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Chapter 1

Warm Up

The notation N,Z,Q,R,C refer to the natural numbers, the integers, the rational
numbers, the real numbers and the complex numbers respectively.

Let f : A −→ B and g : B −→ C be functions. We define im(f) = f(A) =
{b ∈ B|b = f(a), a ∈ A}. If D ⊆ B then f−1(D) = {a ∈ A|f(a) ∈ D}. This is
called the preimage of D (under f). If b ∈ B then f−1(b) is called the fiber of f
over b. The composite function g ◦ f is defined by (g ◦ f)(a) = g(f(a)). Recall
the following:

1. f is one to one or injective if f(a1) = f(a2) =⇒ a1 = a2.

2. f is onto or surjective if im(f) = B.

3. f is bijective if both f is both injective and surjective.

4. f has a left (resp. right) inverse if there is an h : B −→ A such that such
that h ◦ f = 1A (resp. f ◦ h = 1B).

Proposition 1.0.1. Let F : A −→ B.

1. f is one to one if and only if f has a left inverse.

2. f is onto if and only if f has a right inverse.

3. f is bijective if and only if there is a g : B −→ A such that f ◦ g = 1B and
g ◦ f = 1A.

4. If |A| = |B| <∞ then f : A −→ B is bijective if and only if f is surjective
if and only if f is injective.

Definition 1.0.2. Let A be a nonempty set.

a) A binary realtion on A is a subset R ⊆ A × A and we write a ∼ b if and
only if (a, b) ∈ R.

b) ∼ is said to be
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4 CHAPTER 1. WARM UP

1. Reflexive if a ∼ a for all a ∈ A.

2. Symmetric if a ∼ b implies b ∼ a for all a, b ∈ A.

3. Transitive if a ∼ b and b ∼ c then a ∼ c for all a, b, c ∈ A.

c) If ∼ is symmetric, reflexive and transistive, then we say that ∼ is an
equivalence relation.

d) If ∼ is an equivalence relation then the equivalence class of a ∈ A is
{x ∈ A|x ∼ a}.

e) A partition of the set A is a collection {Ai} of subsets of A such that
A =

⋃
iAi and Ai

⋂
Aj = ∅ is i 6= j.

Example 1.0.3. Consider the partitions of the ordinary integers Z (or even
Zn).

Proposition 1.0.4. Let A be a nonempty set.

• If ∼ is an equivalence relation then the set of equivalence classes form a
partition of A.

• If the subsets Ai of A form a partition, then there is a an equivalence
relation on A such that the sets Ai form the equivalence classes.

Here are some familiar and useful properties of the integers Z.

Proposition 1.0.5. Let Z denote the integers.

a) If ∅ 6= A ⊂ Z+ then A has a least element.

b) If a, b ∈ Z, a 6= 0 then we say that a|b if there is a c ∈ Z such that b = ac.

c) Given any nonzero a, b ∈ Z, there is a d ∈ Z (greatest common divisor or
gcd) such that d|a and d|b and if d′ is another common divisor of a and b
then d′|d.

d) Given any nonzero a, b ∈ Z, there is an m ∈ Z (least common multiple of
lcm) such that a|m and b|m and if m′ is another common multiple of a
and b then m|m′.

e) Let d = gcd(a, b) and m = lcm(a, b), then ab = dm.

f) Given nonzero a, b ∈ Z, then there exist q, r ∈ Z with 0 ≤ r < |b| and
a = qb+ r.

g) Let d = gcd(a, b), then there exists x, y ∈ Z such that d = ax+ by.

h) (Fundmental Theorem of Arithmetic) If n ≥ 2 is a natural number, then
n can be expressed uniquely as a product of positive integers.

Consider the following examples with an eye toward the previous result.

Example 1.0.6. Consider the structure on the sets Z/nZ and (Z/nZ)∗ with
“ordinary” addition and multiplication modulo n.



Chapter 2

Groups

2.1 The Basics

First some basic notions.

Definition 2.1.1. A binary operation ◦ on the nonempty set G is a function
G×G −→ G.

a) We say that ◦ is associative if g ◦ (h ◦ k) = (g ◦ h) ◦ k for all g, h, k ∈ G.

b) WE say that ◦ is commutative if g ◦ h = h ◦ g for all g, h ∈ G.

