Good Modulating Sequences for the Ergodic Hilbert Transform

Azer Akhmedov and Doğan Çömez

North Dakota State University

March 22, 2014
Set up

Let \((X, \Sigma, \mu)\) be a probability space and \(T : X \rightarrow X\) be an i.m.p.t. For a function \(f\) the **ergodic Hilbert transform (eHt)** of \(f\) is

\[
Hf(x) := \lim_{n \to \infty} \sum_{k=-n}^{n} \frac{T^k f(x)}{k}, \quad \text{if the limit exists.}
\]
Set up

Let \((X, \Sigma, \mu)\) be a probability space and \(T : X \rightarrow X\) be an i.m.p.t. For a function \(f\) the **ergodic Hilbert transform (eHt)** of \(f\) is

\[
Hf(x) := \lim_{n \to \infty} \sum_{k=-n}^{n} \frac{T^k f(x)}{k}, \quad \text{if the limit exists.}
\]

Given a sequence \(a = \{a_k\}_{k=-\infty}^{\infty} \subset \mathbb{C}\), the **modulated ergodic Hilbert transform of** \(f\) by \(a\) is defined as

\[
H_a f(x) := \lim_{n \to \infty} \sum_{k=-n}^{n} \frac{a_k T^k f(x)}{k}.
\]
Recall: For $f \in L_p$, modulated ergodic averages by a is defined as

$$A_n(a, f)(x) := \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f(x).$$

If $\lim_n A_n(a, f)$ exists a.e. for every $f \in L_p(X)$, a is called L_p-good in the system (X, Σ, μ); if this holds in every dynamical system, then a is called a universally L_p-good sequence.
Recall: For $f \in L_p$, modulated ergodic averages by a is defined as

$$A_n(a, f)(x) := \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f(x).$$

If $\lim_n A_n(a, f)$ exists a.e. for every $f \in L_p(X)$, a is called L_p-good in the system (X, Σ, μ); if this holds in every dynamical system, then a is called a universally L_p-good sequence.

Some universally L_p-good sequences for the ergodic averages:
Recall: For \(f \in L_p \), modulated ergodic averages by \(a \) is defined as

\[
A_n(a, f)(x) := \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f(x).
\]

If \(\lim_n A_n(a, f) \) exists a.e. for every \(f \in L_p(X) \), \(a \) is called \(L_p \)-good in the system \((X, \Sigma, \mu)\); if this holds in every dynamical system, then \(a \) is called a universally \(L_p \)-good sequence.

Some universally \(L_p \)-good sequences for the ergodic averages:

- Bounded Besicovitch sequences (\(L_1 \)-good) [Bellow-Losert, 1985],
Recall: For $f \in L_p$, modulated ergodic averages by a is defined as

$$A_n(a, f)(x) := \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f(x).$$

If $\lim_n A_n(a, f)$ exists a.e. for every $f \in L_p(X)$, a is called L_p-good in the system (X, Σ, μ); if this holds in every dynamical system, then a is called a universally L_p-good sequence.

Some universally L_p-good sequences for the ergodic averages:

- Bounded Besicovitch sequences (L_1-good) [Bellow-Losert, 1985],
- Bounded almost periodic sequences (L_1-good) [Ç-Lin-Olsen, 1998],
Recall: For $f \in L_p$, modulated ergodic averages by a is defined as

$$A_n(a, f)(x) := \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f(x).$$

If $\lim_n A_n(a, f)$ exists a.e. for every $f \in L_p(X)$, a is called L_p-good in the system (X, Σ, μ); if this holds in every dynamical system, then a is called a universally L_p-good sequence.

Some universally L_p-good sequences for the ergodic averages:

- Bounded Besicovitch sequences (L_1-good) [Bellow-Losert, 1985],
- Bounded almost periodic sequences (L_1-good) [Ç-Lin-Olsen, 1998],
- W_p-sequences (L_q-good) [Lin-Olsen-Tempelman, 1999].
One-sided eHt of $f \in L_p$ is defined as $\sum_{k=1}^{\infty} \frac{T^k f(x)}{k}$, if the series converges.
One-sided eHt of $f \in L_p$ is defined as $\sum_{k=1}^{\infty} \frac{T^k f(x)}{k}$, if the series converges.

