \text{Spec}(A) \) we have

\[
\text{depth } M_p \geq \min \{i, \dim M_p\}.
\]

We caution that a slightly different definition is sometimes used in the literature by requiring the stronger condition \(\text{depth } M_p \geq \min \{i, \text{ht } p\} \). The conditions are clearly equivalent if \(\text{Ann}_A M = (0) \).

We say that the ring \(A \) satisfies the \((S_2)\) property if \(A \) satisfies the \((S_2)\) property as an \(A \)-module. Equivalently, \(A \) has no embedded prime ideals (i.e. \(A \) satisfies the \((S_1)\) property) and, for every regular element \(x \in A \), the ring \(A/xA \) has no embedded prime ideals.
2.2. If $A \hookrightarrow B$ is a finite extension of noetherian rings and B satisfies the (S_2) property as an A-module, then B satisfies the (S_2) property as a ring.

Moreover, if the extension satisfies the condition

$$\text{ht } q_1 = \text{ht } q_2 \text{ for every } q_1, q_2 \in \text{Spec } B \text{ with } q_1 \cap A = q_2 \cap A,$$

then the converse also holds, i.e., B satisfies (S_2) as a ring if and only if B satisfies (S_2) as an A-module ([14, 5.7.11]). In particular, if A is a universally catenary domain and $A \hookrightarrow B$ is a finite birational extension, since $\text{ht } q = \text{ht}(q \cap A)$ for every $q \in \text{Spec } B$ ([12, 4.8.6], it follows that B satisfies (S_2) as a ring if and only if B satisfies (S_2) as an A-module.

In the above context, when we say that B satisfies the (S_2) property we mean that B satisfies the (S_2) property as a ring.

Definition 2.3. Let A be a noetherian ring with total ring of fractions $Q(A)$. If $S = \oplus_{n \in \mathbb{Z}} I_n t^n$ is a noetherian graded ring with $A[t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}]$ and S satisfies the (S_2) property, we say that the family of ideals $F = \{I_n \cap A\}_{n \geq 1}$ is an S_2-filtration of ideals in A.

The following Proposition contains results that are well-known in the case when S is the integral closure of an extended Rees algebra $A[It, t^{-1}]$. Our statements are adaptations for the more general context of certain graded algebras that only satisfy the (S_2) property. Most arguments used in its proof are also variations of known techniques.

Proposition 2.4. Let A be a noetherian ring and $S = \oplus_{n \in \mathbb{Z}} I_n t^n$ a noetherian graded ring such that $A[t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}]$ and S satisfies the (S_2) property. Let Q_1, Q_2, \ldots, Q_m be the minimal prime ideals of the S-module $S/t^{-1}S$. The following are true:

(a) $I_n \cap A = \bigcap_{i=1}^m t^{-n} S_Q \cap A$ for all $n \geq 1$;
(b) $\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) \subseteq \{Q_1 \cap A, \ldots, Q_m \cap A\}$;
(c) If $S \subseteq A[t, t^{-1}]$, then

$$\bigcup_{n \geq 1} \text{Ass}(A/I_n) = \{Q_1 \cap A, \ldots, Q_m \cap A\};$$
(d) If \(A \) is a universally catenary domain, \(S \) is a finitely generated \(A \)-algebra, and \(S \) is finite over \(S \cap A[t, t^{-1}] \), then
\[
\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) = \{Q_1 \cap A, \ldots, Q_m \cap A\}.
\]

Proof. (a) Since \(S \) satisfies the \((S_2)\) property, for each \(n \geq 1 \) we have \(\text{Ass}(S/t^{-n}S) = \text{Min}(S/t^{-1}S) = \{Q_1, \ldots, Q_m\} \), so \(t^{-n}S = \bigcap_{i=1}^{m} t^{-n}S_{Q_i} \cap S \). As \(I_n = t^{-n}S \cap Q(A) \), the conclusion follows.

(b) The ideal \(t^{-n}S_{Q_i} \) is a \(Q_iS_{Q_i} \)-primary ideal in \(S_{Q_i} \), so \(t^{-n}S_{Q_i} \cap A \) is a primary ideal in \(A \). Then, for each \(n \),
\[
I_n \cap A = \bigcap_{i=1}^{m} (t^{-n}S_{Q_i} \cap A)
\]
is a (possibly redundant) primary decomposition of \(I_n \cap A \), and therefore
\[
\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) \subseteq \{Q_1S_{Q_1} \cap A, \ldots, Q_mS_{Q_m} \cap A\} = \{Q_1 \cap A, \ldots, Q_m \cap A\}.
\]

(c) Let \(Q \) be a minimal prime ideal of \(S/t^{-1}S \). Write \(Q = (t^{-1}S :_S at^s) \) for some homogeneous element \(at^s \in S (a \in I_s) \). Then
\[
Q \cap A = (t^{-1}S :_A at^s) = (I_{s+1} :_A a),
\]
which shows that \(Q \cap A \in \text{Ass}(A/I_{s+1}) \).