Example 2.1.2. Ordinary multiplication on the reals, addition on the reals,
matrix multiplication.

Definition 2.1.3. A group G is a nonempty set equipped with a binary operation
◦ such that

a) a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ G.

b) There exists e ∈ G such that e ◦ g = g ◦ e = g for all g ∈ G.

c) For all g ∈ G, there is an h ∈ G such that g ◦ h = h ◦ g = e.

From now on, we will suppress that ◦ notation and use juxtapostion to
denote the operation. If gh = hg for all g, h ∈ G, we say that G is abelian. If
|G| we say that G is finite.

Example 2.1.4. Z,Q,R,Q∗, the group of rearrangements on the Rubik’s cube,
C6, S3.

Theorem 2.1.5. Let G be a group.

a) e ∈ G is unique.

b) for all a ∈ G, a−1 is unique.
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6 CHAPTER 2. GROUPS

c) (a−1)−1 = a for all a ∈ G.

d) (ab)−1 = b−1a−1 for all a, b ∈ G.

Definition 2.1.6. Let G be a group, we define the order of G (|G|) to be the
order of the underlying set G.

Example 2.1.7. |Zn| = n.

Definition 2.1.8. Let G be a group.

a) If a ∈ G then ◦(a) = |a| = min{n ∈ Z+|an = e} (and is said to be ∞ if
no such n exists).

b) The exponent of G (exp(G)) is the smallest positive integers n such that
an = e for all a ∈ G.

2.2 Standard Examples

Here we present some classes of examples of groups.
Dihedral Groups

The dihedral group may be thought of as the group of symmetries on the
n−gon (n > 2). All possible symmetries are generated by superpositions of a
rotation of 2π

n and a flip over the y−axis. If we denote the rotation by r and
the flip by s, one can see geometrically that rn = e = s2 and that srs = r−1.
This is often written as the presentation

Dn = 〈r, s|rn = s2 = e, srs = r−1〉.

Symmetric Groups
Symmetric groups may be considered the most important example here. We

will study these more carefully later and we will also show that any group may
be realized as a subgroup of a symmetric group. Fro now, we will outline what
the symmetric groups are.

Let A be a set, we let SA = {f : A −→ A|f is bijective.}. Note that
the bijectivity is important to ensure that ever element has an inverse. For
convenience of notation we denote by the cycle

(a1 a2 · · · an)

the function that takes ai to ai+1 and an to a1. It can be shown that every
element fo Sn can be written as a product of disjoint cycles.

The operation here is function composition. For instance, we have

(1 2 5 6 4)(2 1 4 5)(1 3)(4 3)(3 6 2) = (1 3 4)(2 6)(5)

It is fairly easy to show that if n ≥ 3 then Sn is nonabelian, and that disjoint
cycles commute. We will look more deeply at Sn later.

Matrix Groups
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First we recall that a field (F) is a set with two binary operations (+, ·) such
that (F,+) and (F \ {0}, ·) are abelian groups and the operations come together
through the distributive property

a(b+ c) = ab+ ac, for all a, b, c ∈ F.

A fact that we will show later is that if F is a finite field, then |F| = pn where
p is a positive prime number. We introduce the following notation

1. Mn(F) is the collection of n× n matrices over F

2. GLn(F) is the collection of n×n matrices over F with nonzero determinant.

3. SLn(F) is the collection of n× n matrices over F with determinant 1

Note that the first is a group under matrix addition and the next two are
groups under matrix multiplication.

Theorem 2.2.1. If F is a finite field with q = pm elements, then

|GLn(F)| = (qn − 1)(qn − q) · · · (qn − qn−1)

Proof. Let M ∈ GLn(F). Think of building M constructively, row-by-row. This
first row can be any n− vector over F except the zero vector. The second row
can be any vector not in the span of the first vector (so there are qn−q choices).
The third row can be any vector that is not in the span of the first two rows
(leaving qn − q2 choices). Continuing this gives the desired result.

The Group of Quaternions

The group of quaternions has some interesting connections with physics.
The group is given by

Q8 = {1,−1, i,−i, j,−j, k,−k}

with the relations i2 = j2 = k2 = −1, ij = k, jk = i, ki− j.