Modulated one-sided eHt of $f \in L_p$ by a complex sequence a is defined as $\sum_{k=1}^{\infty} \frac{a_k T^k f(x)}{k}$, if the series converges.
One-sided eHt of $f \in L_p$ is defined as $\sum_{k=1}^{\infty} \frac{T^k f(x)}{k}$, if the series converges.

Modulated one-sided eHt of $f \in L_p$ by a complex sequence a is defined as $\sum_{k=1}^{\infty} a_k T^k f(x) \frac{1}{k}$, if the series converges.

Cohen-Lin, 2003

Let a be a sequence of bounded variation. If $f \in L_p$, $1 < p < \infty$, satisfies

$$\sup_n \left\| \frac{1}{n^{1-\beta}} \sum_{k=1}^{n} T^k f \right\|_p = K < \infty$$

for some $0 < \beta \leq 1$,

then the modulated one-sided eHt exists.
Cohen-Jones-Lin, 2004

If a is a sequence satisfying

$$\sup_{n \geq 0} \max_{|z|=1} \left| \frac{1}{n^{1-\beta}} \sum_{k=1}^{n} a_k z^k \right| = K < \infty \text{ for some } 0 < \beta \leq 1,$$

then the modulated one-sided eHt exists for all $f \in L_p$, $2 < p < \infty$.
If \(a \) is a sequence satisfying

\[
\sup_{n \geq 0} \max_{|z|=1} \left| \frac{1}{n^{1-\beta}} \sum_{k=1}^{n} a_k z^k \right| = K < \infty \text{ for some } 0 < \beta \leq 1,
\]

then the modulated one-sided eHt exists for all \(f \in L_p, 2 < p < \infty \). In particular, if \(a \in W_p, 1 < p < \infty \) satisfying this rate condition, then the modulated one-sided eHt exists for all \(f \in L_q \).
Definition

If (X, Σ, μ, T) is an i.m.p.s., a is called L_p-good for the eHt in (X, Σ, μ) if the modulated eHt exists a.e. for every $f \in L_p(X)$.

Let \mathcal{F} be a class of invertible measure preserving dynamical systems.
Modulated Ergodic Hilbert Transform

Definition

If \((X, \Sigma, \mu, T)\) is an i.m.p.s., \(a\) is called \(L_p\)-good for the eHt in \((X, \Sigma, \mu)\) if the modulated eHt exists a.e. for every \(f \in L_p(X)\).

Let \(\mathcal{F}\) be a class of invertible measure preserving dynamical systems.

Definition

A sequence \(a\) is universally \(L_p\)-good for the eHt in the class \(\mathcal{F}\) if it is \(L_p\)-good for the eHt in every dynamical system in \(\mathcal{F}\).
Set up
Modulated Ergodic Hilbert Transform
Universally Good Sequences for the eHt
Bounded Besicovitch Sequences

Modulated Ergodic Hilbert Transform

Definition

If \((X, \Sigma, \mu, T)\) is an i.m.p.s., \(a\) is called \(L_p\)-good for the eHt in \((X, \Sigma, \mu)\) if the modulated eHt exists a.e. for every \(f \in L_p(X)\).

Let \(\mathcal{F}\) be a class of invertible measure preserving dynamical systems.

Definition

- A sequence \(a\) is universally \(L_p\)-good for the eHt in the class \(\mathcal{F}\) if it is \(L_p\)-good for the eHt in every dynamical system in \(\mathcal{F}\).
- If \(a\) is \(L_p\)-good for the eHt in every dynamical system, then it is universally \(L_p\)-good for the eHt.

