
INTEGRAL CLOSURE OF STRONGLY GOLOD IDEALS

CĂTĂLIN CIUPERCĂ

Abstract. We prove that the integral closure of a strongly Golod ideal in a polynomial

ring over a field of characteristic zero is strongly Golod, positively answering a question of

Huneke. More generally, the rational power Iα of an arbitrary homogeneous ideal is strongly

Golod for α ≥ 2 and, if I is strongly Golod, then Iα is strongly Golod for α ≥ 1. We also

show that all the coefficient ideals of a strongly Golod ideal are strongly Golod.

1. Introduction

Let K be a field of characteristic zero and let A = K[x1, . . . , xd] be the graded polynomial

ring with deg(xi) = ai > 0 (i = 1, . . . , d) and homogeneous maximal ideal M . Introduced

by Herzog and Huneke in [3], the strongly Golod ideals in A are the proper homogeneous

ideals I that satisfy the condition ∂(I)2 ⊆ I, where ∂(I) is the ideal generated by the partial

derivatives of all the elements of I. The motivation for the introduction of this notion comes

from a result proved in the same paper [3, Theorem 1.1] which shows that if I is strongly

Golod, then the ring A/I is Golod, i.e., the Poincaré series of A/I

PA/I(t) =
∑
i≥0

dimK Tor
A/I
i (K,K)ti

coincides with the rational series

HA/I(t) =
(1 + t)n

1− t
∑

i≥1 dimK Hi(y;A/I)ti
,

where Hi(y;A/I) is the i-th Koszul homology of A/I with respect to a minimal homogeneous

set of generators y = y1, . . . , yn of the maximal homogeneous ideal of A/I. As proved by

Serre, PA/I(t) is coefficientwise bounded above by HA/I(t), and the ring A/I is called Golod

if PA/I(t) = HA/I(t).
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Herzog and Huneke further studied the properties of the strongly Golod ideals. For every

homogeneous ideal I of A, among other things, they proved that the powers Is, the symbolic

powers I(s), and the saturations (Is : M∞) are strongly Golod for all s ≥ 2 ([3, Theorem

2.3]). Moreover, if I is strongly Golod, then the Ratliff-Rush ideal Ĩ = ∪i≥1(I i+1 : I i) is

strongly Golod ([3, Proposition 2.1]) and the integral closures Is are strongly Golod for

s ≥ d+ 1 ([3, Theorem 2.11]).

For monomial ideals, Herzog and Huneke improved the previous result by showing that

if I is a monomial strongly Golod ideal, then the integral closure I is also strongly Golod

([3, Proposition 3.1]). In particular, for an arbitrary monomial ideal I, the integral closures

Is are strongly Golod for s ≥ 2. More generally, De Stefani later proved that the rational

powers Iα of a monomial ideal I are strongly Golod for every rational α ≥ 2 ([1, Proposition

3.7]), and if I is a monomial strongly Golod ideal, then Iα is strongly Golod for every rational

α ≥ 1 ([1, Theorem 3.5]).

In this article we show that the above results, which had been proved for monomial

ideals, are actually valid for all homogeneous ideals. More precisely, we prove that if I is a

homogeneous strongly Golod ideal, then the integral closure I is strongly Golod (Corollary

3.5), positively answering a question of Huneke [6, Problem 6.19]. More generally, if I is a

homogeneous strongly Golod ideal, then the rational power Iα is strongly Golod for every

α ≥ 1 (Corollary 4.6). Moreover, if I is an arbitrary homogeneous ideal, then all the rational

powers Iα are strongly Golod for α ≥ 2 (Corollary 4.4).