(d) Let \(Q \) be a minimal prime ideal of \(S/t^{-1}S \). Denote \(S' = S \cap A[t, t^{-1}] \) and \(Q' = Q \cap S' \).
Since \(A \subseteq S' \subseteq S \), \(S \) is a finitely generated \(A \)-algebra, and \(S \) is a module-finite extension of \(S' \), by a result of Artin and Tate [1] Theorem 1], the ring \(S' \) is a finitely generated \(A \)-algebra, and therefore a universally catenary domain. Then, by [12] Proposition 4.8.6], we have \(\text{ht} Q' = \text{ht} Q = 1 \), so \(Q' \) is a minimal prime of \(S'/t^{-1}S' \). As in part (c), we can now write \(Q' = (t^{-1}S' :_{S'} at^s) \) for some homogeneous element \(at^s \in S' (a \in I_s \cap A) \). Then
\[
Q \cap A = Q' \cap A = (t^{-1}S' :_{A} at^s) = ((I_{s+1} \cap A) :_A a),
\]
which shows that \(Q \cap A \in \text{Ass}(A/I_{s+1} \cap A) \). \(\square \)
Remark 2.5. A similar argument to the one used above in part (c) shows that for every ideal I in a noetherian ring A we have

$$\bigcup_{n \geq 1} \text{Ass}(A/I^n) \supseteq \{P_1 \cap A, \ldots, P_r \cap A\},$$

where $\{P_1, \ldots, P_r\} = \text{Min}(A[It, t^{-1}]/(t^{-1}))$.

In order to prove the main results of this section we need the following lemma.

Lemma 2.6. Let (A, \mathfrak{m}) be a formally equidimensional local ring and let $S = \oplus_{n \in \mathbb{Z}} I_n t^n$ be a noetherian graded ring such that $A[t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}]$ and $\text{ht}(I_1 \cap A) \geq 1$. Let $R = A[(I_1 \cap A)t, t^{-1}] \subseteq S$. Assume that S is integral over R and that either

(i) A is a domain; or

(ii) $S \subseteq A[t, t^{-1}]$.

Then

$$\text{ht}((I_1 \cap A)t, t^{-1})S \geq 2.$$

Proof. By contradiction, assume that there exists a prime Q containing $((I_1 \cap A)t, t^{-1})S$ such that $\text{ht} Q = 1$. Let $P = Q \cap R$.

If the condition (i) is satisfied, then R is a universally catenary domain and $R \hookrightarrow S$ is an integral extension. By using again [12, 4.8.6], we obtain $\text{ht} P = \text{ht} Q = 1$, so P is a prime in the extended Rees algebra R that is minimal over $t^{-1}R$. As A is formally equidimensional, by [12, 5.4.8] we have $\dim R/P = \dim A$. On the other hand, since $R/((I_1 \cap A)t, t^{-1})R \cong A/I_1 \cap A$, we have $\dim R/P \leq \dim A/I_1 \cap A$. This implies $I_1 \cap A = (0)$, contradiction.

We now assume that the condition (ii) is satisfied. We first show that every minimal prime ideal of S is of the form $pA[t, t^{-1}] \cap S$ with p a minimal prime of A. To see this, for every ideal J in A, denote $J_S = JA[t, t^{-1}] \cap S$. One can immediately check that if p is a prime ideal in A, then p_S is a prime ideal in S, and if q is a p-primary ideal in A, then q_S is a p_S-primary ideal in S. Moreover, $J_S \cap A = J$ for every ideal J in A. Consequently, if $(0) = q_1 \cap \ldots \cap q_r$ is an irredundant primary decomposition of the zero ideal in A, then $(0) = (q_1)_S \cap \ldots \cap (q_r)_S$ is an irredundant primary decomposition of the zero ideal in S. This
shows that the ideals \(\{ p_S \mid p \in \text{Min}(A) \} \) are all the minimal prime ideals of \(S \). Similarly, the ideals \(\{ p_R \mid p \in \text{Min}(A) \} \) are all the minimal prime ideals of \(R \).

Now let \(p_S = pA[t, t^{-1}] \cap S \) be a minimal prime ideal of \(S \) such that \(Q \supseteq p_S \). Then \(p_R = p_S \cap R \) is a minimal prime ideal of \(R \) that is contained in \(P \). Note that \(R/p_R = R/(pA[t, t^{-1}] \cap R) \simeq (A/p)[(I_1 \cap A + p) t, t^{-1}] \) is the extended Rees algebra of the ring \(A/p \) with respect to the image of the ideal \(I_1 \cap A \). In particular,

\[
\dim R/p_R = \dim A/p + 1 = \dim A + 1.
\]

As \(A/p \) is a formally equidimensional local domain and hence universally catenary, \(R/p_R \) is also universally catenary. Then, if \(\mathfrak{M} = ((I_1 \cap A)t, m, t^{-1})R \) denotes the maximal homogeneous ideal of \(R \), we have

\[
(2.6.1) \quad \dim A + 1 = \dim R/p_R = \text{ht}(\mathfrak{M}/p_R) = \text{ht}(\mathfrak{M}/P) + \text{ht}(P/p_R) = \dim R/P + \text{ht}(P/p_R).
\]

Moreover, since \(R/p_R \hookrightarrow S/p_S \) is an integral extension, by [12, 4.8.6] we have \(\text{ht}(P/p_R) = \text{ht}(Q/p_S) = 1 \). Therefore \((2.6.1) \) implies that \(\dim R/P = \dim A \). However, since \(R/((I_1 \cap A)t, t^{-1})R \cong A/I_1 \cap A \), we have \(\dim R/P \leq \dim A/I_1 \cap A \), contradicting \(\text{ht}(I_1 \cap A) \geq 1 \).