Azer Akhmedov and Doğan Çömez
Good Modulating Sequences for the Ergodic Hilbert Transform
Symmetric sequences with bounded variation are universally L_1-good for the eHt.
Symmetric sequences with bounded variation are universally L_1-good for the eHt.

If $a = \{\hat{f}_n\}$ is the sequence of Fourier coefficients of a function
Symmetric sequences with bounded variation are universally L_1-good for the eHt.

If $\mathbf{a} = \{\hat{f}_n\}$ is the sequence of Fourier coefficients of a function

- $f \in L_p[0, 2\pi]$, $1 < p < \infty$, or
Symmetric sequences with bounded variation are universally L_1-good for the eHt.

If $a = \{\hat{f}_n\}$ is the sequence of Fourier coefficients of a function

- $f \in L_p[0, 2\pi]$, $1 < p < \infty$, or
- $f \in L_1[0, 2\pi]$ is a Lipschitz function of order $0 < \alpha < 1$, or
Symmetric sequences with bounded variation are universally L_1-good for the eHt.

If $a = \{\hat{f}_n\}$ is the sequence of Fourier coefficients of a function

- $f \in L_p[0, 2\pi]$, $1 < p < \infty$, or
- $f \in L_1[0, 2\pi]$ is a Lipschitz function of order $0 < \alpha < 1$, or
- $f \in L_1[0, 2\pi]$ is a function of bounded variation,
Symmetric sequences with bounded variation are universally L_1-good for the eHt.

If $a = \{\hat{f}_n\}$ is the sequence of Fourier coefficients of a function

- $f \in L_p[0, 2\pi], \ 1 < p < \infty$, or
- $f \in L_1[0, 2\pi]$ is a Lipschitz function of order $0 < \alpha < 1$, or
- $f \in L_1[0, 2\pi]$ is a function of bounded variation,

then it is universally L_1-good for the eHt.
Remarks.

- There exists $f \in L_1[0, 2\pi]$ such that $\{\hat{f}_n\}$ is not good for the eHt.
Remarks.

- There exists \(f \in L_1[0, 2\pi] \) such that \(\{\hat{f}_n\} \) is not good for the eHt.
- There are bounded Besicovitch sequences that are not good for the eHt.
Remarks.

- There exists \(f \in L_1[0, 2\pi] \) such that \(\{\hat{f}_n\} \) is not good for the eHt.
- There are bounded Besicovitch sequences that are not good for the eHt.
- If \(a = \{\hat{f}_n\} \) as in 1-3 above, then it satisfies \(\sum_{-n}^{n} |\hat{f}_n| = O(n^\beta) \) for some \(0 < \beta < 1 \).
For $1 < \alpha \leq 2$ define

$$M_\alpha = \{ a = \{ a_k \}_{-\infty}^{\infty} \subset \mathbb{C} : \sum_{k=-n}^{n} |a_k| = O\left(\frac{n^{\alpha-1}}{\log^{\alpha} n} \right) \}.$$
For $1 < \alpha \leq 2$ define

$$M_\alpha = \{a = \{a_k\}_{-\infty}^{\infty} \subset \mathbb{C} : \sum_{k=-n}^{n} |a_k| = O\left(\frac{n^{\alpha-1}}{\log\alpha n}\right)\}.$$

If $\alpha > \beta + 1$, $0 < \beta < 1$, then, for n is large enough, $n^\beta \leq \frac{n^{\alpha-1}}{\log\alpha n}$; hence, any sequence satisfying the condition $\sum_{-n}^{n} |a_n| = O(n^\beta)$ belongs to M_α.
For $1 < \alpha \leq 2$ define

$$M_\alpha = \{ a = \{a_k\}_{-\infty}^{\infty} \subset \mathbb{C} : \sum_{k=-n}^{n} |a_k| = O\left(\frac{n^{\alpha-1}}{\log\alpha n}\right) \}. $$

- If $\alpha > \beta + 1$, $0 < \beta < 1$, then, for n is large enough, $n^\beta \leq \frac{n^{\alpha-1}}{\log\alpha n}$; hence, any sequence satisfying the condition $\sum_{-n}^{n} |a_n| = O(n^\beta)$ belongs to M_α.