Our techniques are very different from those of Herzog and Huneke [3] and De Stefani

[1], which can only be used in the monomial case. The main ingredient in our arguments is

the Rees-like algebra A[∂(I)ta, It2a, t−1] with a ∈ N∗ and the main tool used is a result of

Seidenberg [7, Section 3] showing that a derivation on a noetherian domain R containing a

field of characteristic zero, when extended to its quotient field, will map every element of the

integral closure R to an element of R (see (2.5)). Using this approach, we prove that if I is a

homogeneous strongly Golod ideal, then ∂(Im)∂(In) ⊆ Im+n−1 for all positive integers m,n

(Theorem 3.4). More generally, for rational powers of ideals, if I is a homogeneous strongly

Golod ideal, then ∂(Iα) ⊆ Iα− 1
2

for every rational α ≥ 1
2

(Theorem 4.5). For arbitrary ideals,

we also prove that ∂(Iα) ⊆ Iα−1 for every rational α ≥ 1 (Theorem 4.3). The main results
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of the paper regarding the strongly Golod property of the integral closure and the rational

powers of a homogeneous ideal are then obtained as immediate consequences.

Finally, as already mentioned above, Herzog and Huneke proved that the Ratliff-Rush

ideal of a strongly Golod ideal is strongly Golod as well. In the last section of the paper,

we extend this result by showing that all the coefficient ideals I{k} (1 ≤ k ≤ d) of a strongly

Golod ideal I of finite colength are strongly Golod (Theorem 5.4), answering a question

raised by De Stefani [1, Question 5.9]. (The coefficient ideal I{d} of an ideal of finite colength

is the Ratliff-Rush ideal Ĩ.)

2. Preliminaries

Let K be a field of characteristic zero and A = K[x1, . . . , xd] a graded polynomial ring

with deg(xi) = ai > 0.

2.1. For an ideal I of A and i ∈ {1, . . . , d}, we denote by ∂i(I) the ideal generated by the

partial derivatives ∂if = ∂f/∂xi with f ∈ I, and by ∂(I) the ideal generated by {∂f/∂xi |

f ∈ I, 1 ≤ i ≤ d}, i.e., ∂(I) = ∂1(I) + · · ·+ ∂d(I).

Note that for an arbitrary ideal I we always have I ⊆ ∂(I). Indeed, if f ∈ I, then x1f ∈ I,

so f = ∂
∂x1

(x1f)− x1 ∂
∂x1

(f) ∈ ∂(I).

2.2. If f ∈ A is a homogeneous polynomial, then

deg(f)f =
d∑
i=1

aixi
∂f

∂xi
(Euler’s formula),

and since the characteristic of K is zero, it follows that f ∈
( ∂f
∂x1

, . . . ,
∂f

∂xd

)
.

Assume that I = (f1, . . . , fs) with fi homogeneous polynomials in A. If f = g1f1+· · ·+gsfs
with gi ∈ A, from the previous observation it follows that for each ` = 1, . . . , d we have

∂f

∂x`
=

s∑
i=1

gi
∂fi
∂x`

+
s∑
i=1

fi
∂gi
∂x`
∈
( ∂fi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ d

)
,

and therefore ∂(I) = (∂fi/∂xj | 1 ≤ i ≤ s, 1 ≤ j ≤ d).

Definition 2.3. ([3]) A proper homogeneous ideal I of A is said to be strongly Golod if

∂(I)2 ⊆ I.
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Remark 2.4. As noted in [3, Remark 2.1], if A is standard graded and I is an ideal of A,

the condition ∂(I)2 ⊆ I does not depend on the chosen coordinates in A. More precisely,

if y1, . . . , yd are linear forms in A such that K[x1, . . . , xd] = K[y1, . . . , yd] and ∂′(I) is the

ideal of A generated by all the partial derivatives ∂f/∂yj with f ∈ I and j = 1, . . . , d, then

∂(I)2 ⊆ I if and only if ∂′(I)2 ⊆ I.

