1. $(36 \mathrm{pt})$ Evaluate the following limits.
a) $\lim _{x \rightarrow \infty} \frac{f(x) \sin (x)}{x^{2}+1}$, where $x \leq f(x) \leq 4 x$ if $x>0$.
b) $\lim _{\theta \rightarrow 0} \frac{\theta^{2}-\sin ^{2}(2 \theta)}{\tan ^{2}(3 \theta)}$
c) $\lim _{x \rightarrow-\infty} \frac{\sqrt[3]{2 x^{3}+3 x+1}}{4 x-5}$
d) $\lim _{h \rightarrow 0} \frac{(f(2 a+2 h))^{2}-2 f(2 a+2 h) f(2 a)+(f(2 a))^{2}}{h^{2}}$
e) $\lim _{x \rightarrow 2 \pi} \frac{\sin (x)}{x}$
f) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{e^{2 x}-1}$
2. (24 pt) Find the derivative of each of the following functions.
a) $f(x)=x^{2} e^{2 x} \sin (3 x)$
b) $g(x)=\frac{x e^{x}}{x^{2}-\sec (x)+1}$
c) $h(x)=\sin \left(x+\sin \left(x^{2}+e^{\left(x^{2} \tan (x)-\sin \left(x^{3}\right)\right)}\right)\right)$
d) $k(x)=f\left(f\left(x^{2}\right)\right) g(\sin (x))$
3. (10 pt) Use the definition of the derivative to find the derivative of the function $f(x)=\frac{1}{\sqrt{4 x+5}}$.
4. (10 pt) Consider the function

$$
f(x)=\left\{\begin{array}{l}
x^{2}, \text { if } x \text { is rational } \\
0, \text { if } x \text { is irrational. }
\end{array}\right.
$$

a) Find all points at which $f(x)$ is continuous (you may use the result of problem 7 if you wish).
b) Find all points at which $f(x)$ is differentiable.
5. (16 pt) One model for a falling object encountering air resistance is given by

$$
s(t)=\frac{g m}{k} t-\frac{c_{1} m}{k} e^{-\frac{k}{m} t}+c_{2}
$$

where g, m, k, c_{1}, c_{2} are all positive constants and $s(t)$ denotes the distance fallen after t seconds.
a) Find the velocity, $v(t)$, of the object.
b) Find the acceleration, $a(t)$, of the object.
c) Find $\lim _{t \rightarrow \infty} v(t)$.
d) Find $\lim _{t \rightarrow \infty} a(t)$.
6. (9 pt) Consider the function $f(x)=x^{2}$ and let (a, b) be a point in the plane. Find conditions on a and b such that:
a) There are no tangent lines to $f(x)=x^{2}$ that pass through (a, b).
b) There is precisely one tangent line to $f(x)=x^{2}$ that passes through (a, b).
c) There are two tangent lines to $f(x)=x^{2}$ that pass through (a, b).
7. (5 pt) State the precise definition of $\lim _{x \rightarrow a} f(x)=L$ and give an appropriate value of ϵ to demonstrate that $\lim _{x \rightarrow a} f(x)$ does not exist (where $a \neq 0$ and $f(x)$ is the function from problem $4)$.