- If $a \in M_\alpha$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f = 0$ a.e. for all $f \in L_\infty$.

Azer Akhmedov and Doğan Çömez
A larger class of complex sequences is

For $1 < \alpha \leq 2$ define

$$A_\alpha = \{a = \{a_k\}_{-\infty}^{\infty} \subset \mathbb{C} : \sup_{n \geq 1} \max_{|z|=1} \frac{\log_\alpha n}{n^{\alpha-1}} \left| \sum_{k=-n}^{n} a_k z^k \right| = C_a < \infty \}.$$
A larger class of complex sequences is

For $1 < \alpha \leq 2$ define

$$A_\alpha = \left\{ a = \{a_k\}_{-\infty}^{\infty} \subset \mathbb{C} : \sup_{n \geq 1} \max_{|z|=1} \left| \frac{\log^\alpha n}{n^{\alpha-1}} \sum_{k=-n}^{n} a_k z^k \right| = C_a < \infty \right\}.$$

\[\exists \ a \in A_\alpha \text{ that does not belong to any } M_\alpha. \]
A larger class of complex sequences is

For $1 < \alpha \leq 2$ define

$$A_{\alpha} = \{ a = \{ a_k \}_{-\infty}^{\infty} \subset \mathbb{C} : \sup_{n\geq1} \max_{|z|=1} \frac{\log^{\alpha} n}{n^{\alpha-1}} \left| \sum_{k=-n}^{n} a_k z^k \right| = C_a < \infty \}.$$

- $\exists a \in A_{\alpha}$ that does not belong to any M_{α}.
- If $a \in A_{\alpha}$, $1 < \alpha < 3/2$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} a_k T^k f = 0$ a.e. for all $f \in L_{\infty}$.
Theorem 1

If \(a \in M_\alpha \), \(1 < \alpha \leq 2 \), then it is universally \(L_1 \)-good for the eHt.
Theorem 1
If \(a \in M_\alpha \), \(1 < \alpha \leq 2 \), then it is universally \(L_1 \)-good for the eHt.

When \(1 < \alpha < 3/2 \), sequences in \(A_\alpha \) also belong to a \(M_{\alpha'} \) (for a larger \(\alpha' \)). Hence, any \(a \in A_\alpha \) is also universally good for the eHt if \(1 < \alpha < 3/2 \). For \(3/2 \leq \alpha \leq 2 \) we need different arguments.
Theorem 1

If \(a \in M_\alpha \), \(1 < \alpha \leq 2 \), then it is universally \(L_1 \)-good for the eHt.

When \(1 < \alpha < 3/2 \), sequences in \(A_\alpha \) also belong to a \(M_{\alpha'} \) (for a larger \(\alpha' \)). Hence, any \(a \in A_\alpha \) is also universally good for the eHt if \(1 < \alpha < 3/2 \). For \(3/2 \leq \alpha \leq 2 \) we need different arguments.

Theorem 2

If \(a \in A_\alpha \), \(1 < \alpha \leq 2 \), is a sequence \(L_2 \)-good for the ergodic averages, then it is universally \(L_p \)-good for the eHt, \(2 \leq p < \infty \).
Proof of Theorem 1 (Sketch)

- By Abel’s partial summation, for \(f \in L_1 \),

\[
\sum_{-n}^{n} a_k T^k f = R_n + \frac{1}{n} (S_n - S_{-n}),
\]

where \(R_n = \sum_{1}^{n-1} \frac{S_k - S_{-k}}{k(k+1)} \)

and \(S_{\mp j} = \sum_{1}^{j} a_{\mp i} T^{\mp i} f \). We have weak \((1,1)\) maximal inequality for \(\frac{1}{n} S_{\mp j} \).
Proof of Theorem 1 (Sketch)

- By Abel’s partial summation, for \(f \in L_1 \),
 \[
 \sum_{-n}^{n} \frac{a_k T^k f}{k} = R_n + \frac{1}{n}(S_n - S_{-n}),
 \]
 where \(R_n = \sum_{1}^{n-1} \frac{S_k - S_{-k}}{k(k+1)} \)
 and \(S_{\mp j} = \sum_{1}^{j} a_\mp i T^{\mp i} f \).
 We have weak (1,1) maximal inequality for \(\frac{1}{n} S_{\mp j} \).