2.5.(Derivations and integral closure.) Let R be a noetherian integral domain containing a

field of characteristic zero, and let D be a derivation of its quotient field Q(R). Seidenberg

[7, Section 3] proved that if D(R) ⊆ R, then D(R) ⊆ R, where R is the integral closure

of R in Q(R). In fact, as Seidenberg shows, the result holds even without the noetherian

assumption if the integral closure R is replaced by the quasi-integral closure of R, i.e., the

ring consisting of all the elements α ∈ Q(R) for which there exists c ∈ R \ {0} such that

cαn ∈ R for all n ≥ 0. In the literature, this is also referred to as the complete integral

closure of R.

3. Integral closure of strongly Golod ideals

Throughout this section K is a field of characteristic zero and A = K[x1, . . . , xd] is a

polynomial ring with deg(xi) = ai > 0. We show that the integral closure of a strongly

Golod ideal is also strongly Golod. The results of this section are further extended to

rational powers of ideals in the next section, and technically can be obtained as particular

cases of them. However, for the sake of clarity, we prefer to present the main technique

applied to the case of the integral closure of an ideal in this separate section.

Theorem 3.1. Let I be an arbitrary ideal of A. Then for every positive integer n,

∂(In) ⊆ In−1.

Proof. Consider the (extended) Rees algebra R = A[It, t−1] with quotient field Q(R). Since

A is normal, the integral closure of R in its quotient field is R = ⊕n∈ZIntn, where In = A

for n ≤ 0. For every i ∈ {1, . . . , d}, since ∂i = ∂
∂Xi

is a derivation on Q(R) = Q(A)(t) =

K(X1, . . . , Xd, t), it follows that

Di :=
1

t
∂i =

1

t

∂

∂xi
: Q(R)→ Q(R)
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is also an additive group homomorphism that satisfies the Leibniz’s rule, and hence Di is a

derivation on Q(R).

Since ∂i(I
n) ⊆ In−1, we have Di(R) ⊆ R and by Seidenberg’s theorem (2.5) it follows

that Di(R) ⊆ R, or equivalently, ∂i(In) ⊆ In−1 for every positive n. Since this holds for all

i, we obtain ∂(In) ⊆ In−1. �

As an immediate consequence, we show that In is strongly Golod for every homogeneous

ideal I and every n ≥ 2. This result was already known to be true for monomial ideals

[3, Proposition 3.1]. In the case of homogeneous ideals, it was only known for n ≥ d + 1

([3, Theorem 2.11]).

Corollary 3.2. Let I be a homogeneous ideal of A. Then In is strongly Golod for every

integer n ≥ 2.

Proof. Using the previous theorem we have ∂(In)2 ⊆ (In−1)2 ⊆ I2n−2 ⊆ In for n ≥ 2. �

In order to be able to prove that the integral closure I of a strongly Golod ideal I is

strongly Golod, we need a refinement of the first inclusion in the proof of Corollary 3.2.

We obtain this by considering the Rees-like algebra A[∂(I)t, It2, t−1] instead of the classical

Rees algebra A[It, t−1]. We begin by identifying the homogeneous components of this new

algebra.

Lemma 3.3. Let I be a strongly Golod ideal of A and let

S = A[∂(I)t, It2] = ⊕n≥0Jntn.

Then

J2n = In and J2n+1 = ∂(I)In for n ≥ 0.

Proof. We start by observing that J2 = ∂(I)2 + I = I, since I is strongly Golod. From the

t-graded structure on S, it is clear that In ⊆ J2n and ∂(I)In ⊆ J2n+1 for n ≥ 0. On the

other hand, since ∂(I)2 ⊆ I, we also have J2n =
∑n

k=0 I
k∂(I)2n−2k ⊆

∑n
k=0 I

kIn−k = In and

J2n+1 =
∑n

k=0 I
k∂(I)2n+1−2k ⊆

∑n
k=0 I

kIn−k∂(I) = In∂(I), finishing the proof. �
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Theorem 3.4. Let I be a homogeneous ideal of A. If I is strongly Golod, then for every

positive integers m,n,

∂(Im)∂(In) ⊆ Im+n−1.

