MATH 165
 FALL 2006
 EXAM 1

1. $(36 \mathrm{pt})$ Evaluate the following limits.
a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{3}-27}$
b) $\lim _{x \rightarrow-\infty} \frac{1-x}{\sqrt{x^{2}+3}}$
c) $\lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2}+b x}-(a x+c)\right), a>0$
d) $\lim _{t \rightarrow \infty} \frac{\sqrt[6]{64 t^{9}+t^{8}+2}}{\sqrt[4]{81 t^{6}+43 t^{5}+2}}$
e) $\lim _{h \rightarrow 0} \frac{\sqrt[45]{a+h}-\sqrt[45]{a}}{h}$
f) $\lim _{x \rightarrow 1} \ln \left(\tan \left(\frac{\sqrt{x}-1}{x-1}\right)\right)$
2. $(28 \mathrm{pt})$ Find the derivative of each of the following functions.
a) $f(x)=\log _{2}\left(\tan \left(\tan ^{-1}\left(2^{x}\right)\right)\right.$
b) $g(x)=x e^{-x} F(x)$
c) $h(x)=\frac{\frac{e^{2 x}}{x+1}}{\frac{1}{x^{2}}+G(x)}$
d) $k(x)=\frac{s(x)}{x^{5}+x^{2}-7}$, where $s^{\prime}(x)=\sec (x)$
3. (9 pt) We say that a function is increasing if $x_{1}<x_{2}$ implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$ and decreasing if $x_{1}<x_{2}$ implies that $f\left(x_{1}\right)>f\left(x_{2}\right)$. Show that if $f(x)$ is continuous and one to one on $(-\infty, \infty)$, then $f(x)$ is either increasing or decreasing (hint: use the intermediate value theorem).
4. (10 pt) Use the definition of the derivative to compute the derivative of the following functions.
a) $f(x)=e^{a x}, a \neq 0$ (hint: $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$).
b) $g(x)=\frac{a x}{b x+c}$.
5. (6 pt) Consider the function

$$
f(x)= \begin{cases}|x|, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

Show that $\lim _{x \rightarrow 0} f(x)=0$.
6. (15 pt) Suppose that $f(x)$ is continuous and one to one on $(-\infty, \infty)$.
a) Explain why $F(x)=e^{f(x)}$ is one to one and find $F^{-1}(x)$.
b) Explain why $F(x)$ must have at least one horizontal asymptote (hint: problem 3).
c) Can $F(x)$ have any vertical asymptotes? Why or why not?
7. (6 pt) Consider the function $f(x)=\sin ^{2}\left(\tan ^{-1}(x)\right)$.
a) Show that $f(x)=\frac{x^{2}}{x^{2}+1}$.
b) Find $\frac{d}{d x}\left(\sin ^{2}\left(\tan ^{-1}(x)\right)\right)$.

