MATH 165

FALL 2004
FINAL EXAM

1. $(25 \mathrm{pt})$ Evaluate the following limits if they exist.
a) $\lim _{x \rightarrow 0} \frac{\sin (a x)}{\tan \left(\left(b^{2}+1\right) x\right)}$
b) $\lim _{x \rightarrow 3} \ln \left(\frac{x^{3}-27}{x^{2}+2 x-15}\right)$
c) $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{2 x^{3}+3 x+4}}{1-2 x}$
d) $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ where $m x+a \leq f(x) \leq m x+b, a<b$
e) $\lim _{x \rightarrow 0}(1+a x)^{\frac{b}{x}}$
2. (24 pt) Find the derivatives of the following functions.
a) $f(x)=\frac{k(x) m(x)}{g(x)}$
b) $g(x)=x^{2} \ln \left(\left|\sec \left(x^{2}+3 x\right)\right|\right)$
c) $h(x)=(2 x)^{e^{x}}$
d) $k(x)=\sin \left(\cos \left(\ln \left(e^{2 x}+1\right)\right)\right)$
3. (18 pt) Evaluate the following integrals.
a) $\int 2 x^{3} \sqrt{x^{2}+1} d x$
b) $\int_{0}^{\frac{\pi}{2}} \frac{\cos (x)}{\sin ^{2}(x)+1} d x$
c) $\int_{0}^{\ln (3)} \frac{e^{x}\left(e^{2 x}+1\right)}{e^{x}+1} d x$
4. (5 pt) Use the definition of the derivative to find the derivative of $f(x)=\frac{1}{\sqrt{x}}$.
5. (5 pt) Use the definition of the definite integral to find $\int_{0}^{2}\left(3 x^{2}+3\right) d x$.
6. (8 pt$) \mathrm{A}$ water tank is in the shape of an inverted cone of height 10 meters and radius of 4 meters. The tank has sprung a leak and you find that the depth of the water in the tank is decreasing at $\frac{1}{10}$ meters per hour when the depth of the water is 5 meters. How fast is the tank leaking?
7. (8 pt) Farmer Stu has P feet of fence. He wishes to make two adjacent rectangular pens (sharing a border) of equal area with this fence. Describe how to make these pens to maximize the total area.
8. (8 pt) Sketch the graph of the curve $f(x)=4 x^{\frac{1}{3}}+x^{\frac{4}{3}}$. For your convenience, the first two derivatives of this function are $f^{\prime}(x)=\frac{4}{3} x^{-\frac{2}{3}}(1+x)$ and $f^{\prime \prime}(x)=\frac{4}{9} x^{-\frac{5}{3}}(x-2)$.
9. (5 pt) Find the tangent line to the function given implicitly by the equation $x y=\cos (2 x-y)$ at the point ($0, \frac{\pi}{2}$).
10. (4 pt) Use a linear approximation to estimate the value of $\sqrt[4]{15}$. Is your answer an overestimate or an underestimate (and explain how you know)?