Theorem 2.7. Let \(A \) be a locally formally equidimensional ring and let \(S = \bigoplus_{n \in \mathbb{Z}} I_n t^n \) be a noetherian graded ring such that \(A[t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}] \) and \(S \) satisfies the \((S_2) \) property. Let \(R = A[(I_1 \cap A)t, t^{-1}] \subseteq S \). Assume that \(S \) is integral over \(R \) and that either

(i) \(A \) is a domain; or

(ii) \(S \subseteq A[t, t^{-1}] \) and \(\text{ht} I_1 \geq 1 \).

Then

\[
\text{Ass}(A/I_n \cap A) \subseteq \text{Ass}(A/I_{n+1} \cap A) \text{ for all } n \geq 1.
\]

Proof. First note that under the assumption (i) we may also assume that \(\text{ht}(I_1 \cap A) \geq 1 \), i.e. \(I_1 \cap A \neq (0) \), for otherwise we must have \(I_n = 0 \) for all \(n \geq 1 \).

Let \(Q \in \text{Ass}(A/I_n \cap A) \). After localizing at \(Q \) we may assume that \(A \) is a formally equidimensional local ring with maximal ideal \(Q \). Moreover, by passing to the faithfully flat extension \(A[X]_{QA[X]} \), we may also assume that the residue field of \(A \) is infinite. Write \(Q = \ldots\)
Then \(Q_{A/I} \) (a) Ass(\(S \)) Corollary 2.8. Let \(A \) be a locally formally equidimensional domain, \(I \) an ideal in \(A \), and \(S = \bigoplus_{n \in \mathbb{Z}} I_n t^n \) a noetherian graded ring such that \(A[It, t^{-1}] \subseteq S \subseteq Q(A)[t, t^{-1}] \) and \(S \) satisfies the \((S_2)\) property. Assume that \(S \) is a finite extension of \(A[It, t^{-1}] \). Then the following hold:

1. \(\text{Ass}(A/I_n \cap A) \subseteq \text{Ass}(A/I_{n+1} \cap A) \) for all \(n \geq 1 \);
2. \(\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) = \{ Q \cap A \mid Q \in \text{Min}(S/t^{-1}S) \} \);
3. \(\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) = \bigcup_{n \geq 1} \text{Ass}(A/T^n) \).

Proof. Parts (a) and (b) are immediate consequences of Theorem 2.7 and Proposition 2.4 (d).

For part (c), let \(T = \frac{A}{A[It, t^{-1}]} \) be the integral closure of \(A[It, t^{-1}] \) in its quotient field. Note that \(S \subseteq T = \bigoplus_{n \in \mathbb{Z}} \frac{I_n}{A} \bigcap \frac{At^n}{A} \subseteq Q(A)[t, t^{-1}] \) (\[12\], 5.2.4) and \(T \cap A[t, t^{-1}] = \bigoplus_{n \in \mathbb{Z}} T^n t^n \). From the classical result regarding the asymptotic primes of the filtration \(\{ T^n \}_{n \geq 1} \) we know that \(\bigcup_{n \geq 1} \text{Ass}(A/T^n) = \{ Q \cap A \mid Q \in \text{Min}(T/t^{-1}T) \} \) (see, for example, \[15\], Proposition 3.18). Because of (b), if we show that the contractions to \(S \) of all the primes in \(\text{Min}_T(T/t^{-1}T) \) give us all the primes in \(\text{Min}_S(S/t^{-1}S) \), the proof is finished. For this, note that \(S \) is a universally catenary domain and \(S \subseteq T \) is an integral extension. By \[12\], 4.8.6, for every prime \(Q \) minimal over \(t^{-1}T \) we have \(\text{ht}(Q \cap S) = \text{ht} Q = 1 \), so \(Q \cap S \) is minimal over \(t^{-1}S \). Moreover, if \(P \) is a prime minimal over \(t^{-1}S \), by the lying over property for integral extensions there exists a prime \(Q \) containing \(t^{-1}T \) such that \(P = Q \cap S \). We also have \(\text{ht} Q \leq \text{ht} P \), so \(Q \) must be minimal over \(t^{-1}T \).

When \(A \) is not necessarily a domain, but \(S \subseteq A[t, t^{-1}] \), we obtain similar conclusions in parts (a) and (b), and only one inclusion in part (c).

Corollary 2.9. Let \(A \) be a locally formally equidimensional ring, \(I \) an ideal in \(A \), and \(S = \bigoplus_{n \in \mathbb{Z}} I_n t^n \) a noetherian graded ring such that \(A[It, t^{-1}] \subseteq S \subseteq A[t, t^{-1}] \), \(\text{ht} I_1 \geq 1 \), and
S satisfies the (S_2) property. Assume that S is a finite extension of $A[It,t^{-1}]$. Then the following hold:

(a) $\text{Ass}(A/I_n) \subseteq \text{Ass}(A/I_{n+1})$ for all $n \geq 1$;
(b) $\bigcup_{n \geq 1} \text{Ass}(A/I_n) = \{Q \cap A \mid Q \in \text{Min}(S/t^{-1}S)\}$;
(c) $\bigcup_{n \geq 1} \text{Ass}(A/I_n) \subseteq \bigcup_{n \geq 1} \text{Ass}(A/T^n)$.

