MATH 165

FALL 2003
EXAM 1

1. (30 pt) Evaluate the following limits if they exist.
a) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{3}+x-10}$
b) $\lim _{x \rightarrow-\infty} \frac{\sqrt[3]{x^{6}-1}}{\sqrt{2 x^{4}+3 x}}$
c) $\lim _{x \rightarrow 0} x^{2} \tan ^{-1}\left(\frac{1}{x}\right)$
d) $\lim _{h \rightarrow 0} \frac{h}{\sqrt[4]{16+h}-2}$
e) $\lim _{\theta \rightarrow \pi} \frac{\sin (\theta)}{\theta}$
2. (30 pt) Find the derivative for each of the following functions.
a) $f(x)=x^{6}+2 x+e^{2 x}+2 e^{x}+2$
b) $g(x)=x^{2} e^{x} F(x)$
c) $k(x)=\frac{e^{x}+x^{2}}{e^{x}-x}$
d) $h(x)=\frac{x^{2} e^{x}}{x^{2}-1}$
e) $T(x)=\frac{G(x) H(x) K(x)}{(G(x))^{2}+1}$
3. (15 pt) Use the definition of the derivative to find the derivative of the function $f(x)=e^{a x}$. You may use the fact that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
4. (8 pt) Suppose that the tangent line to the function $f(x)$ at $x=0$ is $y=2 x+4$ and the tangent line to $g(x)$ at $x=0$ is $y=3 x+1$. Find

$$
\lim _{h \rightarrow 0} \frac{f(h)-4 g(h)}{h g(h)} .
$$

(Hint: Divide top and bottom by $g(h)$ and try to rework this as a quotient rule.)
5. (5 pt) We saw in class that the $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist. Give an appropriate value of ϵ (epsilon) that would justify this (and explain why your choice works).
6. (6 pt) Suppose that $f(x)$ is a one to one function that is differentiable everywhere. Suppose that the derivative of $f^{-1}(x)$ exists everywhere except at the point $(2,3)$. Find the tangent line to the function $f(x)$ at $(3,2)$.
7. (16 pt) Consider the following function.

$$
f(x)= \begin{cases}a x^{2}+a x & \text { if } x<1 \\ -a^{2} x & \text { if } x \geq 1\end{cases}
$$

a) For what value(s) of a, if any, is $f(x)$ continous everywhere?
b) For what value(s) of a, if any, if $f(x)$ differentiable everywhere?