2.3 Morphisms

Morphisms are fuctions with algebraic structure. Morphisms are the key tools
for comparing algebraic strutures. For example, Z2 × Z2 and Z4 are sets of the
same size, but group-theoretically, they are different.

Definition 2.3.1. Let (G, ◦) and (H, ∗) be groups. A function φ : G −→ H
such that φ(x ◦ y) = φ(x) ∗ φ(y) for all x, y ∈ G is called a homomorphism of
groups.
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If φ : G −→ H is a homomorphism of groups, we say that φ is injective or a
monomorphism if φ is one to one, we say that φ is an epimorphism or surjective
if phi is onto. A homomorphism that is bijective is called an ispmorphism.

Given any group, G, the identity map from G to itself is an isomorphism.
The map φ : G −→ e is surjective. The exponential and natural logarithm map
are isomorphisms between the additive group of the reals and the multiplicative
group of positive reals.

Example 2.3.2. Consider the isomorphism between D3 and S3 that takes the
rotation r to (1 2 3) and the flip s to (2 3).

Theorem 2.3.3. Let φ : G −→ H be a homomorphism.

a) φ(1G) = 1H .

b) φ(xn) = (φ(x))n and φ(x−1) = (φ(x))−1.

c) If |x| = n < ∞ then |φ(x)| divides |x| (and we have equality if φ is an
isomorphism).

d) If φ is an isomorphism then |G| = |H|.

e) If φ is an isomorphism then G is abelian if and only if H is abelian.

Proof. Exercise.



Chapter 3

Subgroups

3.1 Preliminaries

Subgroups are smaller groups within an existing group. Much about the parent
group can be gleaned from understanding its subgroups. At the same time,
knowing the subgroups of a given groups is often quite important. For exam-
ple, understanding the subgroups of the Rubik’s group is important in finding
optimal solutions. Additionally, algebraic objects can often be associated to ge-
ometric structures (and vice versa) and subgroups may correspond to important
geometric subobjects.

Definition 3.1.1. Let G be a group. H ⊆ G is called a subgroup if H is a
group in its own right (with operation inherited from G).

Proposition 3.1.2. H ⊆ G is a subgroup if and only if for all x, y ∈ H,xy−1 ∈
H.

Proof. One direction (if H is a subgroup) is pretty clear. So suppose that for
all x, y ∈ H we have that xy−1 ∈ H. Since x, x ∈ H, xx−1 = e ∈ H. Now since
e ∈ H, we have that ex−1 = x−1 ∈ H. Finally note that if x, y ∈ H, we have
shown that y−1 ∈ H. So we have that x(y−1)−1 = xy ∈ H.

Example 3.1.3. Z ⊆ Q. Also note that Dn can be realized as a subgroup of
Sn.

We now introduce some concepts that we will study more extensively later.
Its utility at this juncture is to give interesting examples of subgroups. First we
define a normal subgroup.

Definition 3.1.4. Let N be a subgroup of G. We say that N is normal in G if
g−1Ng = N for all g ∈ G.

Example 3.1.5. For example, the subgroup of order 3 is normal in S3 but no
subgroup of order 2 is.
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And now the concept of group actions.

Definition 3.1.6. A group action of the group G on the set A is a map G ×
A −→ A (written g · a) such that

a) g1 · (g2 · a) = (g1g2) · a, g1, g2 ∈ G, a ∈ A.

b) e · a = a for all a ∈ A.

Perhaps the easiest example of a group acting on a set is for a group G to act
on itself by left multiplication. Invertible matrices acting on Rn is an example
that you may have encountered in a linear algebra course.

Definition 3.1.7. Let A ⊆ G be a nonempty subset.

a) CG(A) = {g ∈ G|g−1ag = a,∀a ∈ A}, the centralizer of A in G.

b) Z(G) = {g ∈ G|gx = xg,∀x ∈ G}, the center of G.

c) NG(A) = {g ∈ G|g−1Ag = A} = {g ∈ G|g−1ag ∈ A,∀a ∈ A}, the
normalizer of A in G.

Note that it is immediate that both CG(A) and NG(A) are groups and
CG(A) ⊆ NG(A). WE record the following.

Theorem 3.1.8. CG(A) ⊆ NG(A) are subgroups of G as us Z(G) = CG(G).

Proof. Exercise.