Proof. Parts (a) and (b) follow from Theorem 2.7 (ii) and Proposition 2.4 (c). Moreover, by following the line of proof of part (c) of Corollary 2.8 without assuming that A is domain, it is still true that every minimal prime of $S/t^{-1}S$ is contracted from a minimal prime of $T/t^{-1}T$, and therefore

$$\bigcup_{n \geq 1} \text{Ass}(A/I_n \cap A) \subseteq \bigcup_{n \geq 1} \text{Ass}(A/T^n).$$

□

In particular, when S is an extended Rees algebra, we have the following.

Corollary 2.10. Let A be a locally formally equidimensional ring and I an ideal in A with $\text{ht } I \geq 1$. Assume that the extended Rees algebra $A[It,t^{-1}]$ satisfies the (S_2) property. The following hold:

(a) $\text{Ass}(A/I^n) \subseteq \text{Ass}(A/I^{n+1})$ for every $n \geq 1$;
(b) $\bigcup_{n \geq 1} \text{Ass}(A/I^n) = \{Q \cap A \mid Q \in \text{Min}(A[It,t^{-1}]/(t^{-1}))\}$;
(c) $\bigcup_{n \geq 1} \text{Ass}(A/I^n) = \bigcup_{n \geq 1} \text{Ass}(A/T^n)$.

Proof. Parts (a) and (b) are direct consequences of Corollary 2.9. From the classical result of Ratliff we have $\bigcup_{n \geq 1} \text{Ass}(A/T^n) = \overline{A^*}(I) \subseteq A^*(I)$ and, by part (a), $A^*(I) = \bigcup_{n \geq 1} \text{Ass}(A/I^n)$. This shows the inclusion “\supseteq” of part (c). The other inclusion follows from Corollary 2.9(c). □

2.11. The S_2-ification of a noetherian domain. For a noetherian domain A with quotient field $Q(A)$, an S_2-ification of A is a birational extension $S_2(A)$ of A that is minimal among the finite birational extensions of A that satisfy the (S_2) property as A-modules. If A has an S_2-ification, then it is unique. More precisely, A has an S_2-ification $S_2(A)$ if and only if $C := \bigcap_{\text{ht } p = 1} A_p$ is a finite extension of A, in which case C is the S_2-ification of A.
If \(A \) is a universally catenary domain such that the extension \(A \subseteq \overline{A} \) is finite (which holds, for instance, when \(A \) is an analytically unramified local domain), then \(A \) has an \(S_2 \)-ification \([14, \text{5.11.2}]\). Also, if \(A \) has a canonical module \(\omega \), then \(\text{Hom}_A(\omega, \omega) \) is the \(S_2 \)-ification of \(A \) \([16, \text{Theorem 1.3}]\). We refer to \([6,16,19]\) for detailed accounts on \(S_2 \)-ification.

2.12. The \(S_2 \)-ification of \(A[I,t,t^{-1}] \). Let \(A \) be a noetherian domain and \(I \) an ideal in \(A \). Assume that \(R = A[I,t,t^{-1}] \) has an \(S_2 \)-ification \(S_2(R) \). (The \(S_2 \)-ification \(S_2(R) \) exists for a large class of rings; it does, for example, when \(A \) is a universally catenary analytically unramified local domain.) As explained in \([4, \text{2.3}]\), \(S_2(R) \) is a graded subring of \(Q(A)[t,t^{-1}] \), so that we can write \(S_2(R) = \oplus_{n \in \mathbb{Z}} I_n t^n \subseteq Q(A)[t,t^{-1}] \). The \(A \)-modules \(I_n \) are contained in the \(S_2 \)-ification \(S_2(A) \) of \(A \) \([4, \text{Lemma 2.4}]\). In particular, if \(A \) satisfies \((S_2)\), then \(I_n \) is an ideal in \(A \) for all \(n \geq 1 \).

Definition 2.13. For every ideal \(I \) in a ring \(A \) such that the conditions in \([2.12]\) are satisfied we define \(S_2(I) := I_1 \cap A \), the \(S_2 \)-closure of \(I \).

Remark 2.14. Since the \(n \)-th Veronese subring of \(S_2(A[I,t^{-1}]) \) is the \(S_2 \)-ification of the \(n \)-th Veronese subring of \(A[I,t^{-1}] \), we have \(S_2(I^n) = I_n \cap A \) for all \(n \geq 1 \).

From Corollary \([2.8]\) we have the following consequence regarding the asymptotic primes of the \(S_2 \)-filtration \(S_2(I^n) \).

Corollary 2.15. Let \(A \) be a universally catenary domain and \(I \) an ideal of \(A \). Assume that the extended Rees algebra \(R = A[I,t,t^{-1}] \) has an \(S_2 \)-ification . Then:

\(\text{(a)} \ \text{Ass}(A/S_2(I^n)) \subseteq \text{Ass}(A/S_2(I^{n+1})) \) for every \(n \geq 1 \);

\(\text{(b)} \ \bigcup_{n \geq 1} \text{Ass}(A/S_2(I^n)) = \bigcup_{n \geq 1} \text{Ass}(A/I^n) \).

