1. (40 pt) The following define functions of $y=f(x)$ explicitly or implicitly. In all cases, find y^{\prime}.
a) $f(x)=g\left(h(x)^{\sin (x)}\right)$
b) $f(x)=\ln \left(\sin \left(x^{2}\right)\right)$
c) $f(x)=\tan \left(\sin \left(x^{\sin \left(\ln (x)+x e^{x}\right)}\right)\right)$
d) $f(x)=x^{\frac{1}{\ln (x)}}$
e) $x^{x}=y^{y}$
2. (20 pt) Find the maximum and minimum values of the following functions.
a) $f(x)=\cos (x)-\cos (2 x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.
b) $f(x)=\sqrt[3]{x}\left(x^{2}-4\right)$ on the interval $[-2,3]$.
3. (12 pt) A ball is dropped from 50 feet high, 30 feet from a 50 foot high street light. How fast is the shadow of the ball moving along the ground $\frac{1}{2}$ second later (you may assume that the ball falls obeying the formula $s=16 t^{2}$).
4. (12 pt) Suppose a raindrop is (and remains) perfectly spherical and picks up extra water in a misty cloud at a rate that is proportional to its surface area. Show that the radius of the raindrop increases at a constant rate.
5. (10 pt) The roof of a tall tower is in the shape of a cone with the height and radius equal (both 10 feet). An ice storm hits and coats the roof with a uniformly thick coating of ice that is a inches thick.
a) Use differentials to estimate the volume of ice that is coating the roof. Is your estimate an underestimate or an overestimate (and why)?
b) Is the roof can withstand 6250 lbs before collapse and water weigh 62.5 lbs per cubic foot, estimate the smallest value of a (thickness of coating of the ice) that will cause the roof to fail.
6. (8 pt) A piece of cloth is recovered by some archaeologists. Upon examination, it is found that 75% of the original Carbon 14 remains in the cloth. If the half-life of Carbon 14 is 5730 years, estimate the age of the piece of cloth.
7. (8 pt) Suppose that $f(0)=1$ and $f^{\prime}(x)=2$ for all valus of x. Use the Mean Value Theorem to show that $f(x)=2 x+1$