Theorem 3.1.9. Let G act on the set S. The following are subgroups of G.

a) Gs = {g ∈ G|gs = s} (the stabilizer of s).

b) K = {g ∈ G|gs = s,∀s ∈ S} (the kernal of the action).

Theorem 3.1.10. Let φ : G −→ H be a homomorphism. The follwoing are
subgroups.

a) ker(φ) = {g ∈ G|φ(g) = eH}.

b) im(φ) = {φ(g)|g ∈ G}.

As an exercise, show that NG(ker(φ)) = G (and note that ker(φ) is actually
a normal subgroup of G).

The next theorem is extremely useful from a practical point of view.

Theorem 3.1.11. If φ : G −→ H be a homomorphism of groups, then φ is one
to one if and only if ker(φ) = eH .

Proof. It is clear that if φ is one to one, then ker(φ) = eH . For the other
direction, suppose that ker(φ) = eH and suppose that φ(x) = φ(y), x, y ∈ G.
We now obtain

eH = (φ(x))−1φ(y) = φ(x−1)φ(y) = φ(x−1y)

and so x−1y ∈ ker(φ) = eH . Hence y = x and we are done.
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3.2 The Classification of Cyclic Groups

Cyclic groups are the groups that are generated by a single element. More
precisely, we give the following definition.

Definition 3.2.1. We say that G is cyclic if there is an x ∈ G such that

G = {xn|n ∈ Z}.

We say, in this case, that G = 〈x〉.
Note that G is not necessarily infinite, the above listed set may have an

enormous amount of repetition.

Example 3.2.2. Zn and Z are cyclic groups. And, in a certain sense, this list
is exhaustive.

Proposition 3.2.3. If G = 〈x〉 then |G| = |x|.

Proof. (Note that in any event, |G| ≥ |x| and 〈x〉 ⊆ G.) Suppose first that
G = 〈x〉 and G is finite. It suffices to show that |G| ≤ |x|. Since every element
of G is a power of x (say gk = xk), the map f : I −→ G (I is the collection
of positive integers less than or equal to |x|) is a surjection. This establishes
the proposition in the finite case. For the case where G is of infinite order, it is
clear that the generator x cannot be of finite order.

Proposition 3.2.4. Suppose G is a group, x ∈ G and m,n ∈ Z. If xm = 1 = xn

then xgcd(m,n) = 1.

Proof. We know that if d = gcd(m,n) then there exist a, b ∈ Z such that
am+ bn = d. Hence xd = xam+bn = (xm)a(xn)b = 1.

Theorem 3.2.5. Any two cyclic groups of the same order are isomorphic.

Proof. (Sketch) If G = 〈x〉 is of infinite order, then the map n −→ xn from Z to
G is an isomorphism. USe the previous result to establish the finite case.

Theorem 3.2.6. Let G be a group and x ∈ G of order n ≤ ∞.

a) If n =∞ then |xa| =∞ for all a 6= 0.

b) If n <∞ then |xa| = n
gcd(a,n) .

Proof. If xa has finite order, it is easy to see that x has finite order. Now let
d = gcd(a, n). (xa)

n
d = 1 since d|a. Now suppose that (xa)k = 1. Certainly

ak = mn and writing a = da′ and n = dn′ with gcd(a′, n′) = 1. We now have
a′k = mn′ and hence a′|m. We conclude that k = m

a′
n
d is an integer multiple of

n
d . So this means that the order of xa is a multiple of n

d and we are done.

Theorem 3.2.7. Let H = 〈x〉.

a) If |x| =∞ then H = 〈xa〉 if and only if a = ±1.
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b) If |x| = n <∞ then H = 〈xa〉 if and only if gcd(a, n) = 1.

Proof. Exercise.

Theorem 3.2.8. Let G be a cyclic group.

a) If H ⊆ G is a subgroup, then H is cyclic.

b) If φ : G −→ H is onto, then H is cyclic.

c) If |G| = n <∞ then for all m|n there is a unique subgroup of G of order
m.