Remark 2.16. Let \(A \) be a noetherian ring that satisfies the \((S_2)\) property and \(I \) an ideal. Consider the statements: (a) \(A[I,t^{-1}] \) satisfies the \((S_2)\) property; (b) \(G_I(A) \) satisfies the \((S_1)\) property ; and (c) \(A[I] \) satisfies the \((S_2)\) property. The following are true:

\(\text{(1)} \ (a) \iff (b) \), because \(G_I(A) \cong A[I,t,t^{-1}]/(t^{-1}) \);

\(\text{(2)} \ \text{If} \ ht I \geq 1 \text{, then} (c) \implies (b) \) \([3, \text{Theorem 1.5}]\).
(3) If \(I_p \) is principal for every \(p \in \text{Spec}(A) \) with \(\text{ht} \ p = 1 \), then (b) \(\implies \) (c) ([3, Theorem 1.5]); in particular, if \(\text{ht} \ I \geq 2 \), then (b) \(\iff \) (c).

The equivalence (a) \(\iff \) (e) in the following Proposition was originally established by Ratliff in [17]. In view of our study of the asymptotic primes of \(S_2 \)-filtrations, we are able to add several equivalent statements. In particular, the equivalence (a) \(\iff \) (c) gives a characterization of the Cohen-Macaulay rings in terms of the \((S_2) \) property of their extended Rees algebras with respect to ideals of the principal class. Recall that an ideal \(I \) is said to be of the principal class if \(I \) can be generated by \(\text{ht} I \) elements.

Proposition 2.17. Let \(A \) be a locally formally equidimensional ring. The following are equivalent:

(a) \(A \) is Cohen-Macaulay;
(b) \(\mathcal{R} = A[It, t^{-1}] \) is Cohen-Macaulay for every ideal \(I \) of the principal class;
(c) \(\mathcal{R} = A[It, t^{-1}] \) satisfies the \((S_2) \) property for every ideal \(I \) of the principal class;
(d) \(\bigcup_{n \geq 1} \text{Ass}(A/I^n) = \bigcup_{n \geq 1} \text{Ass}(A/T^n) \) for every ideal \(I \) of the principal class;
(e) \(\overline{A^*(I)} = \overline{A^*(I)} \) for every ideal \(I \) of the principal class.

Proof. The implication (a) \(\implies \) (b) holds because in a Cohen-Macaulay ring an ideal of the principal class is generated by a regular sequence. By Corollary 2.10, we also obtain (c) \(\implies \) (d). For (d) \(\implies \) (e) note that \(A^*(I) \subseteq \bigcup_{n \geq 1} \text{Ass}(A/I^n) = \bigcup_{n \geq 1} \text{Ass}(A/T^n) = \overline{A^*(I)} \subseteq A^*(I) \), hence \(A^*(I) = \overline{A^*(I)} \). For the implication (e) \(\implies \) (a) we refer to the original paper of Ratliff [17, Theorem 4.3] or [15, Theorem 8.12].

3. Symbolic Powers of Ideals

In this section we obtain several consequences regarding the behavior of the symbolic powers of a prime ideal. We begin with a well-known observation that will be used extensively.

Remark 3.1. Let \(A \) be a locally formally equidimensional ring and \(I \) an ideal in \(A \). The following are equivalent:

(a) \(\ell(I_A q) < \dim A_q \) for every prime \(q \in V(I) \setminus \text{Min}(A/I); \)
(b) $\mathcal{A}^\ast(I) = \text{Min}(A/I)$.

The equivalence follows from a well-known result of McAdam that states that $q \in \mathcal{A}^\ast(I)$ if and only if $\ell(IA_q) = \dim A_q$ ([15, Proposition 4.1]). The importance of the condition (a) in the context of symbolic powers of ideals has been documented in many instances (e.g. [7,8,10]). If $I = p$ is a prime in a locally formally equidimensional ring A, the condition also implies that the p-adic topology and the p-symbolic topology on A are linearly equivalent, i.e. there exists k such that $p^{(n+k)} \subseteq p^n$ for all $n \geq 1$ ([18, Corollary 1]). We also note that if I is an equimultiple ideal in a local ring, then I satisfies the condition (a).

Recall that for an ideal I in a noetherian ring A, the unmixed part I^{unm} is the intersection of the primary components of I that correspond to the minimal prime ideals over I. For $n \geq 1$ and a prime ideal p, the ideal $(p^n)^{\text{unm}}$ is referred to as the n-th symbolic power of p and is typically denoted by $p^{(n)}$.

We now state a non-local version of a result we proved in [5].

Proposition 3.2. Let A be a locally formally equidimensional domain and I an ideal in A such that $\ell(IA_q) < \dim A_q$ for every prime $q \in V(I) \setminus \text{Min}(A/I)$. Assume that the extended Rees algebra $R = A[It, t^{-1}]$ has an S_2ification $S_2(R) = \bigoplus_{n \in \mathbb{Z}} I_nt^n$. Then, for $n \geq 1$,