- Since \(f \in L_1 \) and \(a \in M_\alpha \), it follows that
 \[
 \int |R_n| \leq \|f\|_1 \sum_{2}^{n} \frac{C'}{k^{3-\alpha} \log^\alpha k} \leq C \|f\|_1.
 \]
Proof of Theorem.1 (Sketch)

- By Abel’s partial summation, for $f \in L_1$,
 $\sum_{-n}^{n} a_k T_k f = R_n + \frac{1}{n} (S_n - S_{-n})$, where $R_n = \sum_1^{n-1} \frac{S_k - S_{-k}}{k(k+1)}$ and $S_{\mp j} = \sum_1^j a_{\mp i} T_{\mp i} f$. We have weak $(1,1)$ maximal inequality for $\frac{1}{n} S_{\mp j}$.

- Since $f \in L_1$ and $a \in M_{\alpha}$, it follows that $\int |R_n| \leq \|f\|_1 \sum_2^n \frac{C'}{k^{3-\alpha} \log^{\alpha} k} \leq C \|f\|_1$.

- $h_n = \sum_1^n \frac{1}{k^2} (\sum_{-k}^k |a_j| T_j |f|) \uparrow h$ with $\int h_n \leq C \|f\|_1$; hence, by the MCT, $\int |R_n| \leq \int h_n \uparrow \int h \leq C \|f\|_1$.
Proof of Theorem.1 (Sketch)

- By Abel’s partial summation, for \(f \in L_1 \),
 \[
 \sum_{-n}^{\prime n} \frac{a_k T^k f}{k} = R_n + \frac{1}{n}(S_n - S_{-n}),
 \]
 where \(R_n = \sum_{1}^{n-1} \frac{S_k - S_{-k}}{k(k+1)} \)
 and \(S_j = \sum_{1}^{j} a_j T^j f \).
 We have weak \((1,1)\) maximal inequality for \(\frac{1}{n} S_j \).

- Since \(f \in L_1 \) and \(a \in M_\alpha \), it follows that
 \[
 \int |R_n| \leq \|f\|_1 \sum_{1}^{n} \frac{C'}{k^{3-\alpha} \log \alpha k} \leq C \|f\|_1.
 \]

- \(h_n = \sum_{1}^{n} \frac{1}{k^2} (\sum_{-k}^{k} |a_j T^j f|) \uparrow h \) with \(\int h_n \leq C \|f\|_1 \); hence, by the MCT, \(\int |R_n| \leq \int h_n \uparrow \int h \leq C \|f\|_1 \).

- Markov’s inequality \(\Rightarrow \mu(\{ \sup_n |R_n| > \lambda \}) \leq \frac{C}{\lambda} \|f\|_1 \); and hence, we have the weak \((1,1)\) maximal inequality for \(H_a f \).
Proof of Theorem.1 (Sketch)

- By Abel’s partial summation, for \(f \in L_1 \),
 \[
 \sum_{-n}^{n} a_k T_k f = R_n + \frac{1}{n} (S_n - S_{-n}),
 \]
 where \(R_n = \sum_{1}^{n-1} \frac{S_k - S_{-k}}{k(k+1)} \)
 and \(S_{\pm j} = \sum_{1}^{j} a_{\pm i} T_{\pm i} f \).
 We have weak \((1,1)\) maximal inequality for \(\frac{1}{n} S_{\pm j} \).