Proof. We consider the Rees-like A-algebra from the previous lemma S = A[∂(I)t, It2] =

⊕n≥0Jntn. As noted in (2.1), we have I ⊆ ∂(I), and therefore Jn+1 ⊆ Jn for all n ≥ 0. If

we set U := S[t−1], this implies that U = ⊕n∈ZJntn with Jn = A for n < 0. On the quotient

field Q(U) = Q(A)(t), for each i = 1, . . . , d, we consider again the derivation

Di :=
1

t
∂i =

1

t

∂

∂xi
: Q(A)(t)→ Q(A)(t).

We claim that Di(U) ⊆ U for every i = 1, . . . , d. Indeed, for n ≥ 1,

Di(J2nt
2n) =

1

t
t2n∂i(I

n) ⊆ t2n−1In−1∂(I) = J2n−1t
2n−1.

Similarly, for n ≥ 1,

Di(J2n+1t
2n+1) =

1

t
t2n+1∂i(∂(I)In) ⊆ t2n[∂i(∂(I))In + ∂i(I

n)∂(I)]

⊆ t2n(In + In−1∂(I)2) ⊆ Int2n = J2nt
2n.

Since we also clearly have Di(Jnt
n) ⊆ Jn−1t

n−1 for n ≤ 1, it follows that Di(U) ⊆ U . By

Seidenberg’s theorem applied to the noetherian A-algebra U , we then obtain Di(U) ⊆ U for

all i. On the other hand, since A is a normal domain, we have U = ⊕n∈ZLntn ⊆ A[t, t−1]

with Ln ideals of A and Ln = A for n ≤ 0. Therefore

(3.4.1) Di(Lnt
n) ⊆ Ln−1t

n−1 for all n ∈ Z.

We now claim that L2n = In for n ≥ 1. First, if f ∈ In, then ft2n ∈ Int2n, so ft2n belongs

to the integral closure of A[It2] in A[t2]. Then ft2n is also integral over U = A[∂(I)t, It2, t−1],

hence f ∈ L2n. For the opposite inclusion, let f ∈ L2n. As ft2n belongs to U , it satisfies

an equation of integral dependence (ft2n)k + a1(ft
2n)k−1 + · · · + ak−1(ft

2n) + ak = 0 with

a1, . . . , ak ∈ U . By considering the homogeneous part of t-degree 2nk in this equation, we

may assume that aj ∈ Injt2nj for j = 1, . . . , k. If we write aj = bjt
2nj with bj ∈ Inj we then

obtain

(3.4.2) fk + b1f
k−1 + · · ·+ bk−1f + bk = 0,
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showing that f ∈ In.

From (3.4.1) we now obtain ∂i(In)t2n−1 = Di(L2nt
2n) ⊆ L2n−1t

2n−1, i.e., ∂i(In) ⊆ L2n−1

for n ≥ 1. Since this holds for every i = 1, . . . , d, it follows that ∂(In) ⊆ L2n−1. Therefore,

for m,n ≥ 1, we have

∂(Im)∂(In) ⊆ L2m−1L2n−1 ⊆ L2m+2n−2 = Im+n−1,

where the second inclusion follows from the t-graded structure of U . �

Corollary 3.5. Let I be a homogeneous ideal of A. If I is strongly Golod, then the integral

closure I is strongly Golod, too.

Proof. From the previous theorem, ∂(I)∂(I) ⊆ I, so I is strongly Golod. �

Note that the above result also recovers Corollary 3.2, for the power In is strongly Golod

for every n ≥ 2 ([3, Theorem 2.3]).

Remark 3.6. If one removes the homogeneous requirement for a strongly Golod ideal in

Definition 2.3, then the conclusions of Corollary 3.2, Theorem 3.4 and Corollary 3.5 are

valid without requiring that I be homogeneous.

4. Rational powers of ideals

As before, K is a field of characteristic zero and A = K[x1, . . . , xd] is a polynomial ring

with deg(xi) = ai > 0.

