1. (40 pt$)$ Evaluate the following derivatives:
a) $f(x)=\sin ^{3}\left((2 x)^{\ln (3 x)}\right)$
b) $g(x)=\frac{\sqrt[3]{2 x+3} \sqrt[5]{3 x+7}\left(x^{2}+3 x\right)^{7}}{\cos ^{4}\left(x^{2}\right)\left(x^{3}+1\right)^{2} \sqrt[3]{(1-4 x)^{5}}}$
c) $h(x)=e^{e^{e^{x}}}$
d) $k(x)=\sin ^{-1}(\sin (2 x) \cos (x)+\cos (2 x) \sin (x))$
e) $m(x)=\sqrt[4]{x+\sqrt[3]{\sin (x)+\sqrt{e^{x^{2}}+3 x}}}$
2. (15 pt) Find the maximum and minimum values of $f(x)=x^{\frac{1}{3}}+(2-x)^{\frac{1}{3}}$ on the interval $[-1,2]$.
3. (10 pt) A large spherical star of radius R is absorbing the mass (which we will approximate by volume) off of a smaller star of radius r. Suppose that this process allows both objects to remain perfect spheres. Show that

$$
\frac{d R}{d t}=-\frac{a}{S}\left(\frac{d r}{d t}\right)
$$

where S is the surface area of the large star and a is the surface area of the smaller one.
4. (10 pt) Consider a function defined implicitly by $x^{y}=y^{x}$ (here you may assume that both x and y are positive). Find the tangent line at the point $(a, a)(a>0, a \neq e)$. Also find the slope of the tangent lines at $(2,4)$ and $(4,2)$. (Extra credit...can be turned in anytime before the final exam: Show that if (a, b) is a point on the curve where the slope of the tangent line is 1 , then $a=b$.)
5. (15 pt) A silo is built by putting a cone of height and radius 8 feet on top of a (circular) cylinder of height 20 feet and radius 8 feet. An ice storm hits and covers the roof of the silo with ice about 2 inches thick and the cylindrical side with ice about $\frac{1}{2}$ of an inch thick. Use differentials to estimate the volume of the ice on the silo.
6. (12 pt) (The Tidal Wave) Suppose that the area under one wave of a sine curve is given by $A=\frac{2}{\pi} h D$ where h is the height (amplitude) of the wave and D is the width of the base of the wave. Suppose that the area under this curve remains constant and the base width is decreasing at a rate of $100 \mathrm{ft} / \mathrm{sec}$ when the height of the wave is twice the base width. How fast is the height of the wave increasing at this instant?
7. (8 pt) Show that if $0<|a|<|b|$ then the equation $b x=\cos (a x)$ has at most one real solution.

