1. $(36 \mathrm{pt})$ Evaluate the following limits.
a) $\lim _{x \rightarrow 2} \sin \left(\sqrt[3]{\frac{x^{2}-4}{x^{3}-x^{2}-4}}\right)$
b) $\lim _{\theta \rightarrow 0} \frac{\tan (\sin (\theta))}{\sin (5 \theta)}$
c) $\lim _{x \rightarrow \infty} \frac{\lfloor a x+b\rfloor}{x}$
d) $\lim _{h \rightarrow 0} \frac{\sqrt[5]{32+h}-2}{h}$
e) $\lim _{x \rightarrow 0} \frac{|a x+b|-|a x-b|}{x}$
f) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+9}}$
2. $(24 \mathrm{pt})$ Find the derivative of each of the following functions.
a) $f(x)=\sin (x \sin (x \sin (x)))$
b) $g(x)=F(\sin (x)) G\left(e^{x^{2}}\right) H\left(\tan \left(x^{2} \sin (2 x)\right)\right)$
c) $h(x)=\frac{a x^{2}+b x+c}{A x+B}$
d) $k(x)=\sqrt{x-\sqrt[3]{\sin \left(x e^{x}+x^{4}\right)+\sqrt[4]{e^{x^{2}+x}+\tan (2 x+1)}}}$
3. (10 pt) Use the definition of the derivative to find the derivative of the function $f(x)=g(a x+b)$ where $g(x)$ is a differentiable function.
4. (10 pt) Consider the functions

$$
f(x)=\left\{\begin{array}{l}
x+1, \text { if } x \geq 0 \\
-x^{2}, \text { if } x<0
\end{array}\right.
$$

and

$$
g(x)=b^{2} x^{2}+b x+b^{2}
$$

Find all values of b such that $g(f(x))$ is continuous everywhere.
5. (16 pt) An object moves according to the position function $s(t)=\cos (3 t)+9 t+2$ (where $s(t)$ is in feet and t is in seconds).
a) Find a function that gives the velocity of the object at any time t.
b) What are the maximum and minimum values of the velocity?
c) Find a function that gives the acceleration of the object.
d) Find the smallest $t>0$ such that the acceleration at time t is 0 .
6. Consider the function $f(x)=\frac{x^{2}}{x+1}$.
a) $(5 \mathrm{pt})$ Find the tangent line to $f(x)$ at the point $\left(a, \frac{a^{2}}{a+1}\right)$.
b) (3 pt) What happens to the tangent line from the previous part as $a \longrightarrow \infty$?
7. (6 pt) State the precise definition of $\lim _{x \rightarrow a} f(x)=L$ and use this definition to show that $\lim _{x \rightarrow 0}|x|=0$.