The strongly Golod property for rational powers of ideals in A was studied by De Stefani

in [1]. If I is a monomial ideal and α ∈ Q, De Stefani proved that the rational power Iα

is strongly Golod for α ≥ 2. Moreover, if I is a monomial strongly Golod ideal, then Iα

is strongly Golod for α ≥ 1. Using techniques similar to those employed in the previous

section, we extend these results to homogeneous ideals.

We begin with a brief overview of the rational powers of ideals.

Definition 4.1. Let I be an ideal in a noetherian ring R and α = p/q ∈ Q with p, q positive

integers. The α-th rational power of the ideal I is defined by Iα := {x ∈ R | xq ∈ Ip}.
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The definition is independent of the representation of α as a quotient of integers. Moreover,

Iα is an integrally closed ideal of R for every positive rational α. (If m is a positive integer,

the m-th rational power Im of I is the integral closure Im.) For every positive rationals α, β,

we have IαIβ ⊆ Iα+β, and if α ≥ β, then Iα ⊆ Iβ. For these facts and other properties of the

rational powers of ideals we refer the reader to [4, 10.5].

Remark 4.2. Like the integral closures Im (m ≥ 1), the rational powers can be obtained as

homogeneous components of the integral closure of a Rees-like algebra. Let I be an ideal in

a noetherian ring R and a ≥ 1 an integer. Let T = R[Ita, t−1] and let T = ⊕n∈ZJntn be the

integral closure of T in R[t, t−1]. Then Jn = In/a for n ≥ 1.

To see this we first note that Jna = In for all integers n ≥ 1. Indeed, if f ∈ In, then

ftna ∈ Intna, so ftna belongs to the integral closure of R[Ita] in R[ta]. Then ftna is integral

over T = R[Ita, t−1], hence f ∈ Jna. For the other inclusion, let f ∈ Jna. Since ftna ∈ T , we

have an equation of integral dependence (ftna)k+a1(ft
na)k−1+ · · ·+ak−1(ftna)+ak = 0 with

a1, . . . , ak ∈ T . Moreover, by taking the homogeneous part of t-degree nak in this equation,

we may assume that aj ∈ Injtnaj for j = 1, . . . , k, and if we write aj = bjt
naj with bj ∈ Inj,

we obtain an equation of integral dependence of f over In.

For the general case, if f ∈ Jn, then fa ∈ Jna = In, so f ∈ In/a. Conversely, if f ∈ In/a,

then fa ∈ In, so (ftn)a ∈ Intna = Jnat
na ⊆ T . This implies that ftn is also integral over T ,

so f ∈ Jn.

Theorem 4.3. Let I be an arbitrary ideal of A and α ∈ Q with α ≥ 1. Then

∂(Iα) ⊆ Iα−1.

Proof. Write α = N/a with a,N positive integers and consider the A-algebra T = A[Ita, t−1].

Since A is a normal domain, the integral closure of T in its quotient field Q(A)(t) coincides

with the integral closure T = ⊕n∈ZJntn of T in A[t, t−1]. For every i ∈ {1, . . . , d}, let

Di :=
1

ta
∂i =

1

ta
∂

∂xi
: Q(A)(t)→ Q(A)(t).

This map is a derivation, and since ∂i(I
n) ⊆ In−1, we have Di(I

ntna) ⊆ In−1t(n−1)a for all

n, i.e., Di(T ) ⊆ T . By Seidenberg’s theorem, we then obtain Di(T ) ⊆ T , or equivalently,
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∂i(Jn) ⊆ Jn−a for every integer n. Therefore ∂(Jn) ⊆ Jn−a for all integers n. However, as

explained in Remark 4.2, JN = IN/a = Iα and JN−a = I(N−a)/a = Iα−1, so ∂(Iα) ⊆ Iα−1. �

Corollary 4.4. Let I be a homogeneous ideal of A. Then Iα is strongly Golod for every

α ∈ Q with α ≥ 2.

