MATH 165 FALL 2006 EXAM 1

1. (36 pt) Evaluate the following limits.

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x^3 - 27}$$
 b)
$$\lim_{x \to -\infty} \frac{1 - x}{\sqrt{x^2 + 3}}$$
 c)
$$\lim_{x \to \infty} (\sqrt{a^2 x^2 + bx} - (ax + c)), a > 0$$

d)
$$\lim_{t \to \infty} \frac{\sqrt[6]{64t^9 + t^8 + 2}}{\sqrt[4]{81t^6 + 43t^5 + 2}}$$
 e)
$$\lim_{h \to 0} \frac{\sqrt[45]{a + h} - \sqrt[45]{a}}{h}$$
 f)
$$\lim_{x \to 1} \ln(\tan(\frac{\sqrt{x} - 1}{x - 1}))$$

2. (28 pt) Find the derivative of each of the following functions.

a)
$$f(x) = \log_2(\tan(\tan^{-1}(2^x)))$$
 b) $g(x) = xe^{-x}F(x)$ c) $h(x) = \frac{\frac{e}{x+1}}{\frac{1}{x^2} + G(x)}$
d) $k(x) = \frac{s(x)}{x^5 + x^2 - 7}$, where $s'(x) = \sec(x)$

 $_{2}2x$

3. (9 pt) We say that a function is increasing if $x_1 < x_2$ implies that $f(x_1) < f(x_2)$ and decreasing if $x_1 < x_2$ implies that $f(x_1) > f(x_2)$. Show that if f(x) is continuous and one to one on $(-\infty, \infty)$, then f(x) is either increasing or decreasing (hint: use the intermediate value theorem).

- 4. (10 pt) Use the definition of the derivative to compute the derivative of the following functions.
 - a) $f(x) = e^{ax}, a \neq 0$ (hint: $\lim_{h \to 0} \frac{e^{h} 1}{h} = 1$). b) $g(x) = \frac{ax}{bx+c}$.
- 5. (6 pt) Consider the function

$$f(x) = \begin{cases} |x|, & \text{if } x \text{ is rational;} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

Show that $\lim_{x\to 0} f(x) = 0$.

- 6. (15 pt) Suppose that f(x) is continuous and one to one on $(-\infty, \infty)$.
 - a) Explain why $F(x) = e^{f(x)}$ is one to one and find $F^{-1}(x)$.
 - b) Explain why F(x) must have at least one horizontal asymptote (hint: problem 3).
 - c) Can F(x) have any vertical asymptotes? Why or why not?
- 7. (6 pt) Consider the function $f(x) = \sin^2(\tan^{-1}(x))$.

 - a) Show that $f(x) = \frac{x^2}{x^2+1}$. b) Find $\frac{d}{dx}(\sin^2(\tan^{-1}(x)))$.