Proof. a) Let H ⊆ G = 〈x〉 be a nontrivial subgroup. Consider {n ∈ N|xn ∈ H}.
Since H is a subgroup of G, this set in nonempty and hence has a least element
(sa d). We claim that H is generated by xd. Since 〈xd〉 is clearly contained
in H, we merely need to show that other containment. To this end, suppose
that h ∈ H. Since G is cyclic, h = xm and we will assume WLOG that
m > 0. Writing m = qd + r with 0 ≤ r < m. If r 6= 0, we have that
xr = (xm)((xd)m)−1 ∈ H which contradicts the minimality of d and we have
established the claim.

For b), let x be the generator of G. Verify that φ(x) is the generator for H
(the surjectivity of φ is important here.

For c), suppose that n = mk. Notice that the order of the subgroup gener-
ated by xk is precisely m. It suffices to show that this is the only subgroup of
order m. Suppose there is another group of order m (necessarily cyclic). We
call this subgroup H = 〈xa〉. By the above, the order of |xa| = |H| is given
by n

gcd(a,n) = m. Since m = n
gcd(k,n) , we have that d := gcd(a, n) = gcd(k, n).

Since there are integers r, s such that ra+ sn = d, we have that

xd = (xa)r(xn)s = xar ∈ H
and since d|k we have that xk ∈ H. Hence 〈xk〉 ⊆ H and since they both have
order m, we must have equality. This establishes the theorem.

We now make some last observations of this chapter.

Proposition 3.2.9. If {Hi}i∈Λ is a collection of subgroups of G, then
⋂
i∈ΛHi ⊆

G is a subgroup of G

Proof. Exercise.

Proposition 3.2.10. If A is a subset of G, then we define

〈A〉 =
⋂
H

where H ranges over the subgroups of G containing A.

Another way to think of 〈A〉 is as the collection of all “words” that can be
formed from the “letters” a and a−1 where a ∈ A.

Example 3.2.11. Draw a lattice representing the subgroups of D4, Z4, Z2×Z2,
and S3
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Quotient Groups and
Homomorphisms

4.1 Normality and Quotients

We begin with the definition of normal subgroup.

Definition 4.1.1. Let N ≤ G, we say that N is a normal subgroup of G (N�G)
if g−1Ng = N for all g ∈ G (equivalently NG(N) = G).

Note N �G if and only if g−1ng ∈ N for all g ∈ G.

Example 4.1.2. Find all the subgroups of S3 and determine which are normal.

Proposition 4.1.3. If G is abelian and H ⊆ G then H �G.

Proof. Exercise.

Proposition 4.1.4. Let φ : G −→ H be a homomorphism, then ker(φ) �G.

Proof. Let k ∈ ker(φ) and x ∈ G. φ(x−1kx) = (φ(x))−1φ(k)φ(x) = eH . Hence
x−1kx ∈ ker(φ) and we are done.

Definition 4.1.5. Let H ⊆ G be a subgroup. We define a left (resp. right)
coset of H is G via

gH = {gh|h ∈ H} (resp. Hg = {hg|h ∈ H}.

Any element of a left (resp. right) coset is called a representative of the
coset.

Example 4.1.6. Consider 2Z ⊆ Z. There are precisely two left (right) cosets.
Also this subgroup is normal. If we consider the subgroup of order 3 in S3, it
is normal and its left and right cosets coincide (as sets). Contrast this with a
subgroup of order 2. In this second case, the left (right) cosets again partition
S3 but they do not coincide.

13



14 CHAPTER 4. QUOTIENT GROUPS AND HOMOMORPHISMS

Theorem 4.1.7. Let H ⊆ G. The collection of left (right) cosets of H in G
forms a partition of G. More precisely,

G =
⋃
g∈G

gH

and if giH
⋂
gjH 6= ∅ then giH = gjH.

Proof. Since g ∈ G and H ⊆ G, each gH ⊆ G and hence G ⊇
⋃
g∈G gH. For

the other containment, note that for all g ∈ G, g ∈ gH. So G ⊆
⋃
g∈G gH.

To see the other statement, suppose that xH
⋂
yH 6= ∅, that is let z ∈

xH
⋂
yH. We write z = xh1 = yh2 and hence y = xh1h

−1
2 . Now let yh ∈ yH

be arbitrary. Since yh = xh1h
−1
2 h, we have that yH ⊆ xH. By a symmetric

argument we obtain the other containment and hence xH = yH.

