1. $(32 \mathrm{pt})$ Evaluate the following limits:
a) $\lim _{x \rightarrow \infty} \frac{x+\sin (3 x)}{2 x}$
b) $\lim _{x \rightarrow 0}(1+\tan (a x))^{\frac{b}{x}}$
c) $\lim _{x \rightarrow 0}\left(\cot (2 x)-\frac{1}{2} \csc (x)\right)$
d) $\lim _{x \rightarrow 1^{+}}(x-1) \ln \left(\ln \left(x^{m}\right)\right), m \neq 0$
2. (16 pt) Sketch the graph of $f(x)=\left(x^{3}-3 x\right)^{\frac{1}{3}}$. The first two derivatives are given below.

$$
f^{\prime}(x)=\frac{x^{2}-1}{\left(x^{3}-3 x\right)^{\frac{2}{3}}}
$$

and

$$
f^{\prime \prime}(x)=\frac{-2 x^{2}-2}{\left(x^{3}-3 x\right)^{\frac{5}{3}}}
$$

3. The picture below is a graph of the derivative of the continuous function $F(x)$.

a) (6 pt) Sketch the graph of $F^{\prime \prime}(x)$.
b) $(10 \mathrm{pt})$ Use this information to sketch the graph of $F(x)$ if $F(0)=1$.
4. (18 pt) Find the largest volume of a box with square base that can be inscribed in a hemisphere. What is the proportion of this largest volume to the total volume of the hemisphere?
5. (15 pt) A window is designed in the shape of a semicircle on top of a rectangle. If we want the area to be some fixed value (say A), find the dimensions of the window that minimize the perimeter.
6. (8 pt) Suppose that $f(x)$ has the line $y=m x+c$ as a slant asymptote (in both directions) and $g(x)$ has the line $y=n x+d$ as a slant asymptote (in both directions) with $n, m \neq 0$. Find

$$
\lim _{x \rightarrow \infty} \frac{f(a x)}{g(b x)}
$$

where $a, b \neq 0$. You may assume that f and g are differentiable.
7. (5 pt) Carefully explain how the formula that we obtained in class for Newton's Method is derived.