- Since \(f \in L_1 \) and \(a \in M_\alpha \), it follows that
 \[
 \int |R_n| \leq \|f\|_1 \sum_{2}^{n} \frac{C'}{k^{3-\alpha} \log \alpha k} \leq C \|f\|_1.
 \]

- \(h_n = \sum_{1}^{n} \frac{1}{k^2} (\sum_{-k}^{k} |a_j| |T_j f|) \uparrow h \) with \(\int h_n \leq C \|f\|_1 \); hence, by the MCT, \(\int |R_n| \leq \int h_n \uparrow \int h \leq C \|f\|_1 \).

- Markov’s inequality \(\Rightarrow \) \(\mu(\sup_n |R_n| > \lambda) \leq \frac{C}{\lambda} \|f\|_1 \); and hence, we have the weak \((1,1)\) maximal inequality for \(H_a f \).

- For any \(f \in L_\infty \), \(H_a f \) exists. Hence, the Banach Principle implies the assertion.
Bounded Besicovitch Sequences

Recall: There are bounded Besicovitch sequences that are not good for the eHt.
Bounded Besicovitch Sequences

Recall: There are bounded Besicovitch sequences that are not good for the eHt.

Theorem (Lacey-Terwilleger, 2008)

If $f \in L_p$, $1 < p < \infty$, then there is a set $X_f \subset X$ of probability one such that for all $x \in X_f$

$$
\lim_{n} \sum_{k=-n}^{n} \frac{\lambda^k \mathcal{T}^k f(x)}{k}
$$

exists for all $|\lambda| = 1$.
Bounded Besicovitch Sequences

Recall: There are bounded Besicovitch sequences that are not good for the eHt.

Theorem (Lacey-Terwilleger, 2008)

If \(f \in L_p, \ 1 < p < \infty \), then there is a set \(X_f \subset X \) of probability one such that for all \(x \in X_f \)

\[
\lim_{n} \sum_{k=-n}^{n} \frac{\lambda^k T^k f(x)}{k} \quad \text{exists for all} \quad |\lambda| = 1.
\]

Let \(\mathcal{W} \) denote the class of sequences induced by bounded trigonometric polynomials. Hence, if \(w \in \mathcal{W} \) then it is universally \(L_p \)-good, \(1 < p < \infty \).
Definition

For $1 < \alpha \leq 2$, let $AB_\alpha = \{a \in l_\infty : \exists w \in W \; \exists a - w \in A_\alpha\}$.

Note: If $a \in l_\infty$ with $\sum_{n} \sum_{k} (a_k - w_k) T_k f_k$ converges a.e. by Theorem 2. This fact, combined with Lacey-Terwilleger Theorem, gives...
Definition

For $1 < \alpha \leq 2$, let $AB_\alpha = \{a \in l_\infty : \exists w \in W \ni a - w \in A_\alpha\}$.

Note: If $a \in l_\infty$ with $\sum_{k=-n}^{n} |a_k - w_k| = O(n^\beta)$ for some $w \in W$ and $0 < \beta < 1$ (which are good in L_1 for the eHt [Ç, 2009]), then $a - w \in A_\alpha$, $1 < \alpha \leq 2$.
Definition

For $1 < \alpha \leq 2$, let $AB_\alpha = \{a \in l_\infty : \exists w \in W \ni a - w \in A_\alpha\}$.

Note: If $a \in l_\infty$ with $\sum_{k=-n}^{n} |a_k - w_k| = O(n^\beta)$ for some $w \in W$ and $0 < \beta < 1$ (which are good in L_1 for the eHt [Ç, 2009]), then $a - w \in A_\alpha$, $1 < \alpha \leq 2$.

Non-symmetric sequences case:

Let $a \in AB_\alpha$ be a non-symmetric sequence (a is called symmetric if $a_k = a_{-k}$, $k \geq 1$) and let $w = \{w_k\}$ be a trigonometric polynomial such that $a - w \in AB_\alpha$. Now, $a_k = a_{k} - w_k + w_k$, and $\left\{ \sum_{n=1}^{n} \frac{(a_k - w_k)T_k}{k} \right\}_n$ converges a.e. by Theorem.2. This fact, combined with Lacey-Terwilleger Theorem, gives
Corollary

If $a \in AB_\alpha$ is non-symmetric, then it is universally L_p-good for the eHt, $2 \leq p < \infty$.
Corollary

If \(a \in AB_\alpha \) is non-symmetric, then it is universally \(L_p \)-good for the eHt, \(2 \leq p < \infty \).