Proof. From the previous theorem, ∂(Iα)2 ⊆ Iα−1Iα−1 ⊆ I2α−2 ⊆ Iα for α ≥ 2. �

If the ideal I is strongly Golod, the inclusion proved in Theorem 4.3 can be improved.

Theorem 4.5. Let I be a homogeneous ideal of A. If I is strongly Golod, then for every

α ∈ Q with α ≥ 1
2
,

∂(Iα) ⊆ Iα− 1
2

Proof. Write α =
N

2a
with N, a positive integers. (It will become clear later that it is

important to represent α with an even denominator.) Let C = A[∂(I)ta, It2a] = ⊕n≥0Cnatna.

From Lemma 3.3, it follows that C2na = In and C(2n+1)a = ∂(I)In for n ≥ 0. Moreover, as

noted in (2.1), I ⊆ ∂(I), so C(n+1)a ⊆ Cna for every n ≥ 0.

Now let

V = C[t−1] = A[∂(I)ta, It2a, t−1] = (⊕n≥0Cnatna)[t−1].

From the description of the graded components Cna given above and the fact that C(n+1)a ⊆

Cna for every n ≥ 0, it follows that

V = A[t−1]⊕ ∂(I)t⊕ ∂(I)t2 ⊕ · · · ⊕ ∂(I)ta

⊕ Ita+1 ⊕ Ita+2 ⊕ · · · ⊕ It2a

⊕ I∂(I)t2a+1 ⊕ I∂(I)t2a+2 ⊕ · · · ⊕ I∂(I)t3a

⊕ I2t3a+1 ⊕ I2t3a+2 ⊕ · · · ⊕ I2t4a

⊕ I2∂(I)t4a+1 ⊕ I2∂(I)t4a+2 ⊕ · · · ⊕ I2∂(I)t5a

⊕ · · ·
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More precisely, if V = ⊕n∈ZVntn (with Vn = A for n ≤ 0), for each n ≥ 1 let b =
⌊
n−1
a

⌋
so

that we can write n = ab + r with b, r ∈ N and 1 ≤ r ≤ a. Then Vn = I(b+1)/2 if b is odd

and Vn = Ib/2∂(I) if b is even.

We now consider V the integral closure of V in its quotient field Q(A)(t). Since A is

integrally closed, V = ⊕n∈ZWnt
n is a graded subalgebra of A[t, t−1] with Wn = A for n ≤ 0.

We first claim that W2na = In for all n ≥ 1. Indeed, for f ∈ In we have ft2an ∈ Int2an,

so ft2an belongs to the integral closure of A[It2a] in A[t2a]. Then ft2an is also integral

over V , so f ∈ W2an. Conversely, if f ∈ W2an, then ft2an satisfies an equation of integral

dependence over V , (ft2na)k + a1(ft
2na)k−1 + · · ·+ ak−1(ft

2na) + ak = 0, with a1, . . . , ak ∈ V .

By considering the homogeneous part of t-degree 2nak in this equation, we may assume that

aj ∈ Injt2naj for j = 1, . . . , k. This becomes an equation of integral dependence over A[It2a],

so f ∈ In.

We now claim that Wn = In/2a for all n ≥ 1. For f ∈ In/2a we have f 2at2na ∈ Int2na =

W2nat
2na ⊆ V , so (ftn)2a is integral over V . Then ftn is integral over V as well, so f ∈ Wn.

Conversely, if f ∈ Wn, then f 2a ∈ W2na = In, so f ∈ In/2a.

For i = 1, . . . , d, consider again the derivation

Di :=
1

ta
∂i =

1

ta
∂

∂xi
: Q(A)(t)→ Q(A)(t).

