MATH 165
 FALL 2007
 EXAM 1

1. $(36 \mathrm{pt})$ Evaluate the following limits.
a) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}+x-5}{x-2}$
b) $\lim _{x \rightarrow 0} \frac{\tan (a x+1)}{\sin \left(b^{2} x+1\right)}$
c) $\lim _{x \rightarrow-\infty}\left(\frac{3 x \sqrt{x^{2}+1}}{2 x^{2}+x}\right)$
d) $\lim _{t \rightarrow 1} \sqrt{\frac{t^{3}-2 t+1}{t^{4}-1}}$
e) $\lim _{h \rightarrow 0} \frac{\tan \left(a^{2}+2 a h+h^{2}\right)-\tan \left(a^{2}\right)}{h}$
f) $\lim _{x \rightarrow 0} x \sin \left(g\left(\frac{1}{x}\right)\right)$
2. $(24 \mathrm{pt})$ Find the derivative of each of the following functions.
a) $f(x)=\frac{\sin (2 x)}{2 \tan (x)+1}$
b) $g(x)=e^{x^{2}} \sin (a x) \cos (b x)$
c) $h(x)=\frac{\sin \left(\sin \left(\sin \left(e^{\sin (x)}\right)\right)\right)}{x^{2}+1}$
d) $k(x)=\sqrt{1+\sqrt[3]{2+\sqrt[4]{x e^{x}}}}$
3. Let $f(x) \leq g(x) \leq h(x)$ be functions.
a) (5 pt) Write the $\delta-\epsilon$ definition of the meaning of the statement " $\lim _{x \rightarrow a} g(x)=L$ ".
b) (3 pt) Show use the $\delta-\epsilon$ definition to show that if $\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} g(x)=L$.
4. (12 pt) Use the definition of the derivative to compute the derivative of the following functions.
a) $f(x)=\frac{2 x}{x+1}$.
b) $g(x)=F(a x+b)$, where F is a differentiable function.
5. (8 pt) Find all possible tangent lines to the curve $f(x)=x^{3}+6 x^{2}+8$ that go through the point $(0,0)$.
6. (10 pt) Consider the function $f(x)=x^{\frac{1}{3}}$.
a) Where is this function differentiable? Geometrically explain why the derivative does not exist at the origin.
b) Suppose that the derivative of $g(x)$ does not exist at $x=a$. Does it follow that the derivative of $f(g(x))$ also does not exist at $x=a$?
7. (12 pt) A more realistic model of a falling ball (incorporating air resistance) might be

$$
s(t)=v_{T}\left(t+\frac{v_{T}}{g} e^{-\frac{g t}{v_{T}}}\right)-\frac{v_{T}^{2}}{g}
$$

where t is time, $s(t)$ is distance fallen, g is the constant acceleration due to gravity, and v_{T} is a constant called the terminal velocity.
a) Find the velocity, $v(t)$, of the falling ball and evaluate $\lim _{t \rightarrow \infty} v(t)$.
b) Find the acceleration, $a(t)$, of the falling fall and evaluate $\lim _{t \rightarrow \infty} a(t)$.