Symmetric sequences case:

If \(w = \{ |\lambda|^k \} \), \(|\lambda| = 1 \), is a non-constant (symmetric) sequence, then there exists an irrational rotation \((\mathbb{T}, T)\) and \(f \in L_1(X) \) such that \(\sum_{-n}^{n} -\frac{\lambda^{|k|}T^kf}{k} \) diverges a.e.
Corollary

If \(a \in AB_\alpha \) is non-symmetric, then it is universally \(L_p \)-good for the eHt, \(2 \leq p < \infty \).

Symmetric sequences case:

If \(w = \{\lambda|k| \} \), \(|\lambda| = 1 \), is a non-constant (symmetric) sequence, then there exists an irrational rotation \((\mathbb{T}, T)\) and \(f \in L_1(X) \) such that \(\sum_{-n}^{n} \lambda|k| T^k f \) diverges a.e.

If \((X, \Sigma, \mu, T)\) is ergodic, then \(L_2(X) = \kappa \oplus \kappa^\perp \), where \(\kappa \) is the Kronecker factor. Hence, for a bounded Besicovitch sequence \(a \) and an i.e.m.p. system with \(\{f \in L_2 : Tf = f \} \subset \kappa \) properly, if \(\lambda \in \sigma(a) \cap \sigma(T) \), then \(\lim_n \sum_{-n}^{n} \lambda|k| T^k f \) need not exist a.e.
Let \mathcal{F} denote the class of weakly mixing i.m.p. systems. Any $T \in \mathcal{F}$ has continuous spectrum; hence, $\kappa = \{ f \in L_2 : Tf = f \}$. Therefore, if T is weakly mixing, $\lim_{n} \sum_{-n}^{n} \frac{\lambda |k| T^k f}{k}$ exists a.e. for any $f \in \kappa$. Furthermore,
Let \mathcal{F} denote the class of weakly mixing i.m.p. systems. Any $T \in \mathcal{F}$ has continuous spectrum; hence, $\kappa = \{ f \in L_2 : Tf = f \}$. Therefore, if T is weakly mixing, $\lim_n \sum_{-n}^{n} \frac{\lambda |k| T^k f}{k}$ exists a.e. for any $f \in \kappa$. Furthermore,

Theorem 3

If $a \in AB_\alpha$ is a symmetric sequence, then it is universally L_2-good for the eHt in the class \mathcal{F}.
Let \mathcal{L} denote the class of i.m.p. systems having Lebesgue spectrum. Hence, the spectral measure of any non-constant $f \in L_2$ is absolutely continuous w.r.t. the Lebesgue measure.
Let \(\mathcal{L} \) denote the class of i.m.p. systems having Lebesgue spectrum. Hence, the spectral measure of any non-constant \(f \in L_2 \) is absolutely continuous w.r.t. the Lebesgue measure.

Theorem 4

Let \(T \in \mathcal{L} \) and \(a \) be a symmetric bounded sequence which is universally \(L_2 \)-good (for the ergodic averages). Then \(a \) is universally \(L_2 \)-good for the eHt in the class \(\mathcal{L} \).
Let \mathcal{L} denote the class of i.m.p. systems having Lebesgue spectrum. Hence, the spectral measure of any non-constant $f \in L_2$ is absolutely continuous w.r.t. the Lebesgue measure.

Theorem 4

Let $T \in \mathcal{L}$ and a be a symmetric bounded sequence which is universally L_2-good (for the ergodic averages). Then a is universally L_2-good for the eHt in the class \mathcal{L}.

Remark. There are uniform sequences which are not good for the eHt.