$$(I^n)^{\text{unm}} \subseteq S_2(I^n).$$

Proof. Since $\ell(IA_q) = \ell(I^nA_q)$ and the n-th Veronese subring of $S_2(R)$ is an S_2-ification of the n-th Veronese subring of R, it is enough to prove the conclusion for $n = 1$. Furthermore, it is enough to prove that for every prime p that contains I we have $(I_p)^{\text{unm}} \subseteq (I_1)_p$. We may also assume that $p \notin \text{Min}(A/I)$, for otherwise $(I_p)^{\text{unm}} = I_p$ and the inclusion is clear. We now note that if $p \in \text{Spec}(R)$, then $\bigoplus_{n \in \mathbb{Z}} (I_n)_pt^n$ is an S_2-ification of $A_p[I_pt, t^{-1}]$. Hence, after localizing at p, we may assume that (A, m) is a formally equidimensional ring and I is an ideal in A such that $\ell(IA_q) < \dim A_q$ for every prime $q \in V(I) \setminus \text{Min}(A/I)$; we need to show that $I^{\text{unm}} \subseteq I_1 \cap A$. This was proved in [5, Lemma 3.10]. Even though the statement of [5, Lemma 3.10] assumes that I is equimultiple, the proof given there works for any ideal I such that $\ell(IA_q) < \dim A_q$ for every prime $q \in V(I) \setminus \text{Min}(A/I)$. Also, in [5], the additional
conditions on the ring were imposed just to guarantee the existence of the S_2-ification of the extended Rees algebra. □

Remark 3.3. In the previous proposition, the requirement that A be a domain was imposed just to ensure that we are in the setup used in the description of the S_2-ification process in (2.12) where we construct the S_2-ification $S_2(R)$ inside the quotient field $Q(R)$. If the extended Rees algebra R already satisfies the (S_2) property, a particular case in which Proposition 3.2 will be applied subsequently, there is no need to assume that A is a domain.

We now consider a prime ideal p that satisfies the equivalent conditions in Remark 3.1. Under mild conditions on the ring A, the next result shows that if the associated graded ring $G_{p,A_p}(A_p)$ satisfies (S_1), then the filtration of symbolic powers coincides with the S_2-filtration $S_2(p^n)$. As discussed in more detail at the end of the proof of this result, previous results in the literature established that $p^{(n)} = p^n$ for all n if $G_p(A)$ satisfies (S_1), and $p^{(n)} = \overline{p^n}$ for all n if $G_{p,A_p}(A_p)$ is reduced.

Theorem 3.4. Let A be a locally formally equidimensional domain and p a prime ideal in A such that the extended Rees algebra $A[pt, t^{-1}]$ has an S_2-ification. Assume that $G_{p,A_p}(A_p)$ satisfies (S_1). The following are equivalent:

(a) $A^*(p) = \{p\}$;
(b) $p^{(n)} = S_2(p^n)$ for all $n \geq 1$;
(c) $p^{(n)} = S_2(p^n)$ for infinitely many n.

Proof. We first prove $(a) \Rightarrow (b)$. By Remark 3.1 we can apply Proposition 3.2 and obtain that $p^{(n)} \subseteq S_2(p^n)$. To show $S_2(p^n) \subseteq p^{(n)}$, it is enough to prove that $S_2(p^n)A_p \subseteq p^nA_p$. To see this, note that since $G_{p,A_p}(A_p)$ satisfies (S_1), the extended Rees algebra $A_p[pA_p t, t^{-1}]$ satisfies (S_2) (Remark 2.16), so $S_2(p^nA_p) = p^nA_p$. As $S_2(p^nA_p) = S_2(p^n)A_p$, the inclusion follows.

We now prove $(c) \Rightarrow (a)$. For n large enough, by Corollary 2.15 we have

$$A^*(p) = \text{Ass}(A/S_2(p^n)) = \text{Ass}(A/p^{(n)}) = \{p\}.$$
The implication \((a) \Rightarrow (c)\) of the next Corollary recovers a result of Huckaba [8, Theorem 2.1]. His result, even though it was stated under the assumption \(G_p(A)\) Cohen-Macaulay, has a proof that only requires that \(G_p(A)\) satisfy \((S_1)\).

Corollary 3.5. Let \(A\) be a locally formally equidimensional ring and \(p\) a prime ideal in \(A\). Assume that \(G_p(A)\) satisfies the \((S_1)\) property. The following are equivalent:

\begin{enumerate}[(a)]
 \item \(\overline{A}^*(p) = \{p\}\);
 \item \(A^*(p) = \{p\}\);
 \item \(p^{(n)} = p^n\) for all \(n \geq 1\);
 \item \(p^{(n)} = p^n\) for infinitely many \(n\).
\end{enumerate}

Proof. Since \(G_p(A)\) satisfies \((S_1)\), the extended Rees algebra \(A[pt, t^{-1}]\) satisfies \((S_2)\). For \((a) \Rightarrow (c)\), note that, by Proposition 3.2 and Remark 3.3, we have \(p^{(n)} \subseteq p^n\) for every \(n \geq 1\), and hence equality holds. To see \((d) \Rightarrow (b)\), note that for \(n\) large enough we have \(A^*(p) = \text{Ass}(A/p^n) = \text{Ass}(A/p^{(n)}) = \{p\}\). Finally, as \(\overline{A}^*(p) \subseteq A^*(p)\), the implication \((b) \Rightarrow (a)\) also follows. \(\square\)

Remark 3.6. Let \(A\) be a Cohen-Macaulay ring and \(p\) a prime ideal of height \(h > 0\) such that \(A_p\) is regular and \(p\) is generated by \(h + 1\) elements. By [3, Proposition 2.6], the Rees algebra \(A[pt]\) satisfies \((S_2)\), hence \(G_p(A)\) satisfies \((S_1)\) (Remark 2.16), so the conclusions of Corollary 3.5 follow. This recovers results from [2, 11]. For the local case, Huneke and Huckaba [9, Theorem 2.5] obtained the same conclusions of Corollary 3.5 under the weaker assumption that the analytic spread \(\ell(p) = h + 1\).

