MATH 165

FALL 2004
EXAM 3

1. (32 pt) Evaluate the following limits:
a) $\lim _{x \rightarrow 0} \frac{\tan ^{2}(a x)}{\tan \left(b x^{2}\right)}, b \neq 0$.
b) $\lim _{x \rightarrow 0}(1+f(x))^{\frac{c}{x}}$, where $f(0)=0$ and $f^{\prime}(x)$ is continuous at 0 .
c) $\lim _{x \rightarrow-\infty} \frac{\sqrt[3]{x^{7}+x^{3}-1}}{\sqrt[6]{2 x^{14}-3 x-1}}$
d) $\lim _{t \rightarrow \infty} \frac{\sin (2 t)-2 t}{t}$
2. (18 pt) Sketch the graph of $f(x)=\tan ^{-1}(\ln (|x|))$. The first two derivatives of this function are

$$
f^{\prime}(x)=\frac{1}{x\left((\ln (|x|))^{2}+1\right)}
$$

and

$$
f^{\prime \prime}(x)=\frac{-(\ln (|x|)+1)^{2}}{x^{2}\left((\ln (|x|))^{2}+1\right)^{2}}
$$

3. (15 pt) Sketch the graph of $g(x)=\frac{x^{3}-2 x+1}{x^{2}-1}=x-\frac{x-1}{x^{2}-1}$. The first two derivatives of this function are

$$
g^{\prime}(x)=\frac{(x-1)^{2}\left(x^{2}+2 x+2\right)}{\left(x^{2}-1\right)^{2}}
$$

and

$$
g^{\prime \prime}(x)=\frac{-2(x-1)^{3}}{\left(x^{2}-1\right)^{3}}
$$

4. (18 pt) You make a trapezoid with three line segments of length a (and a fourth line segment, parallel to the opposite side, of any length that you need). What is the maximum area of such a trapezoid?
5. (15 pt) A propane tank is to be made of a cylinder of radius R and length h surmounted by two hemispheres each of radius R (one hemisphere on each end). Suppose the volume of this tank is to be the constant value V. Find the value of h that minimizes the surface area of the tank.
6. (12 pt) Suppose that f is a function such that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ for all x.
a) Explain why this function has at most one root
b) If this function does have a root, explain why Newton's method will always produce approxmations that are too large.
