1. (36 pt) Evaluate the following limits if they exist.
a) $\lim _{x \rightarrow 1} \frac{x^{3}-4 x+3}{x^{3}+x^{2}-2}$
b) $\lim _{x \rightarrow-\infty} \frac{\sqrt[3]{x^{3}+2 x+2}}{4 x+5}$
c) $\lim _{x \rightarrow 0} f\left(\frac{1}{x}\right) \sin (x),(|f(x)| \leq 2$ for all x.
d) $\lim _{x \rightarrow-2} \tan \left(\frac{x+2}{x^{2}-4}\right)$
e) $\lim _{h \rightarrow 0} \frac{\sqrt[5]{2 x+2 h}-\sqrt[5]{2 x}}{h}$
f) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+a x}-\sqrt{x^{2}+b x}\right)$
2. (21 pt) Find the derivative for each of the following functions (in part c, F, G, H and K are differentiable).
a) $f(x)=\frac{x^{5}-2 x^{3}-x+1}{x}$
b) $g(x)=\sqrt[3]{x} e^{2 x}$
c) $k(x)=\frac{e^{x} F(x) G(x)}{(H(x))^{2}-K(x)+1}$
3. (12 pt) Use the definition of the derivative to find the derivative of the function $f(x)=\sqrt{x^{2}+1}$.
4. (8 pt) Suppose that $f(x)$ is a differentiable function and let $F(x)=f\left(\frac{1}{x}\right)$. Use the definition of the derivative to find $F^{\prime}(x)$. (Hint: after you set this up, multiply the top and bottom by $\frac{1}{x+h}-\frac{1}{x}$.)
5. (11 pt) Sketch the pictured function in your exam book and use this to sketch a graph of its derivative.

6. (10 pt) Consider the function

$$
f(x)= \begin{cases}a x+b & \text { if } x \geq 0 \\ b x^{2}+a x & \text { if } x<0\end{cases}
$$

a) Find value(s) of a and b (if any) such that $f(x)$ is continuous everywhere (and explain your answer).
b) Find value(s) of a and b (if any) such that $f(x)$ is differentiable everywhere (and explain your answer).
7. (12 pt) Consider the function $f(x)= \begin{cases}|x| \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{cases}$
a) Explain why $f(x)$ is continuous at 0 .
b) Explain why $f(x)$ is continuous everywhere.
c) Explain why you cannot really "draw" an accurate picture of the graph of $y=f(x)$.