Remark 3.7. Let \(A\) be a locally formally equidimensional domain and \(p\) a prime ideal in \(A\). Assume that \(G_{p,A_p}(A_p)\) is reduced. By a result of Huckaba [7, Theorem 1.4] (which extends work of Huneke [10, Theorem 2.1]), the following are equivalent:

\begin{enumerate}[(a)]
 \item \(\overline{A}^*(p) = \{p\}\);
 \item \(p^{(n)} = \overline{p^n}\) for all \(n \geq 1\).
\end{enumerate}

Since \(G_{p,A_p}(A_p)\) is reduced, it satisfies the \((S_1)\) property. Therefore, by Theorem 3.4 the above equivalent conditions imply that \(S_2(p^n) = \overline{p^n}\) for all \(n \geq 1\). If \(A\) is a normal domain, this shows that the extended Rees algebra \(A[pt, t^{-1}]\) is regular in codimension one.
Indeed, if \(Q \) is a height one prime ideal in \(A[pt, t^{-1}] \), then \(A[pt, t^{-1}]_Q \cong S_2(A[pt, t^{-1}]_Q) \cong S_2(A[pt, t^{-1}])_Q \) which is a local integrally closed ring because \(S_2(A[pt, t^{-1}]) \) coincides with the integral closure of \(A[pt, t^{-1}] \).

The following example is a modification of [7, Example 1.6]. It describes a situation where all the hypotheses of Theorem 3.4 are satisfied for an equimultiple prime ideal \(p \), and hence \(p^{(n)} = S_2(p^n) \) for all \(n \geq 1 \). On the other hand, the associated graded ring \(G_p(A) \) does not satisfy the \((S_1)\) property.

Example 3.8. Let \(A = k[u, v, w, z, r]_{(u,v,w,z,r)}/(w^7 - u^{35}z^2 + u^{30}v, v^3 - wz) \) and the prime ideal \(p = (u, v, w, r)A \). Using Macaulay2 [13] one can check that \(A \) is a three dimensional Cohen-Macaulay domain and \(\text{ht} \ p = \ell(p) = 2 \), so \(p \) is an equimultiple ideal. This also implies that \(\mathcal{T}(p) = \{p\} \). The associated graded ring \(G_p(A) \) has a unique minimal prime ideal \((v^*, w^*)G_p(A)\), where \(v^*, w^* \in p/p^2 \subseteq G_p(A) \) are the images of \(v \) and \(w \), respectively. Moreover, the associated prime ideals of \(G_p(A) \) are \((v^*, w^*)G_p(A)\) and \((v^*, w^*, z^*)G_p(A)\), and hence \(G_p(A) \) does not satisfy Serre’s \((S_1)\) property.

In the local ring \(A_p \) we have \(w = (1/z)v^3 \), so \(w^7 - u^{35}z^2 + u^{30}v = (1/z^7)(v^{21} - u^{35}z^9 + u^{30}vz^7) \) and therefore

\[
A_p \cong k[u, v, z, r]_{(u,v,r)}/(v^{21} - u^{35}z^9 + u^{30}vz^7).
\]

Since \(A_p \) is a hypersurface \(R/(f) \), where \(R = k[u, v, z, r]_{(u,v,r)} \) and \(f = v^{21} - u^{35}z^9 + u^{30}vz^7 \) with initial term \(f^* = v^{21} \), it follows that \(G_{pA_p}(A_p) \cong k[u, v, z, r]_{(u,v,r)}/(v^{21}) \). Note that \(G_{pA_p}(A_p) \) is not reduced, but it has a unique minimal prime ideal and no embedded associated prime ideals, so it satisfies the \((S_1)\) property. This implies that the extended Rees algebra \(A_p[pA_p, t, t^{-1}] \) satisfies the \((S_2)\) property, and therefore \(S_2(p^nA_p) = p^nA_p \) for all \(n \geq 1 \).

On the other hand, let us note that the ideal \(pA_p \) is not normal, i.e. not all of its powers are integrally closed. This follows from the criterion for normality of the maximal ideal in a hypersurface that is proved in [3, 2.4]. In fact, in the ring \(A \) one can check with Macaulay2 that \(w^7 \in p^{28} \) and \(w \notin p^2 \). Then \(w \in p^2 \subseteq p^3 \), hence \(p^2 \neq p^3 \). Using the procedure outlined in [4, Proposition 3.2] (which is valid in any affine domain), by identifying the \(S_2 \)-ification of the Rees algebra \(A[pt] \) with the ring of endomorphisms of the canonical ideal of \(A[pt] \), after
lengthy computations with Macaulay2 we were able to obtain

\[S_2(p^2) = p^2 + (w), \]
\[S_2(p^3) = p^3 + (w) \supseteq pS_2(p^2), \]
\[S_2(p^4) = p^4 + (wr, w^2, vw, uw) = pS_2(p^3) + (S_2(p^2))^2, \text{ and} \]
\[S_2(p^5) = p^5 + (w^2, vr, v^2w, uvw, u^2w, uvr) = pS_2(p^4) + S_2(p^2)S_2(p^3). \]

