MATH 165

1. (30 pt) Evaluate the following limits:
a) $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+a x}\right)$
b) $\lim _{x \rightarrow-1} \frac{x^{2}+x}{x^{3}+2 x+3}$
c) $\lim _{h \rightarrow 0} \frac{\sqrt[5]{x+h}-\sqrt[5]{x}}{h}$
d) $\lim _{x \rightarrow-\infty} \frac{3 x+2}{\sqrt[6]{64 x^{6}+x^{2}+1}}$
e) $\lim _{x \rightarrow 1}|x-1| f\left(\frac{3}{x^{2}-1}\right)$, where $-9<f(x)<5$.
f) $\lim _{x \rightarrow 2} \sin \left(\tan ^{-1}\left(e^{\frac{x^{2}-4}{x-2}}\right)\right)$
2. (32 pt) Find the derivative for the following functions.
a) $f(x)=\sin \left(\sqrt{x+\sqrt{x+\sqrt{x^{3} \tan \left(x^{2}\right)}}}\right)$
b) $g(x)=\frac{x \sin \left(x^{6} e^{x^{3}}\right)}{\cos (x) \tan (2 x)+x^{4}}$
c) $h(x)=e^{x} e^{e^{x}} e^{e^{e^{x}}}$
d) $k(x)=f\left(g\left(f\left(e^{\sin (x)}\right)\right)\right) g\left(f\left(g\left(x^{2}\right)\right)\right)$
3. (8 pt) Consider the function

$$
f(x)=\sqrt[3]{x} \cos ^{2}\left(x^{4}\right)
$$

Use the precise definition of the limit to show that $\lim _{x \rightarrow 0} f(x)=0$.
4. (10 pt) Let $f(x)$ be a differentiable function. Use the definition of the derivative to find the derivative of the function $g(x)=f\left(x^{2}\right)$.
5. (12 pt) Consider the function $f(x)=3 x^{\frac{1}{3}}-x$.
a) Where is $f(x)$ continuous?
b) Where is $f(x)$ differentiable?
c) Where is $f^{\prime}(x)$ positive and where is it negative?
d) Use this information to sketch the graph of $f(x)$.
6. (12 pt) Let $a, b>0$ and consider the function given by

$$
f(x)=\left\{\begin{array}{l}
\frac{|a x|-|b x|}{x}, \text { if } x \neq 0 \\
c, \text { if } x=0
\end{array}\right.
$$

a) What conditions are needed on a, b and c to ensure that $f(x)$ is continuous everywhere?
b) What conditions are needed on a, b and c to ensure that $f(x)$ is differentiable everywhere?
c) What is the $\lim _{x \rightarrow-\infty} f(x)$?
7. (6 pt) Let $f(x)$ be a continuous function on $[0,1]$ such that $0 \leq f(x) \leq 1$. Show that there is a c in $[0,1]$ such that $f(c)=c$.