We now show that Di(V) ⊆ V , or equivalently, ∂i(Vn) ⊆ Vn−a for all integers n. This is

clear for n ≤ a, so we may assume n ≥ a + 1. If n = (2k + 1)a + r with integers k ≥ 0

and 1 ≤ r ≤ a, then Vn = Ik+1, Vn−a = Ik∂(I), and ∂i(I
k+1) ⊆ Ik∂(I). In the other case,

if n = 2ka + r with integers k ≥ 1 and 1 ≤ r ≤ a, we have Vn = Ik∂(I), Vn−a = Ik, and

∂i(I
k∂(I)) ⊆ Ik∂(∂(I)) + Ik−1∂(I)∂(I) ⊆ Ik since I is strongly Golod.

We can now apply Seidenberg’s theorem. From Di(V) ⊆ V we obtain Di(Wnt
n) ⊆

Wn−at
n−a for all n, or equivalently, ∂i(Wn) ⊆ Wn−a. On the other hand, we know that

WN = IN/2a = Iα, so ∂i(Iα) = ∂i(IN/2a) ⊆ I(N−a)/2a = Iα− 1
2
. As this holds for every i, we

obtain ∂(Iα) ⊆ Iα− 1
2
. �

Corollary 4.6. Let I be a homogeneous ideal of A. If I is strongly Golod, then Iα is strongly

Golod for every α ∈ Q with α ≥ 1.
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Proof. By the previous theorem, ∂(Iα)2 ⊆ Iα− 1
2
Iα− 1

2
⊆ I2α−1 ⊆ Iα for α ≥ 1. �

Remark 4.7. In analogy to what we noted in Remark 3.6, if one removes the homogeneous

requirement in the definition of a strongly Golod ideal, the conclusions of Corollary 4.4,

Theorem 4.5 and Corollary 4.6 hold without requiring that I be homogeneous.

5. Coefficient ideals

Let M denote the maximal homogeneous ideal of the polynomial ring A = K[x1, . . . , xd]

with deg xi = ai and K an infinite field. If I is an M -primary ideal, for n � 0 the length

λ(A/In) becomes a polynomial function PI(n) of degree d, the Hilbert-Samuel polynomial

of I. We write this polynomial

PI(n) = e0(I)

(
n+ d− 1

d

)
− e1(I)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)d ed(I)

with integer coefficients ei(I), subsequently referred to as the Hilbert coefficients of I. The

coefficient e0(I) (the multiplicity of I) is positive and a well-known result of Rees shows

that the integral closure I is the largest ideal containing I having the same coefficient e0.

Similarly, the Ratliff-Rush ideal Ĩ = ∪i≥0(I i+1 : I i) is the unique largest ideal containing I

having the same Hilbert coefficients e0, e1, . . . , ed. In fact, Shah [8] proved that there exists

a chain of ideals

I ⊆ Ĩ = I{d} ⊆ . . . ⊆ I{k} ⊆ . . . ⊆ I{0} = I,

where I{k} is the unique ideal containing I maximal with respect to the property of having

the same coefficients e0, . . . , ek as those of I. The ideal I{k} is called the k-th coefficient ideal

of I.

Remark 5.1. Shah proved the existence of this chain for an ideal primary to the maximal

ideal in a formally equidimensional local ring with infinite residue field. However, since

λ(A/In) = λ(AM/I
nAM), Shah’s result is valid in the polynomial setting as well and I{k} =

(IAM){k} ∩ A.

Remark 5.2. Coefficient ideals in polynomial rings have been studied by Heinzer and Lantz

in [2]. They observed that if I is monomial, then its coefficient ideals are monomial, too

([2, 3.3]). In fact, with a modification of their of argument, one can prove that if I is a
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homogeneous ideal, then all the coefficient ideals of I are homogeneous as well. To see

this, for each u ∈ K \ {0}, let φu : A → A be the K-algebra automorphism of A defined

by φu(xi) = uaixi for i = 1, . . . , d. If K is infinite, it is known that I is a homogeneous

ideal of A if and only if φu(I) = I for every u ∈ K \ {0}; see [5, Exercise 13.1] for a more

general statement. With this automorphism, the argument detailed in [2, 3.3] shows that

φu(I{k}) = I{k} for every u ∈ K \ {0} and k ≥ 1, and therefore the coefficient ideals I{k} are

homogeneous for k ≥ 1. For k = 0, it is also well-known that the integral closure I = I{0} is

homogeneous.