Proposition 4.1.8. Let H ⊆ G be a subgroup and x, y ∈ G, then xH = yH if
and only if y−1x ∈ H (so xH = yH if and only if x and y represent the same
coset).

Proof. (=⇒) Suppose first that xH = yH. Hence there exist h1, h2 ∈ H such
that xh1 = yh2. Hence y−1x = h2h

−1
1 ∈ H.

(⇐=) Since y−1x = h ∈ H, we have that x = yh. If xh1 ∈ xH, then
observe that xh1 = yhh1 ∈ yH. Additionally, if yh1 ∈ yH, we see that yh1 =
yhh−1h1 = xh−1h1 ∈ xH. This establishes the result.

Proposition 4.1.9. Let G be a group and N a subgroup of G. N � G if and
only if gN = Ng for all g ∈ G (that is, left cosets are right cosets).

Proof. (=⇒) Recall that N = g−1Ng. Let ng ∈ Ng. Since g−1ng = n1 ∈ N ,
ng = gn1 ∈ gN . The other containment is similar.

(⇐=) Given that gN = Ng, we must show that g−1ng ∈ N . By assumption,
we have that ng = gn1 and hence, g−1ng = n1 ∈ N .

The next result is fundamental in the study of groups.

Proposition 4.1.10. Let N �G and let G/N := {gN |g ∈ G} denote the set of
left (right) cosets of N in G. The binary operation defined by

(g1N)(g2N) = (g1g2)N

makes G/N into a group (quotient or factor group).

Proof. We must first show that this binary operation is well defined. To this end,
suppose that x1, x2 ∈ xN and that y1, y2 ∈ yN . We need to show that x1y1N =
x2y2N , and by an earlier result, we merely need to show that (x2y2)−1(x1y1) ∈
N . By assumption, we have that x1 = xa, x2 = xb, y1 = yc, y2 = yd with
a, b, c, d ∈ N . Hence we have that

(x2y2)−1(x1y1) = d1y−1b−1x−1xayc = d1y−1b−1ayc ∈ N
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since N is normal. So this operation is well-defined. With this in hand it is
easy to show that G/N is a group (with identity eN , and the inverse of xN is
x−1N).

The next result really ties the room together.

Theorem 4.1.11. The following conditions are equivalent.

a) N �G.

b) NG(N) = G.

c) gN = Ng for all g ∈ G.

d) G/N is a group.

Proposition 4.1.12. N is normal in G if and only if there is a homomorphism
φ on G such that N = ker(φ).

Proof. Exercise, consider the canonical homomorphism φ : G −→ G/N .

4.2 Counting Corollaries and Lagrange’s Theo-
rem

We first recall the fact that if H ⊆ G is a subgroup, then G is partitioned by
the (left) cosets of H in G. We introduce a famous theorem due to Lagrange.

Theorem 4.2.1. If G is finite and H ⊆ G, then |H| divides |G| and the quotient
is the number of (left) cosets of H in G.

We first remark that parts of this theorem goes through in the infinite case.

Proof. We have already established that the collection of (left) cosets of H forms
a partition of G. Noting that |gH| = |H| for all g ∈ G, and

⋃
g∈G gH = G, we

see that if k denotes the number of left cosets of H in G, then |G| = k|H|.

We denote the number of (left) cosets of H in G be |G : H|.

Example 4.2.2. |Z : nZ| = n if n > 0. What happens if n = 0?

Corollary 4.2.3. If G is a finite group and x ∈ G then |x| divides |G|.

Corollary 4.2.4. If |G| = p, where p is prime, then G ∼= Z/pZ.

Here is a very important and famous theorem due to Cauchy.

Theorem 4.2.5. If |G| = n < ∞ and p|n then there exists x ∈ G such that
|x| = p.
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Proof. We write G multiplicatively and let

S = {(x1, x2, · · · , xp)|xi ∈ G, x1x2 · · ·xp = 1}.

Note that |S| = |G|p−1 = np−1 (since the first p− 1 elements can be chosen
at will and the last one is “forced”). Hence p divides |S|.

On the set S we say that a ∼ b if b is a cyclic permutation of a (e.g.
a = (x1, x2, · · · , xp) and b = (xi, xi+1, · · · , xp, x1, x2, · · · , xi−1)). (Show that ∼
is an equivalence relation.

Notice that if