One can also check that \(w / \not\in S_2(p^4). \) As noticed before, \(w \in p^4 \setminus p^2, \) so we have the strict inclusions

\[p^4 \subsetneq S_2(p^4) \subsetneq p^4. \]

On the other hand, since \(G_{pA_p}(A_p) \) satisfies \((S_1),\) by Theorem 3.4 we know that \(p^{(n)} = S_2(p^n) \) for all \(n \geq 1. \) In fact, in this particular example, for \(i \in \{2, 3, 4, 5\} \) we have \(\text{Ass}(A/p^i) = \{p, m\}, \) where \(m = (u, v, w, z, r)A, \) so \(p^{(i)} = (p^i : m^\infty). \) Compared to \(S_2(p^i), \) the saturations \((p^i : m^\infty) \) are much easier to compute in Macaulay2 and we double checked that the ideals \((p^i : m^\infty) \) coincide with the ideals \(S_2(p^i) \) \((2 \leq i \leq 5) \) computed above.

4. Other Applications

Proposition 4.1. Let \((A, m)\) be a formally equidimensional local ring and \(I \) an ideal of positive height and analytic spread \(\ell(I) < \dim A. \) Assume that \(A[It, t^{-1}] \) satisfies the \((S_2)\) property. Then

\[(I^n : m^\infty) = I^n \text{ for all } n \geq 1, \]

i.e., \(m \not\in \bigcup_{n \geq 1} \text{Ass}(A/I^n). \)

Proof. By Corollary 2.10 we have \(\overline{A^*}(I) = \bigcup_{n \geq 1} \text{Ass}(A/I^n) \) and \(m \in \overline{A^*}(I) \) if and only if \(\ell(I) = \dim A \) ([15 Proposition 4.1]). \qed

Remark 4.2. If the ring \(A \) is also a domain, by using very different methods we already obtained the above result in [5, Corollary 3.15].

We are also able to recover the following result of Brodmann regarding the asymptotic primes of an almost complete intersection ideal.
Proposition 4.3. [2, Proposition 3.9] Let A be a Cohen-Macaulay ring and I an ideal of height h that can be generated by $h + 1$ elements. Moreover, assume that I is generically a complete intersection. Then

(a) $\text{Ass}(A/I^n) \subseteq \text{Ass}(A/I^{n+1})$ for all $n \geq 1$;
(b) $\text{ht } p \leq h + 1$ for all $p \in A^*(I)$.

Proof. Note that we may assume $h \geq 1$, for otherwise $I = (0)$ and the conclusions clearly follow. Under the given assumptions on the ideal I, by [3, Proposition 2.6], the Rees algebra $A[It]$ satisfies (S_2). Then $A[It, t^{-1}]$ satisfies (S_2) as well (Remark [2,16]), and (a) follows from the first part of Corollary [2,10]. By the same Corollary [2,10], we note that $A^*(I) = \bigcup_{n \geq 1} \text{Ass}(A/I^n) = \bigcup_{n \geq 1} \text{Ass}(A/I^n) = \overline{A}^*(I)$. Then, for $p \in A^*(I) = \overline{A}^*(I)$, we have $\text{ht } p = \ell(I_p)$ ([15, Proposition 4.1]). Since I is generated by $h + 1$ elements, we also have $\ell(I_p) \leq \mu(I_p) \leq h + 1$, and part (c) follows.

Using a result of Zarzuela [20], we obtain a similar conclusion for certain ideals of analytic deviation one.

Proposition 4.4. Let (A, m) be a local Cohen-Macaulay ring with infinite residue field and I an ideal of height $h \geq 1$ and analytic spread $\ell(I) = h + 1$. Assume that I is generically a complete intersection, the reduction number $r(I)$ is at most one, and A/I satisfies (S_1). Then

(a) $\text{Ass}(A/I^n) \subseteq \text{Ass}(A/I^{n+1})$ for all $n \geq 1$;
(b) $\text{ht } p \leq h + 1$ for all $p \in A^*(I)$.

Proof. By [20, Theorem 4.4], the associated graded ring $G_I(A)$ satisfies (S_1), or equivalently, $A[It, t^{-1}]$ satisfies (S_2). Then part (a) follows from the first part of Corollary [2,10]. For part (b), as in the proof of Proposition 4.3 we note that $A^*(I) = \overline{A}^*(I)$ and for $p \in \overline{A}^*(I)$ we have $\text{ht } p = \ell(I_p) \leq \ell(I) = h + 1$.

In the case of a prime ideal in a regular local ring, we record the following Corollary.

Corollary 4.5. Let (A, m) be a local Cohen-Macaulay ring and p a prime ideal of height h such that A_p is a regular local ring. Assume that either
(i) \(\mu(p) = h + 1 \) or
(ii) \(A/\mathfrak{m} \) is infinite, \(\ell(p) = h + 1 \) and \(r(p) \leq 1 \).

Then:

(a) \(\text{Ass}(A/p^n) \subseteq \text{Ass}(A/p^{n+1}) \) for all \(n \geq 1 \);
(b) \(\text{ht} q \leq h + 1 \) for all \(q \in A^*(p) \).

References

Department of Mathematics 2750, North Dakota State University, PO BOX 6050, Fargo, ND 58108-6050, USA

E-mail address: catalin.ciuperca@ndsu.edu