We now consider a homogeneous strongly Golod ideal I in the polynomial ring A =

K[x1, . . . , xd] over a field K of characteristic zero. Herzog and Huneke proved that the Ratliff-

Rush ideal Ĩ is strongly Golod ([3, Proposition 2.12]). Moreover, we proved in Corollary 3.5

that the integral closure I is also strongly Golod. Assuming that I is M -primary, we will

prove that all the other coefficient ideals of I are strongly Golod as well, answering a question

raised in [1, 5.9].

5.3. We first recall the following structure theorem for coefficient ideals [8, Theorem 2]. If I

is an ideal primary to the maximal ideal of a formally equidimensional local ring with infinite

residue field and 1 ≤ k ≤ d, then

(5.3.1) I{k} =
⋃

(In+1 : (a1, . . . , ak)),

where the union is taken over all n ≥ 1 and all length k sequences a1, . . . , ak extendable to

some minimal reduction of In. Moreover, this union can be replaced by a single quotient ideal

([8, Theorem 3]), i.e., there exist m ≥ 1 and a1, . . . , ak ∈ Im extendable to some minimal

reduction of Im such that

(5.3.2) I{k} = (Im+1 : (a1, . . . , ak)).

Note that this description is only valid for k ≥ 1, hence excluding the integral closure of I.

In the polynomial setting with I primary to the maximal homogeneous ideal M of A =

K[x1, . . . , xd], after localizing at M as in Remark 5.1, this means that there exist m ≥ 1 and

a1, . . . , ak ∈ Im extendable to some minimal reduction of ImAM such that (5.3.2) holds.
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Theorem 5.4. Let I be an M-primary strongly Golod ideal of a polynomial ring A =

K[x1, . . . , xd] over a field K of characteristic zero. Then the coefficient ideals I{k} are strongly

Golod for all k ∈ {1, . . . , d}.

Proof. As in (5.3.2), choose m ≥ 1 and a1, . . . , ak ∈ Im extendable to some minimal reduction

(a1, . . . , ak, ak+1, . . . , ad) of ImAM such that I{k} = (Im+1 : (a1, . . . , ak)). Let f ∈ I{k} and

s ∈ {1, . . . , k}. Since fas ∈ Im+1, for every i ∈ {1, . . . , d} we have ∂i(f)as+f∂i(as) ∈ Im∂(I).

However, since as ∈ Im, we have ∂i(as) ∈ Im−1∂(I), and therefore ∂i(f)as ∈ fIm−1∂(I) +

Im∂(I). Since fas ∈ Im+1 and as ∈ Im we then obtain ∂i(f)a2s ∈ I2m∂(I) + asI
m∂(I) ⊆

I2m∂(I). This holds for every f ∈ I{k} and all i = 1, . . . , d, and therefore ∂(I{k})a
2
s ⊆ I2m∂(I).

Since I is strongly Golod, this implies that

∂(I{k})
2a4s ⊆ I4m∂(I)2 ⊆ I4m+1.

As this holds for all s ∈ {1, . . . , k}, we get

∂(I{k})
2 ⊆ (I4m+1 : (a41, . . . , a

4
k)).

Finally, a41, . . . , a
4
k is part of the minimal reduction (a41, . . . , a

4
k, a

4
k+1, . . . , a

4
d) of I4mAM , and

from (5.3.1) it follows that ∂(I{k})
2 ⊆ (IAM){k} ∩ A = I{k}, and therefore I{k} is strongly

Golod. �
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