## MATH 165 <br> FALL 2010 <br> EXAM 3

1. ( 40 pt$)$ Evaluate the following limits:
a) $\lim _{x \rightarrow a} \frac{\tan ^{-1}(x f(x))}{f(x)}$ where $\lim _{x \rightarrow a} f(x)=0$ and $f^{\prime}(x)$ is continuous and nonzero at $a$.
b) $\lim _{x \rightarrow 0}\left(A x^{2}+B x+1\right)^{\frac{c}{x}} \quad$ c) $\lim _{x \rightarrow 0} \frac{A \cos \left(x^{2}\right)-A}{x^{4}} \quad$ d) $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x^{6}+x^{2}+2}}{3 x^{2}+2}$
2. (16 pt) Sketch the graph of $f(x)=\ln \left|x^{3}+8\right|$. The first two derivatives of $f(x)$ are given by

$$
f^{\prime}(x)=\frac{3 x^{2}}{x^{3}+8}
$$

and

$$
f^{\prime \prime}(x)=\frac{-3 x\left(x^{3}-16\right)}{\left(x^{3}+8\right)^{2}}
$$

3. (15 pt) Sketch the graph of $f(x)=\tan ^{-1}\left(\frac{x^{2}}{x^{2}-1}\right)$. The first two derivatives of $f(x)$ are

$$
f^{\prime}(x)=\frac{-2 x}{2 x^{4}-2 x^{2}+1}
$$

and

$$
f^{\prime \prime}=\frac{2\left(6 x^{4}-2 x^{2}-1\right)}{\left(2 x^{4}-2 x^{2}+1\right)^{2}}
$$

(the real roots of $6 x^{4}-2 x^{2}-1$ are approximately -.78 and .78 ).
4. (15 pt) You have $A$ square inches of material from which to make a soup cup (circular cylinder with an open top). Find the ratio of the height to the radius that maximizes the volume of the cup.
5. ( 16 pt ) A square piece of cardboard (of side length $s$ ) has a square of equal length removed from each corner so that it can be folded up into a box. Find the length of the removed squares such that the volume of the folded box is maximal (and what is the maximal volume?).
6. Suppose that $f(x)$ is differentiable everywhere and is always increasing and concave up.
a) (4 pt) Briefly explain why $f(x)$ has at most one root.
b) (4 pt) If $f(x)$ has a root and Newton's method converges to this root, will the successive approximations be too large, too small, or is there no way to tell?

